1
|
Hicks AJ, Carrington H, Bura L, Yang A, Pesce R, Yew B, Dams-O'Connor K. Blood-Based Protein Biomarkers in the Chronic Phase of Traumatic Brain Injury: A Systematic Review. J Neurotrauma 2025; 42:759-797. [PMID: 40176450 DOI: 10.1089/neu.2024.0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025] Open
Abstract
There has been limited exploration of blood-based biomarkers in the chronic period following traumatic brain injury (TBI). Our objective was to conduct a systematic review of studies examining blood-based protein biomarkers with at least one sample collected 12 months post-TBI in adults (≥16 years). Database searches were conducted in Embase, MEDLINE, and Science Citation Index-Expanded on July 24, 2023. Risk of bias was assessed using modified Joanna Briggs Institute critical appraisal tools. Only 30 of 12,523 articles met inclusion criteria, with samples drawn from 12 months to 48 years. Higher quality evidence (low risk of bias; large samples) identified promising inflammatory biomarkers at 12 months post-injury in both moderate-severe TBI (GFAP) and mild TBI (eotaxin-1, IFN-y, IL-8, IL-9, IL-17A, MCP-1, MIP-1β, FGF-basic, and TNF-α). Studies with low risk of bias but smaller samples also suggest NSE, MME, and CRP may be informative, alongside protein variants for α-syn (10H, D5), amyloid-β (A4, C6T), TDP-43 (AD-TDP 1;2;3;9;11), and tau (D11C). Findings for NfL were inconclusive. Longitudinal data were mostly available for acute samples followed until 12 months post-injury, with limited evaluation of changes beyond 12 months. Associations of some blood-based biomarkers with cognitive, sleep, and functional outcomes were reported. The overall strength of the evidence in this review was limited by the risk of bias and small sample sizes. Replication is required within prospective longitudinal studies that move beyond 12 months post-injury. Novel efforts should be guided by promising neurodegenerative-disease markers and use panels to model polypathology.
Collapse
Affiliation(s)
- Amelia J Hicks
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Holly Carrington
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Bura
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alicia Yang
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rico Pesce
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Belinda Yew
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | |
Collapse
|
2
|
Zedde M, Piazza F, Pascarella R. Traumatic Brain Injury and Chronic Traumatic Encephalopathy: Not Only Trigger for Neurodegeneration but Also for Cerebral Amyloid Angiopathy? Biomedicines 2025; 13:881. [PMID: 40299513 PMCID: PMC12024568 DOI: 10.3390/biomedicines13040881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 03/25/2025] [Accepted: 04/02/2025] [Indexed: 04/30/2025] Open
Abstract
Traumatic brain injury (TBI) has been linked to the development of neurodegenerative diseases, particularly Alzheimer's disease (AD) and chronic traumatic encephalopathy (CTE). This review critically assesses the relationship between TBI and cerebral amyloid angiopathy (CAA), highlighting the complexities of diagnosing CAA in the context of prior head trauma. While TBI has been shown to facilitate the accumulation of amyloid plaques and tau pathology, the interplay between neurodegenerative processes and vascular contributions remains underexplored. Epidemiological studies indicate that TBI increases the risk of various dementias, not solely AD, emphasizing the need for a comprehensive understanding of TBI-related neurodegeneration as a polypathological condition. This review further delineates the mechanisms by which TBI can lead to CAA, particularly focusing on the vascular changes that occur post-injury. It discusses the challenges associated with diagnosing CAA after TBI, particularly due to the overlapping symptoms and pathologies that complicate clinical evaluations. Notably, this review includes a clinical case that exemplifies the diagnostic challenges posed by TBI in patients with subsequent cognitive decline and vascular pathology. By synthesizing current research on TBI, CAA, and associated neurodegenerative conditions, this review aims to foster a more nuanced understanding of how these conditions interact and contribute to long-term cognitive outcomes. The findings underscore the importance of developing standardized diagnostic criteria and imaging techniques to better elucidate the relationship between TBI and vascular pathology, which could enhance clinical interventions and inform therapeutic strategies for affected individuals.
Collapse
Affiliation(s)
- Marialuisa Zedde
- Neurology Unit, Stroke Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
| | - Fabrizio Piazza
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- iCAβ International Network
| | - Rosario Pascarella
- CAA and AD Translational Research and Biomarkers Lab, School of Medicine, University of Milano-Bicocca, 20900 Monza, Italy; (F.P.); (R.P.)
- Neuroradiology Unit, Ospedale Santa Maria della Misericordia, AULSS 5 Polesana, 45100 Rovigo, Italy
- SINdem Study Group “The Inflammatory Cerebral Amyloid Angiopathy and Alzheimer’s Disease Biomarkers”
| |
Collapse
|
3
|
Li LM, Kodosaki E, Heslegrave A, Zetterberg H, Graham N, Zimmerman K, Soreq E, Parker T, Garbero E, Moro F, Magnoni S, Bertolini G, Loane DJ, Sharp DJ. High-dimensional proteomic analysis for pathophysiological classification of traumatic brain injury. Brain 2025; 148:1015-1030. [PMID: 39323289 PMCID: PMC11884744 DOI: 10.1093/brain/awae305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/06/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
Pathophysiology and outcomes after traumatic brain injury (TBI) are complex and heterogeneous. Current classifications are uninformative about pathophysiology. Proteomic approaches with fluid-based biomarkers are ideal for exploring complex disease mechanisms, because they enable sensitive assessment of an expansive range of processes potentially relevant to TBI pathophysiology. We used novel high-dimensional, multiplex proteomic assays to assess altered plasma protein expression in acute TBI. We analysed samples from 88 participants from the BIO-AX-TBI cohort [n = 38 moderate-severe TBI (Mayo Criteria), n = 22 non-TBI trauma and n = 28 non-injured controls] on two platforms: Alamar NULISA™ CNS Diseases and OLINK® Target 96 Inflammation. Patient participants were enrolled after hospital admission, and samples were taken at a single time point ≤10 days post-injury. Participants also had neurofilament light, GFAP, total tau, UCH-L1 (all Simoa®) and S100B (Millipore) data. The Alamar panel assesses 120 proteins, most of which were previously unexplored in TBI, plus proteins with known TBI specificity, such as GFAP. A subset (n = 29 TBI and n = 24 non-injured controls) also had subacute (10 days to 6 weeks post-injury) 3 T MRI measures of lesion volume and white matter injury (fractional anisotropy). Differential expression analysis identified 16 proteins with TBI-specific significantly different plasma expression. These were neuronal markers (calbindin 2, UCH-L1 and visinin-like protein 1), astroglial markers (S100B and GFAP), neurodegenerative disease proteins (total tau, pTau231, PSEN1, amyloid-beta-42 and 14-3-3γ), inflammatory cytokines (IL16, CCL2 and ficolin 2) and cell signalling- (SFRP1), cell metabolism- (MDH1) and autophagy-related (sequestome 1) proteins. Acute plasma levels of UCH-L1, PSEN1, total tau and pTau231 were correlated with subacute lesion volume. Sequestome 1 was positively correlated with white matter fractional anisotropy, whereas CCL2 was inversely correlated. Neuronal, astroglial, tau and neurodegenerative proteins were correlated with each other, IL16, MDH1 and sequestome 1. Exploratory clustering (k means) by acute protein expression identified three TBI subgroups that differed in injury patterns, but not in age or outcome. One TBI cluster had significantly lower white matter fractional anisotropy than control-predominant clusters but had significantly lower lesion subacute lesion volumes than another TBI cluster. Proteins that overlapped on two platforms had excellent (r > 0.8) correlations between values. We identified TBI-specific changes in acute plasma levels of proteins involved in neurodegenerative disease, inflammatory and cellular processes. These changes were related to patterns of injury, thus demonstrating that processes previously studied only in animal models are also relevant in human TBI pathophysiology. Our study highlights how proteomic approaches might improve classification and understanding of TBI pathophysiology, with implications for prognostication and treatment development.
Collapse
Affiliation(s)
- Lucia M Li
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eleftheria Kodosaki
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Amanda Heslegrave
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London WC1N 3BG, UK
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, UCL, London W1T 7NF, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 431 41, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 413 45, Sweden
| | - Neil Graham
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Karl Zimmerman
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Eyal Soreq
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Thomas Parker
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| | - Elena Garbero
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Federico Moro
- Department of Acute Brain and Cardiovascular Injury, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - Sandra Magnoni
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari 07100, Italy
| | - Guido Bertolini
- Department of Medical Epidemiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Bergamo 21056, Italy
| | - David J Loane
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Ireland
- Department of Anesthesiology and Shock, Trauma and Anesthesiology (STAR) Research Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - David J Sharp
- Department of Brain Sciences, Imperial College London, London W12 0BZ, UK
- UK Dementia Research Institute Centre for Care Research & Technology, Imperial College London and University of Surrey, London W12 0BZ, UK
| |
Collapse
|
4
|
Hicks AJ, Plourde J, Selmanovic E, de Souza NL, Blennow K, Zetterberg H, Dams-O'Connor K. Trajectories of blood-based protein biomarkers in chronic traumatic brain injury. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.16.25322303. [PMID: 40034765 PMCID: PMC11875239 DOI: 10.1101/2025.02.16.25322303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Blood-based protein biomarkers may provide important insights into the long-term neuropathology of traumatic brain injury (TBI). This is urgently required to identify mechanistic processes underlying post-traumatic neurodegeneration (PTND); a progressive post-recovery clinical decline experienced by a portion of TBI survivors. The aim of this study was to examine change over time in protein levels in a chronic TBI cohort. We selected six markers (Aβ 42 /Aβ 40 , GFAP, NfL, BD-tau, p-tau231, and p-tau181) with known importance in acute TBI and/or other neurodegenerative conditions. We used a longitudinal design with two time points approximately 3.5 years apart on average (SD 1.34). Proteins were measured in plasma using the ultrasensitive Single molecule array technology for 63 participants with mild to severe chronic TBI (sustained ≥ 1 year ago; M 28 years; SD 16.3 since their first blow to the head) from the Late Effects of TBI study (48% female; current age M 52 years; SD 13.4). Multivariate linear mixed effect models with adjustments for multiple comparisons were performed to examine trajectories in proteins over time with age and age squared as covariates. A series of sensitivity analyses were conducted to account for outliers and to explore effects of key covariates: sex, APOE ε4 carrier status, medical comorbidities, age at first blow to the head, time since first blow to the head, and injury severity. Over an average of 3.5 years, there were significant reductions in plasma Aβ 42 /Aβ 40 (β = -0.004, SE = 0.001, t = -3.75, q = .001) and significant increases in plasma GFAP (β = 12.96, SE = 4.41, t = 2.94, q = .01). There were no significant changes in NFL, BD-tau, p-tau231, or p-tau181. Both plasma Aβ 42 /Aβ 40 and GFAP have been associated with brain amyloidosis, suggesting a role for Aβ mis-metabolism and aggregation in the long-term neuropathological consequences of TBI. These findings are hypothesis generating for future studies exploring the diverse biological mechanisms of PTND.
Collapse
|
5
|
Karaboue MAA, Ministeri F, Sessa F, Nannola C, Chisari MG, Cocimano G, Di Mauro L, Salerno M, Esposito M. Traumatic Brain Injury as a Public Health Issue: Epidemiology, Prognostic Factors and Useful Data from Forensic Practice. Healthcare (Basel) 2024; 12:2266. [PMID: 39595464 PMCID: PMC11593823 DOI: 10.3390/healthcare12222266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Traumatic brain injury (TBI) represents a major public health problem, being a leading cause of disability and mortality among young people in developed countries. Head trauma occurs across all age groups, each experiencing consistently high rates of mortality and disability. This review aims to present an overview of TBI epidemiology and its socioeconomic impact, alongside data valuable for prevention, clinical management, and research efforts. Methods: A narrative review of TBI was performed with a particular focus on forensic pathology and public health. In fact, this review highlighted the economic and epidemiological aspects of TBI, as well as autopsy, histology, immunohistochemistry, and miRNA. Results: These data, together with immunohistochemical markers, are crucial for histopathological diagnosis and to determine the timing of injury onset, a fundamental aspect in forensic pathology practice. There is compelling evidence that brain injury biomarkers may enhance predictive models for clinical and prognostic outcomes. By clarifying the cause of death and providing details on survival time after trauma, forensic tools offer valuable information to improve the clinical management of TBI and guide preventive interventions. Conclusions: TBI is one of the most common causes of death today, with high costs for health care spending. Knowing the different mechanisms of TBI, reduces health care costs and helps improve prognosis.
Collapse
Affiliation(s)
| | - Federica Ministeri
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Chiara Nannola
- Department of Translational Medical Sciences, Università degli Studi di Napoli “Federico II”, 80125 Naples, Italy
| | | | - Giuseppe Cocimano
- Department of Mental and Physical Health and Preventive Medicine, University of Campania “Vanvitelli”, 80121 Napoli, Italy
| | - Lucio Di Mauro
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95121 Catania, Italy
| | | |
Collapse
|
6
|
Friberg S, Lindblad C, Zeiler FA, Zetterberg H, Granberg T, Svenningsson P, Piehl F, Thelin EP. Fluid biomarkers of chronic traumatic brain injury. Nat Rev Neurol 2024; 20:671-684. [PMID: 39363129 DOI: 10.1038/s41582-024-01024-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 10/05/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of long-term disability across the world. Evidence for the usefulness of imaging and fluid biomarkers to predict outcomes and screen for the need to monitor complications in the acute stage is steadily increasing. Still, many people experience symptoms such as fatigue and cognitive and motor dysfunction in the chronic phase of TBI, where objective assessments for brain injury are lacking. Consensus criteria for traumatic encephalopathy syndrome, a clinical syndrome possibly associated with the neurodegenerative disease chronic traumatic encephalopathy, which is commonly associated with sports concussion, have been defined only recently. However, these criteria do not fit all individuals living with chronic consequences of TBI. The pathophysiology of chronic TBI shares many similarities with other neurodegenerative and neuroinflammatory conditions, such as Alzheimer disease. As with Alzheimer disease, advancements in fluid biomarkers represent one of the most promising paths for unravelling the chain of pathophysiological events to enable discrimination between these conditions and, with time, provide prediction modelling and therapeutic end points. This Review summarizes fluid biomarker findings in the chronic phase of TBI (≥6 months after injury) that demonstrate the involvement of inflammation, glial biology and neurodegeneration in the long-term complications of TBI. We explore how the biomarkers associate with outcome and imaging findings and aim to establish mechanistic differences in biomarker patterns between types of chronic TBI and other neurodegenerative conditions. Finally, current limitations and areas of priority for future fluid biomarker research are highlighted.
Collapse
Affiliation(s)
- Susanna Friberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Caroline Lindblad
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Department of Neurosurgery, Uppsala University Hospital, Uppsala, Sweden
| | - Frederick A Zeiler
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Section of Neurosurgery, Department of Surgery, University of Manitoba, Rady Faculty of Health Sciences, Winnipeg, Manitoba, Canada
- Department of Biomedical Engineering, Price Faculty of Engineering, University of Manitoba, Winnipeg, Manitoba, Canada
- Pan Am Clinic Foundation, Winnipeg, Manitoba, Canada
- Division of Anaesthesia, Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, University College London, Queen Square Institute of Neurology, London, UK
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Tobias Granberg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Eric P Thelin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Lipsky RH, Witkin JM, Shafique H, Smith JL, Cerne R, Marini AM. Traumatic brain injury: molecular biomarkers, genetics, secondary consequences, and medical management. Front Neurosci 2024; 18:1446076. [PMID: 39450122 PMCID: PMC11500614 DOI: 10.3389/fnins.2024.1446076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/23/2024] [Indexed: 10/26/2024] Open
Abstract
Traumatic brain injury (TBI) has reached epidemic proportions worldwide. The consequences of TBI can be severe even with repetitive mild trauma. If death and coma are avoided, the consequences of TBI in the long term typically involve dizziness, sleep disturbances, headache, seizures, cognitive impairment, focal deficits, depression, and anxiety. The severity of brain injury is a significant predictor of outcome. However, the heterogenous nature of the injury makes prognosis difficult. The present review of the literature focuses on the genetics of TBI including genome wide (GWAS) data and candidate gene associations, among them brain-derived neurotrophic factor (BDNF) with TBI and development of post-traumatic epilepsy (PTE). Molecular biomarkers of TBI are also discussed with a focus on proteins and the inflammatory protein IL1-β. The secondary medical sequela to TBI of cognitive impairment, PTE, headache and risk for neurodegenerative disorders is also discussed. This overview of TBI concludes with a review and discussion of the medical management of TBI and the medicines used for and being developed at the preclinical and clinical stages for the treatment of TBI and its host of life-debilitating symptoms.
Collapse
Affiliation(s)
- Robert H. Lipsky
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
- Departments of Neuroscience and Trauma Research Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Hana Shafique
- Duke University School of Medicine, Durham, NC, United States
| | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Rok Cerne
- Laboratory of Antiepileptic Drug Discovery Ascension St. Vincent Hospital, Indianapolis, IN, United States
| | - Ann M. Marini
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Program in Neuroscience, and Molecular and Cellular Biology Program, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
8
|
Wlodarczyk J, Bhattacharyya R, Dore K, Ho GPH, Martin DDO, Mejias R, Hochrainer K. Altered Protein Palmitoylation as Disease Mechanism in Neurodegenerative Disorders. J Neurosci 2024; 44:e1225242024. [PMID: 39358031 PMCID: PMC11450541 DOI: 10.1523/jneurosci.1225-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/04/2024] Open
Abstract
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, β-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Collapse
Affiliation(s)
- Jakub Wlodarczyk
- Laboratory of Cell Biophysics, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw 02-093, Poland
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Kim Dore
- Department of Neurosciences, Center for Neural Circuits and Behavior, UCSD, La Jolla, California 92093
| | - Gary P H Ho
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | - Dale D O Martin
- Department of Biology, Faculty of Science, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Rebeca Mejias
- Department of Physiology, School of Biology, Universidad de Sevilla, Seville, 41012 Spain
- Instituto de Investigaciones Biomédicas de Sevilla, IBIS/Universidad de Sevilla/Hospital Universitario Virgen del Rocío/Junta de Andalucía/CSIC, Seville 41013, Spain
| | - Karin Hochrainer
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10065
| |
Collapse
|
9
|
Ollen-Bittle N, Roseborough AD, Wang W, Wu JLD, Whitehead SN. Connecting cellular mechanisms and extracellular vesicle cargo in traumatic brain injury. Neural Regen Res 2024; 19:2119-2131. [PMID: 38488547 PMCID: PMC11034607 DOI: 10.4103/1673-5374.391329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/25/2023] [Accepted: 11/13/2023] [Indexed: 04/24/2024] Open
Abstract
Traumatic brain injury is followed by a cascade of dynamic and complex events occurring at the cellular level. These events include: diffuse axonal injury, neuronal cell death, blood-brain barrier break down, glial activation and neuroinflammation, edema, ischemia, vascular injury, energy failure, and peripheral immune cell infiltration. The timing of these events post injury has been linked to injury severity and functional outcome. Extracellular vesicles are membrane bound secretory vesicles that contain markers and cargo pertaining to their cell of origin and can cross the blood-brain barrier. These qualities make extracellular vesicles intriguing candidates for a liquid biopsy into the pathophysiologic changes occurring at the cellular level post traumatic brain injury. Herein, we review the most commonly reported cargo changes in extracellular vesicles from clinical traumatic brain injury samples. We then use knowledge from animal and in vitro models to help infer what these changes may indicate regrading cellular responses post traumatic brain injury. Future research should prioritize labeling extracellular vesicles with markers for distinct cell types across a range of timepoints post traumatic brain injury.
Collapse
Affiliation(s)
- Nikita Ollen-Bittle
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Austyn D. Roseborough
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Wenxuan Wang
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Jeng-liang D. Wu
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
| | - Shawn N. Whitehead
- Department of Anatomy and Cell Biology, Western University, London, ON, Canada
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Deparment of Clinical Neurological Sciences, Western University, London, ON, Canada
| |
Collapse
|
10
|
Delteil C, Manlius T, Bailly N, Godio-Raboutet Y, Piercecchi-Marti MD, Tuchtan L, Hak JF, Velly L, Simeone P, Thollon L. Traumatic axonal injury: Clinic, forensic and biomechanics perspectives. Leg Med (Tokyo) 2024; 70:102465. [PMID: 38838409 DOI: 10.1016/j.legalmed.2024.102465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/07/2024]
Abstract
Identification of Traumatic axonal injury (TAI) is critical in clinical practice, particularly in terms of long-term prognosis, but also for medico-legal issues, to verify whether the death or the after-effects were attributable to trauma. Multidisciplinary approaches are an undeniable asset when it comes to solving these problems. The aim of this work is therefore to list the different techniques needed to identify axonal lesions and to understand the lesion mechanisms involved in their formation. Imaging can be used to assess the consequences of trauma, to identify indirect signs of TAI, to explain the patient's initial symptoms and even to assess the patient's prognosis. Three-dimensional reconstructions of the skull can highlight fractures suggestive of trauma. Microscopic and immunohistochemical techniques are currently considered as the most reliable tools for the early identification of TAI following trauma. Finite element models use mechanical equations to predict biomechanical parameters, such as tissue stresses and strains in the brain, when subjected to external forces, such as violent impacts to the head. These parameters, which are difficult to measure experimentally, are then used to predict the risk of injury. The integration of imaging data with finite element models allows researchers to create realistic and personalized computational models by incorporating actual geometry and properties obtained from imaging techniques. The personalization of these models makes their forensic approach particularly interesting.
Collapse
Affiliation(s)
- Clémence Delteil
- Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
| | - Thais Manlius
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
| | - Nicolas Bailly
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France; Neuroimagery Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France.
| | | | - Marie-Dominique Piercecchi-Marti
- Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
| | - Lucile Tuchtan
- Forensic Department, Assistance Publique-Hôpitaux de Marseille, La Timone, 264 rue St Pierre, 13385 Marseille Cedex 05, France; Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France.
| | | | - Lionel Velly
- Département d'Anesthésie-Réanimation, Assistance Publique-Hôpitaux de Marseille, La Timone, Marseille, France; Université Aix-Marseille/CNRS, Institut des Neurosciences de la Timone, UMR7289, Marseille, France.
| | - Pierre Simeone
- Département d'Anesthésie-Réanimation, Assistance Publique-Hôpitaux de Marseille, La Timone, Marseille, France; Université Aix-Marseille/CNRS, Institut des Neurosciences de la Timone, UMR7289, Marseille, France.
| | - Lionel Thollon
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
11
|
Abyadeh M, Gupta V, Paulo JA, Mahmoudabad AG, Shadfar S, Mirshahvaladi S, Gupta V, Nguyen CT, Finkelstein DI, You Y, Haynes PA, Salekdeh GH, Graham SL, Mirzaei M. Amyloid-beta and tau protein beyond Alzheimer's disease. Neural Regen Res 2024; 19:1262-1276. [PMID: 37905874 PMCID: PMC11467936 DOI: 10.4103/1673-5374.386406] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/08/2023] [Accepted: 09/07/2023] [Indexed: 11/02/2023] Open
Abstract
ABSTRACT The aggregation of amyloid-beta peptide and tau protein dysregulation are implicated to play key roles in Alzheimer's disease pathogenesis and are considered the main pathological hallmarks of this devastating disease. Physiologically, these two proteins are produced and expressed within the normal human body. However, under pathological conditions, abnormal expression, post-translational modifications, conformational changes, and truncation can make these proteins prone to aggregation, triggering specific disease-related cascades. Recent studies have indicated associations between aberrant behavior of amyloid-beta and tau proteins and various neurological diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, as well as retinal neurodegenerative diseases like Glaucoma and age-related macular degeneration. Additionally, these proteins have been linked to cardiovascular disease, cancer, traumatic brain injury, and diabetes, which are all leading causes of morbidity and mortality. In this comprehensive review, we provide an overview of the connections between amyloid-beta and tau proteins and a spectrum of disorders.
Collapse
Affiliation(s)
| | - Vivek Gupta
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | - Sina Shadfar
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Shahab Mirshahvaladi
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Veer Gupta
- School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Christine T.O. Nguyen
- Department of Optometry and Vision Sciences, School of Health Sciences, Faculty of Medicine Dentistry and Health Sciences, University of Melbourne, Parkville, VIC, Australia
| | - David I. Finkelstein
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Yuyi You
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Paul A. Haynes
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Ghasem H. Salekdeh
- School of Natural Sciences, Macquarie University, Macquarie Park, NSW, Australia
| | - Stuart L. Graham
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Faculty of Medicine, Health and Human Sciences, Macquarie Medical School, Macquarie University, Macquarie Park, North Ryde, Sydney, NSW, Australia
| |
Collapse
|
12
|
Gimbel SI, Hungerford LD, Twamley EW, Ettenhofer ML. White Matter Organization and Cortical Thickness Differ Among Active Duty Service Members With Chronic Mild, Moderate, and Severe Traumatic Brain Injury. J Neurotrauma 2024; 41:818-835. [PMID: 37800726 PMCID: PMC11005384 DOI: 10.1089/neu.2023.0336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023] Open
Abstract
Abstract This study compared findings from whole-brain diffusion tensor imaging (DTI) and volumetric magnetic resonance imaging (MRI) among 90 Active Duty Service Members with chronic mild traumatic brain injury (TBI; n = 52), chronic moderate-to-severe TBI (n = 17), and TBI-negative controls (n = 21). Data were collected on a Philips Ingenia 3T MRI with DTI in 32 directions. Results demonstrated that history of TBI was associated with differences in white matter microstructure, white matter volume, and cortical thickness in both mild TBI and moderate-to-severe TBI groups relative to controls. However, the presence, pattern, and distribution of these findings varied substantially depending on the injury severity. Spatially-defined forms of DTI fractional anisotropy (FA) analyses identified altered white matter organization within the chronic moderate-to-severe TBI group, but they did not provide clear evidence of abnormalities within the chronic mild TBI group. In contrast, DTI FA "pothole" analyses identified widely distributed areas of decreased FA throughout the white matter in both the chronic mild TBI and chronic moderate-to-severe TBI groups. Additionally, decreased white matter volume was found in several brain regions for the chronic moderate-to-severe TBI group compared with the other groups. Greater number of DTI FA potholes and reduced cortical thickness were also related to greater severity of self-reported symptoms. In sum, this study expands upon a growing body of literature using advanced imaging techniques to identify potential effects of brain injury in military Service Members. These findings may differ from work in other TBI populations due to varying mechanisms and frequency of injury, as well as a potentially higher level of functioning in the current sample related to the ability to maintain continued Active Duty status after injury. In conclusion, this study provides DTI and volumetric MRI findings across the spectrum of TBI severity. These results provide support for the use of DTI and volumetric MRI to identify differences in white matter microstructure and volume related to TBI. In particular, DTI FA pothole analysis may provide greater sensitivity for detecting subtle forms of white matter injury than conventional DTI FA analyses.
Collapse
Affiliation(s)
- Sarah I. Gimbel
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Lars D. Hungerford
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
| | - Elizabeth W. Twamley
- University of California, San Diego, San Diego, California, USA
- Center of Excellence for Stress and Mental Health, VA San Diego Healthcare System, San Diego, California, USA
| | - Mark L. Ettenhofer
- Traumatic Brain Injury Center of Excellence, Silver Spring, Maryland, USA
- Naval Medical Center San Diego, San Diego, California, USA
- General Dynamics Information Technology, Falls Church, Virginia, USA
- University of California, San Diego, San Diego, California, USA
| |
Collapse
|
13
|
Banerjee G, Farmer SF, Hyare H, Jaunmuktane Z, Mead S, Ryan NS, Schott JM, Werring DJ, Rudge P, Collinge J. Iatrogenic Alzheimer's disease in recipients of cadaveric pituitary-derived growth hormone. Nat Med 2024; 30:394-402. [PMID: 38287166 PMCID: PMC10878974 DOI: 10.1038/s41591-023-02729-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/17/2023] [Indexed: 01/31/2024]
Abstract
Alzheimer's disease (AD) is characterized pathologically by amyloid-beta (Aβ) deposition in brain parenchyma and blood vessels (as cerebral amyloid angiopathy (CAA)) and by neurofibrillary tangles of hyperphosphorylated tau. Compelling genetic and biomarker evidence supports Aβ as the root cause of AD. We previously reported human transmission of Aβ pathology and CAA in relatively young adults who had died of iatrogenic Creutzfeldt-Jakob disease (iCJD) after childhood treatment with cadaver-derived pituitary growth hormone (c-hGH) contaminated with both CJD prions and Aβ seeds. This raised the possibility that c-hGH recipients who did not die from iCJD may eventually develop AD. Here we describe recipients who developed dementia and biomarker changes within the phenotypic spectrum of AD, suggesting that AD, like CJD, has environmentally acquired (iatrogenic) forms as well as late-onset sporadic and early-onset inherited forms. Although iatrogenic AD may be rare, and there is no suggestion that Aβ can be transmitted between individuals in activities of daily life, its recognition emphasizes the need to review measures to prevent accidental transmissions via other medical and surgical procedures. As propagating Aβ assemblies may exhibit structural diversity akin to conventional prions, it is possible that therapeutic strategies targeting disease-related assemblies may lead to selection of minor components and development of resistance.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Harpreet Hyare
- UCL Queen Square Institute of Neurology, London, UK
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences and Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - Natalie S Ryan
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - David J Werring
- Stroke Research Centre, UCL Queen Square Institute of Neurology, London, UK
- Stroke Service, National Hospital for Neurology and Neurosurgery, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK
| | - John Collinge
- MRC Prion Unit at UCL and UCL Institute of Prion Diseases, London, UK.
- National Prion Clinic, National Hospital for Neurology and Neurosurgery, London, UK.
| |
Collapse
|
14
|
Wei Z, Yu H, Zhao H, Wei M, Xing H, Pei J, Yang Y, Ren K. Broadening horizons: ferroptosis as a new target for traumatic brain injury. BURNS & TRAUMA 2024; 12:tkad051. [PMID: 38250705 PMCID: PMC10799763 DOI: 10.1093/burnst/tkad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/24/2023] [Accepted: 10/15/2023] [Indexed: 01/23/2024]
Abstract
Traumatic brain injury (TBI) is a leading cause of death and disability worldwide, with ~50 million people experiencing TBI each year. Ferroptosis, a form of regulated cell death triggered by iron ion-catalyzed and reactive oxygen species-induced lipid peroxidation, has been identified as a potential contributor to traumatic central nervous system conditions, suggesting its involvement in the pathogenesis of TBI. Alterations in iron metabolism play a crucial role in secondary injury following TBI. This study aimed to explore the role of ferroptosis in TBI, focusing on iron metabolism disorders, lipid metabolism disorders and the regulatory axis of system Xc-/glutathione/glutathione peroxidase 4 in TBI. Additionally, we examined the involvement of ferroptosis in the chronic TBI stage. Based on these findings, we discuss potential therapeutic interventions targeting ferroptosis after TBI. In conclusion, this review provides novel insights into the pathology of TBI and proposes potential therapeutic targets.
Collapse
Affiliation(s)
- Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, No. 1, Longhu Middle Ring Road, Jinshui District, Zhengzhou, China
| | - Haihan Yu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou, China
| | - Huijuan Zhao
- Henan International Joint Laboratory of Thrombosis and Hemostasis, College of Basic Medicine and Forensic Medicine, Henan University of Science and Technology, No. 1, Longhu Middle Ring Road, Jinshui District, Luoyang, China
| | - Mingze Wei
- The Second Clinical Medical College, Harbin Medical University, No. 263, Kaiyuan Avenue, Luolong District, Harbin, China
| | - Han Xing
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| | - Jinyan Pei
- Quality Management Department, Henan No.3 Provincial People’s Hospital, No. 198, Funiu Road, Zhongyuan District, Henan province, Zhengzhou 450052, China
| | - Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, the First Affiliated Hospital of Zhengzhou University, No. 198, Funiu Road, Zhongyuan District, Zhengzhou 450052, China
| | - Kaidi Ren
- Department of Pharmacy, the First Affiliated Hospital of Zhengzhou University, No. 246, Xuefu Road, Nangang District, Zhengzhou 450052, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, No. 1, Jianshe East Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
15
|
Donnelly RR, Ugbolue UC, Gao Y, Gu Y, Dutheil F, Baker JS. A Systematic Review and Meta-Analysis Investigating Head Trauma in Boxing. Clin J Sport Med 2023; 33:658-674. [PMID: 37862081 PMCID: PMC10597432 DOI: 10.1097/jsm.0000000000001195] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/22/2023] [Indexed: 10/21/2023]
Abstract
OBJECTIVES Although physical trauma has been reported in boxing since its inception, boxing still appeals to athletes and spectators. This systematic review and meta-analysis assess both acute and chronic neurological and neuropsychological effects that boxing has on the brain. Further assessments in terms of comparisons of the concussion ratio in boxing to other combat sports, as well as the efficiency of wearing headguards, are also performed. DATA SOURCES This systematic review and meta-analysis used the Preferred Reporting Items for Systematic reviews and Meta-Analyses guidelines. The outcomes incorporated included physical chronic abnormalities of the brain, neuropsychiatric, and neurological disorders sustained in amateur or professional boxing, in addition to the safety benefits of boxing headguards. Odds ratios, descriptive statistics, and inferential statistics are also reported. MAIN RESULTS From the 84 articles reviewed, the 35 included articles suggested that boxers have a significantly elevated risk of sustaining a concussion compared with other combat sports (risk ratio [RR]: 0.253 vs RR: 0.065, P < 0.001). From the 631 amateur and professional boxers analyzed, 147 (23.30%) had cavum septum pellucidum, whereas 125 of 411 amateur and professional boxers (30.41%) presented with some form of brain atrophy. Dementia or amnesia was observed in 46 of 71 boxers (61.79%), 36 of 70 (51.43%) had various forms and severities of cognitive disorders, and 57 of 109 (52.29%) displayed abnormal computed tomography or electroencephalogram scan results. Utilization of headguards significantly increased the risk for stoppages in amateur bouts, compared with boxers not wearing a headguard (OR: 1.75 vs 0.53, P < 0.050). CONCLUSIONS Boxing is a hazardous sport that has the potential to have fatal and negative life-changing results. Because of the limited reliable data regarding the efficiency of boxing headguards, future research should focus on the overall significance that headguards may have for reducing head trauma.
Collapse
Affiliation(s)
- Robert R. Donnelly
- Faculty of Sports Science, Ningbo University, Ningbo, China
- School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, United Kingdom
| | - Ukadike Chris Ugbolue
- Faculty of Sports Science, Ningbo University, Ningbo, China
- School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, United Kingdom
| | - Yang Gao
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong; and
| | - Yaodong Gu
- School of Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of the West of Scotland, South Lanarkshire, Scotland, United Kingdom
| | - Frédéric Dutheil
- CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Preventive and Occupational Medicine, WittyFit, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien S. Baker
- Centre for Health and Exercise Science Research, Department of Sport, Physical Education and Health, Hong Kong Baptist University, Kowloon Tong, Hong Kong; and
| |
Collapse
|
16
|
Xiong G, Metheny H, Hood K, Jean I, Farrugia AM, Johnson BN, Tummala SR, Cohen NA, Cohen AS. Detection and verification of neurodegeneration after traumatic brain injury in the mouse: Immunohistochemical staining for amyloid precursor protein. Brain Pathol 2023; 33:e13163. [PMID: 37156643 PMCID: PMC10580020 DOI: 10.1111/bpa.13163] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/18/2023] [Indexed: 05/10/2023] Open
Abstract
Previous studies of human traumatic brain injury (TBI) have shown diffuse axonal injury as varicosities or spheroids in white matter (WM) bundles when using immunoperoxidase-ABC staining with 22C11, a mouse monoclonal antibody against amyloid precursor protein (APP). These findings have been interpreted as TBI-induced axonal pathology. In a mouse model of TBI however, when we used immunofluorescent staining with 22C11, as opposed to immunoperoxidase staining, we did not observe varicosities or spheroids. To explore this discrepancy, we performed immunofluorescent staining with Y188, an APP knockout-validated rabbit monoclonal that shows baseline immunoreactivity in neurons and oligodendrocytes of non-injured mice, with some arranged-like varicosities. In gray matter after injury, Y188 intensely stained axonal blebs. In WM, we encountered large patches of heavily stained puncta, heterogeneous in size. Scattered axonal blebs were also identified among these Y188-stained puncta. To assess the neuronal origin of Y188 staining after TBI we made use of transgenic mice with fluorescently labeled neurons and axons. A close correlation was observed between Y188-stained axonal blebs and fluorescently labeled neuronal cell bodies/axons. By contrast, no correlation was observed between Y188-stained puncta and fluorescent axons in WM, suggesting that these puncta in WM did not originate from axons, and casting further doubt on the nature of previous reports with 22C11. As such, we strongly recommend Y188 as a biomarker for detecting damaged neurons and axons after TBI. With Y188, stained axonal blebs likely represent acute axonal truncations that may lead to death of the parent neurons. Y188-stained puncta in WM may indicate damaged oligodendrocytes, whose death and clearance can result in secondary demyelination and Wallerian degeneration of axons. We also provide evidence suggesting that 22C11-stained varicosities or spheroids previously reported in TBI patients might be showing damaged oligodendrocytes, due to a cross-reaction between the ABC kit and upregulated endogenous biotin.
Collapse
Affiliation(s)
- Guoxiang Xiong
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Hannah Metheny
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Kaitlin Hood
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Neuroscience Graduate GroupUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ian Jean
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Anthony M. Farrugia
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Brian N. Johnson
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Shanti R. Tummala
- Department of Bioengineering, School of Engineering and Applied SciencesUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Noam A. Cohen
- Philadelphia Veterans Affairs Medical CenterPhiladelphiaPennsylvaniaUSA
- Department of Otorhinolaryngology–Head and Neck SurgeryPerelman School of Medicine, University of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Akiva S. Cohen
- Department of Anesthesiology and Critical Care MedicineThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Department of Anesthesiology and Critical Care Medicine, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
17
|
Janković T, Pilipović K. Single Versus Repetitive Traumatic Brain Injury: Current Knowledge on the Chronic Outcomes, Neuropathology and the Role of TDP-43 Proteinopathy. Exp Neurobiol 2023; 32:195-215. [PMID: 37749924 PMCID: PMC10569144 DOI: 10.5607/en23008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/18/2023] [Accepted: 08/23/2023] [Indexed: 09/27/2023] Open
Abstract
Traumatic brain injury (TBI) is one of the most important causes of death and disability in adults and thus an important public health problem. Following TBI, secondary pathophysiological processes develop over time and condition the development of different neurodegenerative entities. Previous studies suggest that neurobehavioral changes occurring after a single TBI are the basis for the development of Alzheimer's disease, while repetitive TBI is considered to be a contributing factor for chronic traumatic encephalopathy development. However, pathophysiological processes that determine the evolvement of a particular chronic entity are still unclear. Human post-mortem studies have found combinations of amyloid, tau, Lewi bodies, and TAR DNA-binding protein 43 (TDP-43) pathologies after both single and repetitive TBI. This review focuses on the pathological changes of TDP-43 after single and repetitive brain traumas. Numerous studies have shown that TDP-43 proteinopathy noticeably occurs after repetitive head trauma. A relatively small number of available preclinical research on single brain injury are not in complete agreement with the results from the human samples, which makes it difficult to draw specific conclusions. Also, as TBI is considered a heterogeneous type of injury, different experimental trauma models and injury intensities may cause differences in the cascade of secondary injury, which should be considered in future studies. Experimental and post-mortem studies of TDP-43 pathobiology should be carried out, preferably in the same laboratories, to determine its involvement in the development of neurodegenerative conditions after one and repetitive TBI, especially in the context of the development of new therapeutic options.
Collapse
Affiliation(s)
- Tamara Janković
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| | - Kristina Pilipović
- Department of Basic and Clinical Pharmacology and Toxicology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia
| |
Collapse
|
18
|
Dasgupta S, Montroull LE, Pandya MA, Zanin JP, Wang W, Wu Z, Friedman WJ. Cortical Brain Injury Causes Retrograde Degeneration of Afferent Basal Forebrain Cholinergic Neurons via the p75NTR. eNeuro 2023; 10:ENEURO.0067-23.2023. [PMID: 37558465 PMCID: PMC10467018 DOI: 10.1523/eneuro.0067-23.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023] Open
Abstract
Traumatic brain injury (TBI) elicits neuronal loss at the site of injury and progressive neuronal loss in the penumbra. However, the consequences of TBI on afferent neurons projecting to the injured tissue from distal locations is unknown. Basal forebrain cholinergic neurons (BFCNs) extend long projections to multiple brain regions including the cortex, regulate many cognitive functions, and are compromised in numerous neurodegenerative disorders. To determine the consequence of cortical injury on these afferent neurons, we used the fluid percussion injury model of traumatic brain injury and assessed the effects on BFCN survival and axon integrity in male and female mice. Survival or death of BF neurons can be regulated by neurotrophins or proneurotrophins, respectively. The injury elicited an induction of proNGF and proBDNF in the cortex and a loss of BFCNs ipsilateral to the injury compared with sham uninjured mice. The p75NTR knock-out mice did not show loss of BFCN neurons, indicating a retrograde degenerative effect of the cortical injury on the afferent BFCNs mediated through p75NTR. In contrast, locus ceruleus neurons, which also project throughout the cortex, were unaffected by the injury, suggesting specificity in retrograde degeneration after cortical TBI. Proneurotrophins (proNTs) provided directly to basal forebrain axons in microfluidic cultures triggered retrograde axonal degeneration and cell death, which did not occur in the absence of p75NTR. This study shows that after traumatic brain injury, proNTs induced in the injured cortex promote BFCN axonal degeneration and retrograde neuron loss through p75NTR.
Collapse
Affiliation(s)
- Srestha Dasgupta
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Laura E Montroull
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Mansi A Pandya
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Juan P Zanin
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| | - Wei Wang
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Zhuhao Wu
- Helen and Robert Appel Alzheimer's Disease Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, New York 10021
| | - Wilma J Friedman
- Department of Biological Sciences, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
19
|
Hicks AJ, Sinclair B, Shultz SR, Pham W, Silbert LC, Schwartz DL, Rowe CC, Ponsford JL, Law M, Spitz G. Associations of Enlarged Perivascular Spaces With Brain Lesions, Brain Age, and Clinical Outcomes in Chronic Traumatic Brain Injury. Neurology 2023; 101:e63-e73. [PMID: 37156615 PMCID: PMC10351302 DOI: 10.1212/wnl.0000000000207370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/17/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Enlarged perivascular spaces (ePVS) have been identified as a key signature of glymphatic system dysfunction in neurologic conditions. The incidence and clinical implications of ePVS after traumatic brain injury (TBI) are not yet understood. We investigated whether individuals with chronic moderate-to-severe TBI had an increased burden of ePVS and whether ePVS burden is modulated by the presence of focal lesions, older brain age, and poorer sleep quality. We examined whether an increased burden of ePVS was associated with poorer cognitive and emotional outcomes. METHODS Using a cross-sectional design, participants with a single moderate-to-severe chronic TBI (sustained ≥10 years ago) were recruited from an inpatient rehabilitation program. Control participants were recruited from the community. Participants underwent 3T brain MRI, neuropsychological assessment, and clinical evaluations. ePVS burden in white matter was quantified using automated segmentation. The relationship between the number of ePVS, group membership, focal lesions, brain age, current sleep quality, and outcome was modeled using negative binomial and linear regressions. RESULTS This study included 100 participants with TBI (70% male; mean age = 56.8 years) and 75 control participants (54.3% male; mean age = 59.8 years). The TBI group had a significantly greater burden of ePVS (prevalence ratio rate [PRR] = 1.29, p = 0.013, 95% CI 1.05-1.57). The presence of bilateral lesions was associated with greater ePVS burden (PRR = 1.41, p = 0.021, 95% CI 1.05-1.90). There was no association between ePVS burden, sleep quality (PRR = 1.01, p = 0.491, 95% CI 0.98-1.048), and sleep duration (PRR = 1.03, p = 0.556, 95% CI 0.92-1.16). ePVS was associated with verbal memory (β = -0.42, p = 0.006, 95% CI -0.72 to -0.12), but not with other cognitive domains. The burden of ePVS was not associated with emotional distress (β = -0.70, p = 0.461, 95% CI -2.57 to 1.17) or brain age (PRR = 1.00, p = 0.665, 95% CI 0.99-1.02). DISCUSSION TBI is associated with a greater burden of ePVS, especially when there have been bilateral brain lesions. ePVS was associated with reduced verbal memory performance. ePVS may indicate ongoing impairments in glymphatic system function in the chronic postinjury period.
Collapse
Affiliation(s)
- Amelia J Hicks
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Benjamin Sinclair
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Sandy R Shultz
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - William Pham
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Lisa C Silbert
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Daniel L Schwartz
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Christopher C Rowe
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Jennie L Ponsford
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Meng Law
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia
| | - Gershon Spitz
- From the Monash-Epworth Rehabilitation Research Centre (A.J.H., J.L.P., G.S.), Turner Institute for Brain and Mental Health, School of Psychological Sciences, and Department of Neuroscience (A.J.H., B.S., S.R.S., W.P., M.L., G.S.), Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton; Department of Neurology (B.S.), Alfred Health, Melbourne, Australia; Health and Human Services (S.S.), Vancouver Island University, Nanaimo; Division of Medical Sciences (S.S.), University of Victoria, British Columbia, Canada; NIA-Layton Oregon Aging & Alzheimer's Disease Research Center (L.C.S., D.L.S.), Oregon Health & Science University; Department of Neurology (L.C.S.), Portland Veterans Affairs Health Care System; Advanced Imaging Research Center (D.L.S.), Oregon Health & Science University, Portland; Department of Molecular Imaging and Therapy (C.C.R.), Austin Health, Heidelberg; Florey Department of Neuroscience and Mental Health (C.C.R.), University of Melbourne, Parkville; and Department of Radiology (M.L.), Alfred Health, Melbourne, Australia.
| |
Collapse
|
20
|
Naumenko Y, Yuryshinetz I, Zabenko Y, Pivneva T. Mild traumatic brain injury as a pathological process. Heliyon 2023; 9:e18342. [PMID: 37519712 PMCID: PMC10372741 DOI: 10.1016/j.heliyon.2023.e18342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 07/10/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
Traumatic brain injury (TBI) is defined as dysfunction or other evidence of brain pathology caused by external physical force. More than 69 million new cases of TBI are registered worldwide each year, 80% of them - mild TBI. Based on the physical mechanism of induced trauma, we can separate its pathophysiology into primary and secondary injuries. Many literature sources have confirmed that mechanically induced brain injury initiates ionic, metabolic, inflammatory, and neurovascular changes in the CNS, which can lead to acute, subacute, and chronic neurological consequences. Despite the global nature of the disease, its high heterogeneity, lack of a unified classification system, rapid fluctuation of epidemiological trends, and variability of long-term consequences significantly complicate research and the development of new therapeutic strategies. In this review paper, we systematize current knowledge of biomechanical and molecular mechanisms of mild TBI and provide general information on the classification and epidemiology of this complex disorder.
Collapse
Affiliation(s)
- Yana Naumenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Irada Yuryshinetz
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Yelyzaveta Zabenko
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
| | - Tetyana Pivneva
- Bogomoletz Institute of Physiology, Department of Sensory Signalization, Kyiv, Ukraine
- Kyiv Academic University, Kyiv, Ukraine
| |
Collapse
|
21
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 287] [Impact Index Per Article: 143.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
22
|
Carecho R, Carregosa D, Ratilal BO, Figueira I, Ávila-Gálvez MA, Dos Santos CN, Loncarevic-Vasiljkovic N. Dietary (Poly)phenols in Traumatic Brain Injury. Int J Mol Sci 2023; 24:ijms24108908. [PMID: 37240254 DOI: 10.3390/ijms24108908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Traumatic brain injury (TBI) remains one of the leading causes of death and disability in young adults worldwide. Despite growing evidence and advances in our knowledge regarding the multifaceted pathophysiology of TBI, the underlying mechanisms, though, are still to be fully elucidated. Whereas initial brain insult involves acute and irreversible primary damage to the brain, the processes of subsequent secondary brain injury progress gradually over months to years, providing a window of opportunity for therapeutic interventions. To date, extensive research has been focused on the identification of druggable targets involved in these processes. Despite several decades of successful pre-clinical studies and very promising results, when transferred to clinics, these drugs showed, at best, modest beneficial effects, but more often, an absence of effects or even very harsh side effects in TBI patients. This reality has highlighted the need for novel approaches that will be able to respond to the complexity of the TBI and tackle TBI pathological processes on multiple levels. Recent evidence strongly indicates that nutritional interventions may provide a unique opportunity to enhance the repair processes after TBI. Dietary (poly)phenols, a big class of compounds abundantly found in fruits and vegetables, have emerged in the past few years as promising agents to be used in TBI settings due to their proven pleiotropic effects. Here, we give an overview of the pathophysiology of TBI and the underlying molecular mechanisms, followed by a state-of-the-art summary of the studies that have evaluated the efficacy of (poly)phenols administration to decrease TBI-associated damage in various animal TBI models and in a limited number of clinical trials. The current limitations on our knowledge concerning (poly)phenol effects in TBI in the pre-clinical studies are also discussed.
Collapse
Affiliation(s)
- Rafael Carecho
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | - Diogo Carregosa
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Bernardo Oliveira Ratilal
- Hospital CUF Descobertas, CUF Academic Center, 1998-018 Lisboa, Portugal
- Clínica Universitária de Neurocirurgia, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Inês Figueira
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Angeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
- Laboratory of Food & Health, Group of Quality, Safety, and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Murcia, Spain
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- ITQB, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- iBET, Instituto de Biologia Experimental e Tecnológica, 2781-901 Oeiras, Portugal
| | - Natasa Loncarevic-Vasiljkovic
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, NMS, FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
23
|
Denniss RJ, Barker LA. Brain Trauma and the Secondary Cascade in Humans: Review of the Potential Role of Vitamins in Reparative Processes and Functional Outcome. Behav Sci (Basel) 2023; 13:bs13050388. [PMID: 37232626 DOI: 10.3390/bs13050388] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/24/2023] [Accepted: 05/06/2023] [Indexed: 05/27/2023] Open
Abstract
An estimated sixty-nine million people sustain a traumatic brain injury each year. Trauma to the brain causes the primary insult and initiates a secondary biochemical cascade as part of the immune and reparative response to injury. The secondary cascade, although a normal physiological response, may also contribute to ongoing neuroinflammation, oxidative stress and axonal injury, continuing in some cases years after the initial insult. In this review, we explain some of the biochemical mechanisms of the secondary cascade and their potential deleterious effects on healthy neurons including secondary cell death. The second part of the review focuses on the role of micronutrients to neural mechanisms and their potential reparative effects with regards to the secondary cascade after brain injury. The biochemical response to injury, hypermetabolism and excessive renal clearance of nutrients after injury increases the demand for most vitamins. Currently, most research in the area has shown positive outcomes of vitamin supplementation after brain injury, although predominantly in animal (murine) models. There is a pressing need for more research in this area with human participants because vitamin supplementation post-trauma is a potential cost-effective adjunct to other clinical and therapeutic treatments. Importantly, traumatic brain injury should be considered a lifelong process and better evaluated across the lifespan of individuals who experience brain injury.
Collapse
Affiliation(s)
- Rebecca J Denniss
- Department of Psychology, The University of Sheffield, Sheffield S10 2TN, UK
| | - Lynne A Barker
- Centre for Behavioural Science and Applied Psychology, Department of Psychology, Sociology and Politics, Sheffield Hallam University, Sheffield S1 1WB, UK
| |
Collapse
|
24
|
Lu Y, Jarrahi A, Moore N, Bartoli M, Brann DW, Baban B, Dhandapani KM. Inflammaging, cellular senescence, and cognitive aging after traumatic brain injury. Neurobiol Dis 2023; 180:106090. [PMID: 36934795 PMCID: PMC10763650 DOI: 10.1016/j.nbd.2023.106090] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/01/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023] Open
Abstract
Traumatic brain injury (TBI) is associated with mortality and morbidity worldwide. Accumulating pre-clinical and clinical data suggests TBI is the leading extrinsic cause of progressive neurodegeneration. Neurological deterioration after either a single moderate-severe TBI or repetitive mild TBI often resembles dementia in aged populations; however, no currently approved therapies adequately mitigate neurodegeneration. Inflammation correlates with neurodegenerative changes and cognitive dysfunction for years post-TBI, suggesting a potential association between immune activation and both age- and TBI-induced cognitive decline. Inflammaging, a chronic, low-grade sterile inflammation associated with natural aging, promotes cognitive decline. Cellular senescence and the subsequent development of a senescence associated secretory phenotype (SASP) promotes inflammaging and cognitive aging, although the functional association between senescent cells and neurodegeneration is poorly defined after TBI. In this mini-review, we provide an overview of the pre-clinical and clinical evidence linking cellular senescence with poor TBI outcomes. We also discuss the current knowledge and future potential for senotherapeutics, including senolytics and senomorphics, which kill and/or modulate senescent cells, as potential therapeutics after TBI.
Collapse
Affiliation(s)
- Yujiao Lu
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| | - Abbas Jarrahi
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Nicholas Moore
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Manuela Bartoli
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Darrell W Brann
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Babak Baban
- Department of Oral Biology and Diagnostic Services, Dental College of Georgia, Augusta University, Augusta, GA 30912, United States of America
| | - Krishnan M Dhandapani
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA 30912, United States of America.
| |
Collapse
|
25
|
Priemer DS, Perl DP. Neurotrauma: 2023 Update. FREE NEUROPATHOLOGY 2023; 4:14. [PMID: 37736080 PMCID: PMC10510742 DOI: 10.17879/freeneuropathology-2023-5076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
2022 was a productive year for research in traumatic brain injury (TBI) and resultant neuropathology. After an extensive review, we present related studies and publications which we felt were of particular importance to the neuropathology community. First, 2022 was highlighted by important advancements in the diagnosis and, moreover, our understanding of chronic traumatic encephalopathy (CTE). Important publications include a pair concluding that CTE primarily concerns neuronal accumulation of phosphorylated tau (ptau), but that glial ptau accumulation often helps to facilitate diagnosis. In addition, a new large community study from Australia continues the indication that CTE is relatively uncommon in the community, and the first large-cohort study on brains of military personnel similarly demonstrates that CTE appears to be uncommon among service members and does not appear to explain high rates of neuropsychiatric sequelae suffered by the warfighter. The causation of CTE by impact-type TBI was supported by the application of the Bradford Hill criteria, within the brains of headbutting bovids, and interestingly within an artificial head model exposed to linear impact. Finally, a large-scale analysis of APOE genotypes contends that gene status may influence CTE pathology and outcomes. In experimental animal work, a study using mouse models provided important evidence that TDP-43 facilitates neurodegenerative pathology and is implicated in cognitive dysfunction following TBI, and another study using a swine model for concussion demonstrated that evidence that axonal sodium channel disruption may be a driver of neurologic dysfunction after concussion. Finally, we end with memoriam to Dr. John Q. Trojanowski, a giant of neurodegenerative research and an important contributor to the neurotrauma literature, who we lost in 2022.
Collapse
Affiliation(s)
- David S. Priemer
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Daniel P. Perl
- The Department of Defense/Uniformed Services University Brain Tissue Repository, Bethesda, MD, USA
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University, Bethesda, MD, USA
| |
Collapse
|
26
|
Wang LW, Lin HJ, Chao CM, Lin MT, Wang LY, Chein LH, Chang CP, Chio CC. The interrelationships between neuronal viability, synaptic integrity, microglial responses, and amyloid-beta formation in an in vitro neurotrauma model. Sci Rep 2022; 12:22028. [PMID: 36539544 PMCID: PMC9768168 DOI: 10.1038/s41598-022-26463-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
The interrelationships between neuronal viability, synaptic integrity, and microglial responses remain in infancy. In dealing with the question, we induced a stretch injury to evaluate the mechanical effects of trauma on rat primary cortical neurons and BV2 microglial cells in a transwell culture system. The viability of primary neurons and BV2 cells was determined by MTT. Synaptic integrity was evaluated by determining the expression of beta-secretase 1 (BACE1), amyloid-beta (Aβ), microtubule-associated protein 2 (MAP2), and synaptophysin (vehicle protein). Both CD16/32-positive (CD16/32+) and CD206-positive (CD206+) microglia cells were detected by immunofluorescence staining. The phagocytic ability of the BV2 cells was determined using pHrodo E. coli BioParticles conjugates and flow cytometry. We found that stretch injury BV2 cells caused reduced viability and synaptic abnormalities characterized by Aβ accumulation and reductions of BACE1, MAP2, and synaptophysin in primary neurons. Intact BV2 cells exhibited normal phagocytic ability and were predominantly CD206+ microglia cells, whereas the injured BV2 cells exhibited reduced phagocytic ability and were predominantly CD16/32+ microglial cells. Like a stretch injury, the injured BV2 cells can cause both reduced viability and synaptic abnormalities in primary neurons; intact BV2 cells, when cocultured with primary neurons, can protect against the stretch-injured-induced reduced viability and synaptic abnormalities in primary neurons. We conclude that CD206+ and CD16/32+ BV-2 cells can produce neuroprotective and cytotoxic effects on primary cortical neurons.
Collapse
Affiliation(s)
- Lan-Wan Wang
- grid.413876.f0000 0004 0572 9255Department of Pediatrics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan, 710 Taiwan ,grid.412717.60000 0004 0532 2914Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan, 710 Taiwan
| | - Hung-Jung Lin
- grid.413876.f0000 0004 0572 9255Department of Emergency Medicine, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan, 710 Taiwan ,grid.412896.00000 0000 9337 0481School of Medicine, Taipei Medical University, Taipei, 110 Taiwan
| | - Chien-Ming Chao
- grid.413876.f0000 0004 0572 9255Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, No.201, Taikang Taikang Vil., Liouying Dist., Tainan, 73657 Taiwan ,grid.452538.d0000 0004 0639 3335Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657 Taiwan
| | - Mao-Tsun Lin
- grid.413876.f0000 0004 0572 9255Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan, 710 Taiwan
| | - Lin-Yu Wang
- grid.413876.f0000 0004 0572 9255Department of Pediatrics, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan, 710 Taiwan ,grid.412717.60000 0004 0532 2914Center for General Education, Southern Taiwan University of Science and Technology, Tainan, 71005 Taiwan
| | - Lan-Hsiang Chein
- grid.413876.f0000 0004 0572 9255Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan, 710 Taiwan
| | - Ching-Ping Chang
- grid.413876.f0000 0004 0572 9255Department of Medical Research, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan, 710 Taiwan
| | - Chung-Ching Chio
- grid.413876.f0000 0004 0572 9255Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, No. 901, Zhonghua Rd., Yongkang District, Tainan, 710 Taiwan
| |
Collapse
|
27
|
Chen Q, Chen X, Xu L, Zhang R, Li Z, Yue X, Qiao D. Traumatic axonal injury: neuropathological features, postmortem diagnostic methods, and strategies. Forensic Sci Med Pathol 2022; 18:530-544. [PMID: 36117238 DOI: 10.1007/s12024-022-00522-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2022] [Indexed: 12/14/2022]
Abstract
Traumatic brain injury (TBI) has high morbidity and poor prognosis and imposes a serious socioeconomic burden. Traumatic axonal injury (TAI), which is one of the common pathological changes in the primary injury of TBI, is often caused by the external force to the head that causes the white matter bundles to generate shear stress and tension; resulting in tissue damage and leading to the cytoskeletal disorder. At present, the forensic pathological diagnosis of TAI-caused death is still a difficult problem. Most of the TAI biomarkers studied are used for the prediction, evaluation, and prognosis of TAI in the living state. The research subjects are mainly humans in the living state or model animals, which are not suitable for the postmortem diagnosis of TAI. In addition, there is still a lack of recognized indicators for the autopsy pathological diagnosis of TAI. Different diagnostic methods and markers have their limitations, and there is a lack of systematic research and summary of autopsy diagnostic markers of TAI. Therefore, this study mainly summarizes the pathological mechanism, common methods, techniques of postmortem diagnosis, and corresponding biomarkers of TAI, and puts forward the strategies for postmortem diagnosis of TAI for forensic cases with different survival times, which is of great significance to forensic pathological diagnosis.
Collapse
Affiliation(s)
- Qianling Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Xuebing Chen
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Luyao Xu
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Rui Zhang
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China
| | - Zhigang Li
- Guangzhou Forensic Science Institute & Key Laboratory of Forensic Pathology, Ministry of Public Security, Guangzhou, 510442, China.
| | - Xia Yue
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| | - Dongfang Qiao
- School of Forensic Medicine, Southern Medical University, South Shaitai Road #1023, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
28
|
Alexandris AS, Wang Y, Frangakis CE, Lee Y, Ryu J, Alam Z, Koliatsos VE. Long-Term Changes in Axon Calibers after Injury: Observations on the Mouse Corticospinal Tract. Int J Mol Sci 2022; 23:7391. [PMID: 35806394 PMCID: PMC9266552 DOI: 10.3390/ijms23137391] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/01/2023] Open
Abstract
White matter pathology is common across a wide spectrum of neurological diseases. Characterizing this pathology is important for both a mechanistic understanding of neurological diseases as well as for the development of neuroimaging biomarkers. Although axonal calibers can vary by orders of magnitude, they are tightly regulated and related to neuronal function, and changes in axon calibers have been reported in several diseases and their models. In this study, we utilize the impact acceleration model of traumatic brain injury (IA-TBI) to assess early and late changes in the axon diameter distribution (ADD) of the mouse corticospinal tract using Airyscan and electron microscopy. We find that axon calibers follow a lognormal distribution whose parameters significantly change after injury. While IA-TBI leads to 30% loss of corticospinal axons by day 7 with a bias for larger axons, at 21 days after injury we find a significant redistribution of axon frequencies that is driven by a reduction in large-caliber axons in the absence of detectable degeneration. We postulate that changes in ADD features may reflect a functional adaptation of injured neural systems. Moreover, we find that ADD features offer an accurate way to discriminate between injured and non-injured mice. Exploring injury-related ADD signatures by histology or new emerging neuroimaging modalities may offer a more nuanced and comprehensive way to characterize white matter pathology and may also have the potential to generate novel biomarkers of injury.
Collapse
Affiliation(s)
- Athanasios S. Alexandris
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Yiqing Wang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | | | - Youngrim Lee
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Jiwon Ryu
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Zahra Alam
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
| | - Vassilis E. Koliatsos
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; (Y.W.); (Y.L.); (J.R.); (Z.A.)
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Kocheril PA, Moore SC, Lenz KD, Mukundan H, Lilley LM. Progress Toward a Multiomic Understanding of Traumatic Brain Injury: A Review. Biomark Insights 2022; 17:11772719221105145. [PMID: 35719705 PMCID: PMC9201320 DOI: 10.1177/11772719221105145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Traumatic brain injury (TBI) is not a single disease state but describes an array
of conditions associated with insult or injury to the brain. While some
individuals with TBI recover within a few days or months, others present with
persistent symptoms that can cause disability, neuropsychological trauma, and
even death. Understanding, diagnosing, and treating TBI is extremely complex for
many reasons, including the variable biomechanics of head impact, differences in
severity and location of injury, and individual patient characteristics. Because
of these confounding factors, the development of reliable diagnostics and
targeted treatments for brain injury remains elusive. We argue that the
development of effective diagnostic and therapeutic strategies for TBI requires
a deep understanding of human neurophysiology at the molecular level and that
the framework of multiomics may provide some effective solutions for the
diagnosis and treatment of this challenging condition. To this end, we present
here a comprehensive review of TBI biomarker candidates from across the
multiomic disciplines and compare them with known signatures associated with
other neuropsychological conditions, including Alzheimer’s disease and
Parkinson’s disease. We believe that this integrated view will facilitate a
deeper understanding of the pathophysiology of TBI and its potential links to
other neurological diseases.
Collapse
Affiliation(s)
- Philip A Kocheril
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Shepard C Moore
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kiersten D Lenz
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Harshini Mukundan
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Laura M Lilley
- Physical Chemistry and Applied Spectroscopy Group, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, USA
| |
Collapse
|
30
|
Hicks A, Ponsford JL, Spitz G, Dore V, Krishnadas N, Roberts C, Rowe CC. Amyloid- and Tau Imaging in Chronic Traumatic Brain Injury: A Cross-sectional Study. Neurology 2022; 99:e1131-e1141. [PMID: 36096678 DOI: 10.1212/wnl.0000000000200857] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 05/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Traumatic brain injury (TBI) has been promoted as a risk factor for Alzheimer's disease. There is evidence of elevated amyloid-β and tau, the pathological hallmarks of Alzheimer's disease, immediately following TBI. It is not clear whether amyloid-β and tau remain elevated in the chronic period. To address this issue, we assessed amyloid-β and tau burden in long-term TBI survivors and healthy controls using PET imaging. METHODS Using a cross-sectional design, we recruited individuals following a single moderate to severe TBI at least 10 years previously from an inpatient rehabilitation program. A demographically similar healthy control group was recruited from the community. PET data were acquired using 18F-NAV4694 (amyloid-β) and 18F-MK6240 (tau) tracers. Amyloid-β deposition was quantified using the Centiloid scale. Tau deposition was quantified using the standardized uptake value ratio (SUVR) in four regions of interest (ROI). As a secondary measure, PET scans were also visually read as positive or negative. We examined PET data in relation to time since injury and age at injury. PET data were analysed in a series of regression analyses. RESULTS The sample comprised 87 individuals with TBI (71.3% male; 28.7% female; M = 57.53 years, SD = 11.53) and 59 controls (59.3% male; 40.7% female; M = 60.34 years, SD = 11.97). Individuals with TBI did not have significantly higher 18F-NAV4694 Centiloid values (p = 0.067) or 18F-MK6240 tau SUVRs in any ROI (p = ≤ 0.001; SUVR greater for controls). Visual assessment was consistent with the quantification; individuals with TBI were not more likely than controls to have a positive amyloid-β (p = 0.505) or tau scan (p = 0.221). No associations were identified for amyloid-β or tau burden with time since injury (p = 0.057 to 0.332) or age at injury. DISCUSSION A single moderate to severe TBI was not associated with higher burden of amyloid-β or tau pathologies in the chronic period relative to healthy controls. Amyloid-β and tau burden did not show a significant increase with years since injury, and burden did not appear to be greater for those who were older at the time of injury.
Collapse
Affiliation(s)
- Amelia Hicks
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia.
| | - Jennie L Ponsford
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Gershon Spitz
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Vincent Dore
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,CSIRO Health and Biosecurity Flagship, The Australian e-Health Research Centre, Parkville, 3052, Australia
| | - Natasha Krishnadas
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| | - Caroline Roberts
- Monash-Epworth Rehabilitation Research Centre, Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, 3168, Australia
| | - Christopher C Rowe
- Department of Molecular Imaging and Therapy, Austin Health, Heidelberg, 3084, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
31
|
Banerjee G, Samra K, Adams ME, Jaunmuktane Z, Parry-Jones AR, Grieve J, Toma AK, Farmer SF, Sylvester R, Houlden H, Rudge P, Mead S, Brandner S, Schott JM, Collinge J, Werring DJ. Iatrogenic cerebral amyloid angiopathy: an emerging clinical phenomenon. J Neurol Neurosurg Psychiatry 2022; 93:jnnp-2022-328792. [PMID: 35577510 DOI: 10.1136/jnnp-2022-328792] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
In the last 6 years, following the first pathological description of presumed amyloid-beta (Aβ) transmission in humans (in 2015) and subsequent experimental confirmation (in 2018), clinical cases of iatrogenic cerebral amyloid angiopathy (CAA)-attributed to the transmission of Aβ seeds-have been increasingly recognised and reported. This newly described form of CAA is associated with early disease onset (typically in the third to fifth decade), and often presents with intracerebral haemorrhage, but also seizures and cognitive impairment. Although assumed to be rare, it is important that clinicians remain vigilant for potential cases, particularly as the optimal management, prognosis, true incidence and public health implications remain unknown. This review summarises our current understanding of the clinical spectrum of iatrogenic CAA and provides a diagnostic framework for clinicians. We provide clinical details for three patients with pathological evidence of iatrogenic CAA and present a summary of the published cases to date (n=20), identified following a systematic review. Our aims are: (1) To describe the clinical features of iatrogenic CAA, highlighting important similarities and differences between iatrogenic and sporadic CAA; and (2) To discuss potential approaches for investigation and diagnosis, including suggested diagnostic criteria for iatrogenic CAA.
Collapse
Affiliation(s)
- Gargi Banerjee
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Kiran Samra
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Matthew E Adams
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Zane Jaunmuktane
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Adrian Robert Parry-Jones
- Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK
| | - Joan Grieve
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Ahmed K Toma
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Simon F Farmer
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Richard Sylvester
- Department of Neurology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Henry Houlden
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Rudge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Simon Mead
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - Sebastian Brandner
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| | - Jonathan M Schott
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - John Collinge
- MRC Prion Unit at UCL, Institute of Prion Diseases, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology and National Hospital for Neurology and Neurosurgery, Queen Square, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
32
|
Jeong H, Shin H, Hong S, Kim Y. Physiological Roles of Monomeric Amyloid-β and Implications for Alzheimer's Disease Therapeutics. Exp Neurobiol 2022; 31:65-88. [PMID: 35673997 PMCID: PMC9194638 DOI: 10.5607/en22004] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 12/23/2022] Open
Abstract
Alzheimer's disease (AD) progressively inflicts impairment of synaptic functions with notable deposition of amyloid-β (Aβ) as senile plaques within the extracellular space of the brain. Accordingly, therapeutic directions for AD have focused on clearing Aβ plaques or preventing amyloidogenesis based on the amyloid cascade hypothesis. However, the emerging evidence suggests that Aβ serves biological roles, which include suppressing microbial infections, regulating synaptic plasticity, promoting recovery after brain injury, sealing leaks in the blood-brain barrier, and possibly inhibiting the proliferation of cancer cells. More importantly, these functions were found in in vitro and in vivo investigations in a hormetic manner, that is to be neuroprotective at low concentrations and pathological at high concentrations. We herein summarize the physiological roles of monomeric Aβ and current Aβ-directed therapies in clinical trials. Based on the evidence, we propose that novel therapeutics targeting Aβ should selectively target Aβ in neurotoxic forms such as oligomers while retaining monomeric Aβ in order to preserve the physiological functions of Aβ monomers.
Collapse
Affiliation(s)
- Hyomin Jeong
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Heewon Shin
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
| | - Seungpyo Hong
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
- Division of Pharmaceutical Sciences, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - YoungSoo Kim
- Division of Integrated Science and Engineering, Underwood International College, Yonsei University, Incheon 21983, Korea
- Department of Pharmacy, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Institute of Pharmaceutical Sciences, College of Pharmacy, Yonsei University, Incheon 21983, Korea
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
33
|
Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med 2022; 136:1321-1339. [PMID: 35488928 PMCID: PMC9375765 DOI: 10.1007/s00414-022-02807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 02/21/2022] [Indexed: 11/23/2022]
Abstract
The accumulation of βAPP caused by axonal injury is an active energy-dependent process thought to require blood circulation; therefore, it is closely related to the post-injury survival time. Currently, the earliest reported time at which axonal injury can be detected in post-mortem traumatic brain injury (TBI) tissue by βAPP (Beta Amyloid Precursor Protein) immunohistochemistry is 35 min. The aim of this study is to investigate whether βAPP staining for axonal injury can be detected in patients who died rapidly after TBI in road traffic collision (RTC), in a period of less than 30 min. We retrospectively studied thirty-seven patients (group 1) died very rapidly at the scene; evidenced by forensic assessment of injuries short survival, four patients died after a survival period of between 31 min and 12 h (group 2) and eight patients between 2 and 31 days (group 3). The brains were comprehensively examined and sampled at the time of the autopsy, and βAPP immunohistochemistry carried out on sections from a number of brain areas. βAPP immunoreactivity was demonstrated in 35/37 brains in group 1, albeit with a low frequency and in a variable pattern, and with more intensity and frequency in all brains of group 2 and 7/8 brains from group 3, compared with no similar βAPP immunoreactivity in the control group. The results suggest axonal injury can be detected in those who died rapidly after RTC in a period of less than 30 min, which can help in the diagnosis of severe TBI with short survival time.
Collapse
|
34
|
Mahamane Salissou MT, Razak MYA, Wang X, Magaji RA. The role of protein phosphatase 2A tau axis in traumatic brain injury therapy. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00223-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Traumatic brain injury (TBI) is a debilitating disorder due to trauma caused by an external mechanical force eventually leading to disruption in the normal function of the brain, with possible outcomes including permanent or temporary dysfunction of cognitive, physical, and psychosocial abilities. There have been several studies focusing on the search and innovation of neuroprotective agents that could have therapeutic relevance in TBI management. Due to its complexity, TBI is divided into two major components. The first initial event is known as the primary injury; it is a result of the mechanical insult itself and is known to be irreversible and resistant to a vast variety of therapeutics. The secondary event or secondary brain injury is viewed as a cellular injury that does not manifest immediately after the trauma but evolved after a delay period of hours or several days. This category of injury is known to respond favorably to different pharmacological treatment approaches.
Main body
Due to the complexity in the pathophysiology of the secondary injury, the therapeutic strategy needs to be in a multi-facets model and to have the ability to simultaneously regulate different cellular changes. Several studies have investigated in deep the possible approaches relying on natural compounds as an alternative therapeutic strategy for the management of TBI. In addition, many natural compounds have the potential to target numerous different components of the secondary injury including neuroinflammation, apoptosis, PP2A, tau, and Aβ among others. Here, we review past and current strategies in the therapeutic management of TBI, focusing on the PP2A-tau axis both in animal and human subjects. This review uncovers, in addition, a variety of compounds used in TBI therapy.
Conclusion
Despite beneficial therapeutic effects observed in animals for many compounds, studies are still needed to be conducted on human subjects to validate their therapeutic virtues. Furthermore, potential therapeutic virtues observed among studies might likely be dependent on the TBI animal model used and the type of induced injury. In addition, specificity and side effects are challenges in TBI therapy specifically which site of PP2A dysfunction to be targeted.
Collapse
|
35
|
Li C, Huang S, Zhou W, Xie Z, Xie S, Li M. Effects of the Notch Signaling Pathway on Secondary Brain Changes Caused by Spinal Cord Injury in Mice. Neurochem Res 2022; 47:1651-1663. [PMID: 35211828 DOI: 10.1007/s11064-022-03558-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/22/2022] [Accepted: 02/14/2022] [Indexed: 12/15/2022]
Abstract
Spinal cord injury (SCI) can cause secondary brain changes, leading to hypomyelination in the dorsolateral prefrontal cortex (dlPFC). Some studies have shown that notch signaling pathway activation can regulate oligodendrocyte maturation and myelination. The aim of this study was to investigate whether inhibition of the Notch signaling pathway can alleviate hypomyelination in the dlPFC caused by SCI. Moreover, we further investigated whether the changes in myelination in the dlPFC are associated with neuropathic pain following SCI. We established a mouse model of SCI and observed the changes in mechanical and thermal hyperalgesia. Western blotting and immunofluorescence were used to analyze the changes in myelination in the dlPFC. The results indicated the existence of a relationship between activation of the Notch signaling pathway and hypomyelination in the dlPFC and confirmed the existence of a relationship between hypomyelination in the dlPFC and decreases in mechanical and thermal hyperalgesia thresholds. In conclusion, these results suggested that the Notch signaling pathway is activated after SCI, leading to hypomyelination in the dlPFC, and that DAPT can inhibit the Notch signaling pathway and improve mechanical and thermal hyperalgesia thresholds. Our findings provide a new target for the treatment of neuropathic pain caused by SCI.
Collapse
Affiliation(s)
- Chengcai Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shaoxin Huang
- School of Basic Medicine, Jiujiang University, Jiujiang, 332005, Jiangxi, People's Republic of China
| | - Wu Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Zhiping Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Shenke Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Meihua Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, NO17 Yong Wai Zheng Street, Nanchang, 330006, Jiangxi, People's Republic of China.
| |
Collapse
|
36
|
Srinivasan G, Brafman DA. The Emergence of Model Systems to Investigate the Link Between Traumatic Brain Injury and Alzheimer's Disease. Front Aging Neurosci 2022; 13:813544. [PMID: 35211003 PMCID: PMC8862182 DOI: 10.3389/fnagi.2021.813544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.
Collapse
Affiliation(s)
| | - David A. Brafman
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
37
|
Clark AL, Weigand AJ, Bangen KJ, Thomas KR, Eglit GM, Bondi MW, Delano‐Wood L. Higher cerebrospinal fluid tau is associated with history of traumatic brain injury and reduced processing speed in Vietnam-era veterans: A Department of Defense Alzheimer's Disease Neuroimaging Initiative (DOD-ADNI) study. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12239. [PMID: 34692979 PMCID: PMC8515227 DOI: 10.1002/dad2.12239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 12/02/2022]
Abstract
INTRODUCTION Our goal was to determine whether cognitive and cerebrospinal fluid (CSF) markers of tau and amyloid beta 1-42 (Aβ42) differ between Vietnam-era veterans with and without history of traumatic brain injury (TBI) and whether TBI moderates the association between CSF markers and neurocognitive functioning. METHODS A total of 102 male participants (52 TBI, 50 military controls [MCs]; mean age = 68) were included. Levels of CSF Aβ42, tau phosphorylated at the threonine 181 position (p-tau), and total tau (t-tau) were quantified. Group differences in CSF markers and cognition as well as the moderating effect of TBI on CSF and cognition associations were explored. RESULTS Relative to MCs, the TBI group showed significantly higher p-tau (P = .01) and t-tau (P = .02), but no differences in amyloid (P = .09). TBI history moderated the association between CSF tau and performance on a measure of processing speed (t-tau: P = .04; p-tau: P = .02). DISCUSSION Tau accumulation may represent a mechanism of dementia risk in older veterans with remote TBI.
Collapse
Affiliation(s)
- Alexandra L. Clark
- Department of PsychologyUniversity of Texas at AustinAustinTexasUSA
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Alexandra J. Weigand
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- San Diego (SDSU/UCSD) Joint Doctoral Program in Clinical PsychologySan Diego State University/University of CaliforniaSan DiegoCaliforniaUSA
| | - Katherine J. Bangen
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Kelsey R. Thomas
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Graham M.L. Eglit
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Mark W. Bondi
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
| | - Lisa Delano‐Wood
- Research and Psychology ServicesVA San Diego Healthcare System (VASDHS)La JollaCaliforniaUSA
- Department of Psychiatry, School of MedicineUniversity of California San DiegoSan DiegoCaliforniaUSA
- Center of Excellence for Stress and Mental HealthVASDHSLa JollaCaliforniaUSA
| | | |
Collapse
|
38
|
Carvajal FJ, Cerpa W. Regulation of Phosphorylated State of NMDA Receptor by STEP 61 Phosphatase after Mild-Traumatic Brain Injury: Role of Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10101575. [PMID: 34679709 PMCID: PMC8533270 DOI: 10.3390/antiox10101575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/14/2021] [Accepted: 09/28/2021] [Indexed: 01/21/2023] Open
Abstract
Traumatic Brain Injury (TBI) mediates neuronal death through several events involving many molecular pathways, including the glutamate-mediated excitotoxicity for excessive stimulation of N-methyl-D-aspartate receptors (NMDARs), producing activation of death signaling pathways. However, the contribution of NMDARs (distribution and signaling-associated to the distribution) remains incompletely understood. We propose a critical role of STEP61 (Striatal-Enriched protein tyrosine phosphatase) in TBI; this phosphatase regulates the dephosphorylated state of the GluN2B subunit through two pathways: by direct dephosphorylation of tyrosine-1472 and indirectly via dephosphorylation and inactivation of Fyn kinase. We previously demonstrated oxidative stress’s contribution to NMDAR signaling and distribution using SOD2+/− mice such a model. We performed TBI protocol using a controlled frontal impact device using C57BL/6 mice and SOD2+/− animals. After TBI, we found alterations in cognitive performance, NMDAR-dependent synaptic function (decreased synaptic form of NMDARs and decreased synaptic current NMDAR-dependent), and increased STEP61 activity. These changes are reduced partially with the STEP61-inhibitor TC-2153 treatment in mice subjected to TBI protocol. This study contributes with evidence about the role of STEP61 in the neuropathological progression after TBI and also the alteration in their activity, such as an early biomarker of synaptic damage in traumatic lesions.
Collapse
Affiliation(s)
- Francisco J. Carvajal
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
| | - Waldo Cerpa
- Laboratorio de Función y Patología Neuronal, Centro de Envejecimiento y Regeneración (CARE), Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile;
- Centro de Excelencia en Biomedicina de Magallanes (CEBIMA), Universidad de Magallanes, Punta Arenas 6200000, Chile
- Correspondence: ; Tel.: +56-2-2354-2656; Fax: +56-2-2354-2660
| |
Collapse
|
39
|
Asken BM, Mantyh WG, La Joie R, Strom A, Casaletto KB, Staffaroni AM, Apple AC, Lindbergh CA, Iaccarino L, You M, Grant H, Fonseca C, Windon C, Younes K, Tanner J, Rabinovici GD, Kramer JH, Gardner RC. Association of remote mild traumatic brain injury with cortical amyloid burden in clinically normal older adults. Brain Imaging Behav 2021; 15:2417-2425. [PMID: 33432536 PMCID: PMC8272743 DOI: 10.1007/s11682-020-00440-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 01/30/2023]
Abstract
We investigated whether clinically normal older adults with remote, mild traumatic brain injury (mTBI) show evidence of higher cortical Aβ burden. Our study included 134 clinically normal older adults (age 74.1 ± 6.8 years, 59.7% female, 85.8% white) who underwent Aβ positron emission tomography (Aβ-PET) and who completed the Ohio State University Traumatic Brain Injury Identification questionnaire. We limited participants to those reporting injuries classified as mTBI. A subset (N = 30) underwent a second Aβ-PET scan (mean 2.7 years later). We examined the effect of remote mTBI on Aβ-PET burden, interactions between remote mTBI and age, sex, and APOE status, longitudinal Aβ accumulation, and the interaction between remote mTBI and Aβ burden on memory and executive functioning. Of 134 participants, 48 (36%) reported remote mTBI (0, N = 86; 1, N = 31, 2+, N = 17; mean 37 ± 23 years since last mTBI). Effect size estimates were small to negligible for the association of remote mTBI with Aβ burden (p = .94, η2 < 0.01), and for all interaction analyses. Longitudinally, we found a non-statistically significant association of those with remote mTBI (N = 11) having a faster rate of Aβ accumulation (B = 0.01, p = .08) than those without (N = 19). There was no significant interaction between remote mTBI and Aβ burden on cognition. In clinically normal older adults, history of mTBI is not associated with greater cortical Aβ burden and does not interact with Aβ burden to impact cognition. Longitudinal analyses suggest remote mTBI may be associated with more rapid cortical Aβ accumulation. This finding warrants further study in larger and more diverse samples with well-characterized lifelong head trauma exposure.
Collapse
Affiliation(s)
- Breton M Asken
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.
| | - William G Mantyh
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Renaud La Joie
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Amelia Strom
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Kaitlin B Casaletto
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Adam M Staffaroni
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Alexandra C Apple
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Cutter A Lindbergh
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Leonardo Iaccarino
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Michelle You
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Harli Grant
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Corrina Fonseca
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Charles Windon
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Kyan Younes
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Jeremy Tanner
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Gil D Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, CA, San Francisco, USA
| | - Joel H Kramer
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
| | - Raquel C Gardner
- Department of Neurology Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA
- San Francisco Veterans Affairs Health , San Francisco, CA, USA
| |
Collapse
|
40
|
Zhao Y, Tan SW, Huang ZZ, Shan FB, Li P, Ning YL, Ye SY, Zhao ZA, Du H, Xiong RP, Yang N, Peng Y, Chen X, Zhou YG. NLRP3 Inflammasome-Dependent Increases in High Mobility Group Box 1 Involved in the Cognitive Dysfunction Caused by Tau-Overexpression. Front Aging Neurosci 2021; 13:721474. [PMID: 34539383 PMCID: PMC8446370 DOI: 10.3389/fnagi.2021.721474] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/10/2021] [Indexed: 11/29/2022] Open
Abstract
Tau hyperphosphorylation is a characteristic alteration present in a range of neurological conditions, such as traumatic brain injury (TBI) and neurodegenerative diseases. Treatments targeting high-mobility group box protein 1 (HMGB1) induce neuroprotective effects in these neuropathologic conditions. However, little is known about the interactions between hyperphosphorylated tau and HMGB1 in neuroinflammation. We established a model of TBI with controlled cortical impacts (CCIs) and a tau hyperphosphorylation model by injecting the virus encoding human P301S tau in mice, and immunofluorescence, western blotting analysis, and behavioral tests were performed to clarify the interaction between phosphorylated tau (p-tau) and HMGB1 levels. We demonstrated that p-tau and HMGB1 were elevated in the spatial memory-related brain regions in mice with TBI and tau-overexpression. Animals with tau-overexpression also had significantly increased nucleotide-binding oligomerization domain-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome activation, which manifested as increases in apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC), activating caspase-1 and interleukin 1 beta (IL-1β) levels. In addition, NLRP3–/– mice and the HMGB1 inhibitor, glycyrrhizin, were used to explore therapeutic strategies for diseases with p-tau overexpression. Compared with wild-type (WT) mice with tau-overexpression, downregulation of p-tau and HMGB1 was observed in NLRP3–/– mice, indicating that HMGB1 alterations were NLRP3-dependent. Moreover, treatment with glycyrrhizin at a late stage markedly reduced p-tau levels and improved performance in the Y- and T-mazes and the ability of tau-overexpressing mice to build nests, which revealed improvements in spatial memory and advanced hippocampal function. The findings identified that p-tau has a triggering role in the modulation of neuroinflammation and spatial memory in an NLRP3-dependent manner, and suggest that treatment with HMGB1 inhibitors may be a better therapeutic strategy for tauopathies.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Si-Wei Tan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zhi-Zhong Huang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Fa-Bo Shan
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ping Li
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Ya-Lei Ning
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| | - Shi-Yang Ye
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Zi-Ai Zhao
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, China
| | - Hao Du
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Ren-Ping Xiong
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Nan Yang
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yan Peng
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Xing Chen
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China
| | - Yuan-Guo Zhou
- Department of Army Occupational Disease, State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Daping Hospital, Army Medical University, Chongqing, China.,Institute of Brain and Intelligence, Army Medical University, Chongqing, China
| |
Collapse
|
41
|
Grovola MR, Paleologos N, Brown DP, Tran N, Wofford KL, Harris JP, Browne KD, Shewokis PA, Wolf JA, Cullen DK, Duda JE. Diverse changes in microglia morphology and axonal pathology during the course of 1 year after mild traumatic brain injury in pigs. Brain Pathol 2021; 31:e12953. [PMID: 33960556 PMCID: PMC8412066 DOI: 10.1111/bpa.12953] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 02/10/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022] Open
Abstract
Over 2.8 million people experience mild traumatic brain injury (TBI) in the United States each year, which may lead to long-term neurological dysfunction. The mechanical forces that are caused by TBI propagate through the brain to produce diffuse axonal injury (DAI) and trigger secondary neuroinflammatory cascades. The cascades may persist from acute to chronic time points after injury, altering the homeostasis of the brain. However, the relationship between the hallmark axonal pathology of diffuse TBI and potential changes in glial cell activation or morphology have not been established in a clinically relevant large animal model at chronic time points. In this study, we assessed the tissue from pigs subjected to rapid head rotation in the coronal plane to generate mild TBI. Neuropathological assessments for axonal pathology, microglial morphological changes, and astrocyte reactivity were conducted in specimens out to 1-year post-injury. We detected an increase in overall amyloid precursor protein pathology, as well as periventricular white matter and fimbria/fornix pathology after a single mild TBI. We did not detect the changes in corpus callosum integrity or astrocyte reactivity. However, detailed microglial skeletal analysis revealed changes in morphology, most notably increases in the number of microglial branches, junctions, and endpoints. These subtle changes were most evident in periventricular white matter and certain hippocampal subfields, and were observed out to 1-year post-injury in some cases. These ongoing morphological alterations suggest persistent change in neuroimmune homeostasis. Additional studies are needed to characterize the underlying molecular and neurophysiological alterations, as well as potential contributions to neurological deficits.
Collapse
Affiliation(s)
- Michael R. Grovola
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Nicholas Paleologos
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Daniel P. Brown
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Nathan Tran
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
| | - Kathryn L. Wofford
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - James P. Harris
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Kevin D. Browne
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Patricia A. Shewokis
- Department of Nutrition SciencesCollege of Nursing and Health ProfessionsDrexel UniversityPhiladelphiaPAUSA
- School of Biomedical Engineering, Science and Health SystemsDrexel UniversityPhiladelphiaPAUSA
| | - John A. Wolf
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - D. Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Center for Brain Injury & RepairDepartment of NeurosurgeryUniversity of PennsylvaniaPhiladelphiaPAUSA
- Department of BioengineeringSchool of Engineering and Applied ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - John E. Duda
- Center for Neurotrauma, Neurodegeneration & RestorationCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Parkinson's Disease Research, Education and Clinical CenterCorporal Michael J. Crescenz VA Medical CenterPhiladelphiaPAUSA
- Department of NeurologyPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| |
Collapse
|
42
|
Haber M, Amyot F, Lynch CE, Sandsmark DK, Kenney K, Werner JK, Moore C, Flesher K, Woodson S, Silverman E, Chou Y, Pham D, Diaz-Arrastia R. Imaging biomarkers of vascular and axonal injury are spatially distinct in chronic traumatic brain injury. J Cereb Blood Flow Metab 2021; 41:1924-1938. [PMID: 33444092 PMCID: PMC8327117 DOI: 10.1177/0271678x20985156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/07/2020] [Accepted: 12/06/2020] [Indexed: 11/17/2022]
Abstract
Traumatic Brain Injury (TBI) is associated with both diffuse axonal injury (DAI) and diffuse vascular injury (DVI), which result from inertial shearing forces. These terms are often used interchangeably, but the spatial relationships between DAI and DVI have not been carefully studied. Multimodal magnetic resonance imaging (MRI) can help distinguish these injury mechanisms: diffusion tensor imaging (DTI) provides information about axonal integrity, while arterial spin labeling (ASL) can be used to measure cerebral blood flow (CBF), and the reactivity of the Blood Oxygen Level Dependent (BOLD) signal to a hypercapnia challenge reflects cerebrovascular reactivity (CVR). Subjects with chronic TBI (n = 27) and healthy controls (n = 14) were studied with multimodal MRI. Mean values of mean diffusivity (MD), fractional anisotropy (FA), CBF, and CVR were extracted for pre-determined regions of interest (ROIs). Normalized z-score maps were generated from the pool of healthy controls. Abnormal ROIs in one modality were not predictive of abnormalities in another. Approximately 9-10% of abnormal voxels for CVR and CBF also showed an abnormal voxel value for MD, while only 1% of abnormal CVR and CBF voxels show a concomitant abnormal FA value. These data indicate that DAI and DVI represent two distinct TBI endophenotypes that are spatially independent.
Collapse
Affiliation(s)
- Margalit Haber
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Franck Amyot
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Cillian E Lynch
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Danielle K Sandsmark
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Kimbra Kenney
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - John K Werner
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carol Moore
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kelley Flesher
- Department of Neurology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sarah Woodson
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Erika Silverman
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yiyu Chou
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Dzung Pham
- Center for Neuroscience and Regenerative Medicine, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
43
|
Mohamed AZ, Nestor PJ, Cumming P, Nasrallah FA. Traumatic brain injury fast-forwards Alzheimer's pathology: evidence from amyloid positron emission tomorgraphy imaging. J Neurol 2021; 269:873-884. [PMID: 34191080 DOI: 10.1007/s00415-021-10669-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE Traumatic brain injury (TBI) has been proposed as a risk factor for Alzheimer's disease (AD), although the mechanisms underlying the putative association are poorly understood. We investigated elderly individuals with a remote history of TBI, aiming to understand how this may have influenced amyloidosis, neurodegeneration, and clinical expression along the AD continuum. METHODS Total of 241 individual datasets including amyloid beta (Aβ) positron emission tomography ([18F]-AV45), structural MRI, and neuropsychological measures, were obtained from the Alzheimer's Disease Neuroimaging Initiative. The data were stratified into groups with (TBI +) or without (TBI -) history of head injury, and by clinical dementia rating (CDR) scores, into subgroups with normal cognition (CDR = 0) and those with symptomatic cognitive decline (CDR ≥ 0.5). We contrasted the TBI + and TBI - subgroups with respect to the onset age and extent of cognitive decline, cortical thickness changes, and Aβ standard uptake value (SUVr). RESULTS Compared to the TBI -/CDR ≥ 0.5 subgroup, the TBI + /CDR ≥ 0.5 subgroup showed a 3-4 year earlier age of cognitive impairment onset (ACIO, p = 0.005). Among those participants on the AD continuum (Aβ + , as defined by a cortical SUVr ≥ 1.23), irrespective of current CDR, a TBI + history was associated with greater Aβ deposition and more pronounced cortical thinning. When matched for severity of cognitive status, the TBI + /CDR ≥ 0.5 group showed greater Aβ burden, but earlier ACIO as compared to the TBI -/CDR ≥ 0.5, suggesting a more indolent clinical AD progression in those with TBI history. CONCLUSION Remote TBI history may alter the AD onset trajectory, with approximately 4 years earlier ACIO, greater amyloid deposition, and cortical thinning.
Collapse
Affiliation(s)
- Abdalla Z Mohamed
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.,Thompson Institute, University of The Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Peter J Nestor
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.,Mater Hospital, South Brisbane, QLD, 4101, Australia
| | - Paul Cumming
- Department of Nuclear Medicine, Inselspital, Bern University, Bern, Switzerland.,School of Psychology and Counselling, Queensland University of Technology, Brisbane, Australia
| | - Fatima A Nasrallah
- The Queensland Brain Institute, The University of Queensland, Building 79, Upland Road, Saint Lucia, Brisbane, QLD, 4072, Australia.
| | | |
Collapse
|
44
|
Is Cerebral Amyloid-β Deposition Related to Post-stroke Cognitive Impairment? Transl Stroke Res 2021; 12:946-957. [PMID: 34195928 DOI: 10.1007/s12975-021-00921-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/23/2021] [Accepted: 05/26/2021] [Indexed: 01/20/2023]
Abstract
Approximately two-thirds of ischemic stroke patients suffer from different levels of post-stroke cognitive impairment (PSCI), but the underlying mechanisms of PSCI remain unclear. Cerebral amyloid-β (Aβ) deposition, a pathological hallmark of Alzheimer's disease, has been discovered in the brains of stroke patients in some autopsy studies. However, less is known about the role of Aβ pathology in the development of PSCI. It is hypothesized that cerebral ischemic injury may lead to neurotoxic Aβ accumulation in the brain, which further induces secondary neurodegeneration and progressive cognitive decline after stroke onset. In this review, we summarized available evidence from pre-clinical and clinical studies relevant to the aforementioned hypothesis. We found inconsistency in the results obtained from studies in rodents, nonhuman primates, and stroke patients. Moreover, the causal relationship between post-stroke cerebral Aβ deposition and PSCI has been uncertain and controversial. Taken together, evidence supporting the hypothesis that brain ischemia induces cerebral Aβ deposition has been insufficient so far. And, there is still no consensus regarding the contribution of cerebral amyloid pathology to PSCI. Other non-amyloid neurodegenerative mechanisms might be involved and remain to be fully elucidated.
Collapse
|
45
|
Asken BM, Rabinovici GD. Identifying degenerative effects of repetitive head trauma with neuroimaging: a clinically-oriented review. Acta Neuropathol Commun 2021; 9:96. [PMID: 34022959 PMCID: PMC8141132 DOI: 10.1186/s40478-021-01197-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND AND SCOPE OF REVIEW Varying severities and frequencies of head trauma may result in dynamic acute and chronic pathophysiologic responses in the brain. Heightened attention to long-term effects of head trauma, particularly repetitive head trauma, has sparked recent efforts to identify neuroimaging biomarkers of underlying disease processes. Imaging modalities like structural magnetic resonance imaging (MRI) and positron emission tomography (PET) are the most clinically applicable given their use in neurodegenerative disease diagnosis and differentiation. In recent years, researchers have targeted repetitive head trauma cohorts in hopes of identifying in vivo biomarkers for underlying biologic changes that might ultimately improve diagnosis of chronic traumatic encephalopathy (CTE) in living persons. These populations most often include collision sport athletes (e.g., American football, boxing) and military veterans with repetitive low-level blast exposure. We provide a clinically-oriented review of neuroimaging data from repetitive head trauma cohorts based on structural MRI, FDG-PET, Aβ-PET, and tau-PET. We supplement the review with two patient reports of neuropathology-confirmed, clinically impaired adults with prior repetitive head trauma who underwent structural MRI, FDG-PET, Aβ-PET, and tau-PET in addition to comprehensive clinical examinations before death. REVIEW CONCLUSIONS Group-level comparisons to controls without known head trauma have revealed inconsistent regional volume differences, with possible propensity for medial temporal, limbic, and subcortical (thalamus, corpus callosum) structures. Greater frequency and severity (i.e., length) of cavum septum pellucidum (CSP) is observed in repetitive head trauma cohorts compared to unexposed controls. It remains unclear whether CSP predicts a particular neurodegenerative process, but CSP presence should increase suspicion that clinical impairment is at least partly attributable to the individual's head trauma exposure (regardless of underlying disease). PET imaging similarly has not revealed a prototypical metabolic or molecular pattern associated with repetitive head trauma or predictive of CTE based on the most widely studied radiotracers. Given the range of clinical syndromes and neurodegenerative pathologies observed in a subset of adults with prior repetitive head trauma, structural MRI and PET imaging may still be useful for differential diagnosis (e.g., assessing suspected Alzheimer's disease).
Collapse
Affiliation(s)
- Breton M. Asken
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| | - Gil D. Rabinovici
- Departments of Neurology, Radiology & Biomedical Imaging, Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143 USA
| |
Collapse
|
46
|
Microglia: A Potential Drug Target for Traumatic Axonal Injury. Neural Plast 2021; 2021:5554824. [PMID: 34093701 PMCID: PMC8163545 DOI: 10.1155/2021/5554824] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/06/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Traumatic axonal injury (TAI) is a major cause of death and disability among patients with severe traumatic brain injury (TBI); however, no effective therapies have been developed to treat this disorder. Neuroinflammation accompanying microglial activation after TBI is likely to be an important factor in TAI. In this review, we summarize the current research in this field, and recent studies suggest that microglial activation plays an important role in TAI development. We discuss several drugs and therapies that may aid TAI recovery by modulating the microglial phenotype following TBI. Based on the findings of recent studies, we conclude that the promotion of active microglia to the M2 phenotype is a potential drug target for the treatment of TAI.
Collapse
|
47
|
Zhan J, Fegg FN, Kaddatz H, Rühling S, Frenz J, Denecke B, Amor S, Ponsaerts P, Hochstrasser T, Kipp M. Focal white matter lesions induce long-lasting axonal degeneration, neuroinflammation and behavioral deficits. Neurobiol Dis 2021; 155:105371. [PMID: 33932559 DOI: 10.1016/j.nbd.2021.105371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/25/2021] [Accepted: 04/26/2021] [Indexed: 12/16/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS) with episodes of inflammatory demyelination and remyelination. While remyelination has been linked with functional recovery in MS patients, there is evidence of ongoing tissue damage despite complete myelin repair. In this study, we investigated the long-term consequences of an acute demyelinating white matter CNS lesion. For this purpose, acute demyelination was induced by 5-week-cuprizone intoxication in male C57BL/6 J mice, and the tissues were examined after a 7-month recovery period. While myelination and oligodendrocyte densities appeared normal, ongoing axonal degeneration and glia cell activation were found in the remyelinated corpus callosum. Neuropathologies were paralleled by subtle gait abnormalities evaluated using DigiGait™ high speed ventral plane videography. Gene array analyses revealed increased expression levels of various inflammation related genes, among protein kinase c delta (PRKCD). Immunofluorescence stains revealed predominant microglia/macrophages PRKCD expression in both, cuprizone tissues and post-mortem MS lesions. These results support the hypothesis that chronic microglia/macrophages driven tissue injury represents a key aspect of progressive neurodegeneration and functional decline in MS.
Collapse
Affiliation(s)
- Jiangshan Zhan
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Florian Nepomuk Fegg
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Hannes Kaddatz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Sebastian Rühling
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Julia Frenz
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Bernd Denecke
- Interdisciplinary Center for Clinical Research Aachen (IZKF Aachen), RWTH Aachen University, Aachen, Germany
| | - Sandra Amor
- Department of Pathology, Amsterdam UMC, VUMC site, Amsterdam, the Netherlands; Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Peter Ponsaerts
- Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Tanja Hochstrasser
- Department of Anatomy II, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Rostock, Germany; Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147 Rostock, Germany.
| |
Collapse
|
48
|
Abdollahzadeh A, Belevich I, Jokitalo E, Sierra A, Tohka J. DeepACSON automated segmentation of white matter in 3D electron microscopy. Commun Biol 2021; 4:179. [PMID: 33568775 PMCID: PMC7876004 DOI: 10.1038/s42003-021-01699-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 01/12/2021] [Indexed: 01/30/2023] Open
Abstract
Tracing the entirety of ultrastructures in large three-dimensional electron microscopy (3D-EM) images of the brain tissue requires automated segmentation techniques. Current segmentation techniques use deep convolutional neural networks (DCNNs) and rely on high-contrast cellular membranes and high-resolution EM volumes. On the other hand, segmenting low-resolution, large EM volumes requires methods to account for severe membrane discontinuities inescapable. Therefore, we developed DeepACSON, which performs DCNN-based semantic segmentation and shape-decomposition-based instance segmentation. DeepACSON instance segmentation uses the tubularity of myelinated axons and decomposes under-segmented myelinated axons into their constituent axons. We applied DeepACSON to ten EM volumes of rats after sham-operation or traumatic brain injury, segmenting hundreds of thousands of long-span myelinated axons, thousands of cell nuclei, and millions of mitochondria with excellent evaluation scores. DeepACSON quantified the morphology and spatial aspects of white matter ultrastructures, capturing nanoscopic morphological alterations five months after the injury.
Collapse
Affiliation(s)
- Ali Abdollahzadeh
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ilya Belevich
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Eija Jokitalo
- Electron Microscopy Unit, Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Alejandra Sierra
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Jussi Tohka
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
49
|
Maigler KC, Buhr TJ, Park CS, Miller SA, Kozlowski DA, Marr RA. Assessment of the Effects of Altered Amyloid-Beta Clearance on Behavior following Repeat Closed-Head Brain Injury in Amyloid-Beta Precursor Protein Humanized Mice. J Neurotrauma 2021; 38:665-676. [PMID: 33176547 DOI: 10.1089/neu.2020.6989] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Traumatic brain injury (TBI) increases the risk for dementias including Alzheimer's disease (AD) and chronic traumatic encephalopathy. Further, both human and animal model data indicate that amyloid-beta (Aβ) peptide accumulation and its production machinery are upregulated by TBI. Considering the clear link between chronic Aβ elevation and AD as well as tau pathology, the role(s) of Aβ in TBI is of high importance. Endopeptidases, including the neprilysin (NEP)-like enzymes, are key mediators of Aβ clearance and may affect susceptibility to pathology post-TBI. Here, we use a "humanized" mouse model of Aβ production, which expresses normal human amyloid-beta precursor protein (APP) under its natural transcriptional regulation and exposed them to a more clinically relevant repeated closed-head TBI paradigm. These transgenic mice also were crossed with mice deficient for the Aβ degrading enzymes NEP or NEP2 to assess models of reduced cerebral Aβ clearance in our TBI model. Our results show that the presence of the human form of Aβ did not exacerbate motor (Rotarod) and spatial learning/memory deficits (Morris water maze) post-injuries, while potentially reduced anxiety (Open Field) was observed. NEP and NEP2 deficiency also did not exacerbate these deficits post-injuries and was associated with protection from motor (NEP and NEP2) and spatial learning/memory deficits (NEP only). These data suggest that normally regulated expression of wild-type human APP/Aβ does not contribute to deficits acutely after TBI and may be protective at this stage of injury.
Collapse
Affiliation(s)
- Kathleen C Maigler
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Trevor J Buhr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Christopher S Park
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Steven A Miller
- Department of Psychology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Dorothy A Kozlowski
- Department of Biological Sciences and Neuroscience Program, DePaul University, Chicago, Illinois, USA
| | - Robert A Marr
- Center for Neurodegenerative Disease and Therapeutics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| |
Collapse
|
50
|
Tang S, Gao P, Chen H, Zhou X, Ou Y, He Y. The Role of Iron, Its Metabolism and Ferroptosis in Traumatic Brain Injury. Front Cell Neurosci 2020; 14:590789. [PMID: 33100976 PMCID: PMC7545318 DOI: 10.3389/fncel.2020.590789] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/04/2020] [Indexed: 12/29/2022] Open
Abstract
Traumatic brain injury (TBI) is a structural and physiological disruption of brain function caused by external forces. It is a major cause of death and disability for patients worldwide. TBI includes both primary and secondary impairments. Iron overload and ferroptosis highly involved in the pathophysiological process of secondary brain injury. Ferroptosis is a form of regulatory cell death, as increased iron accumulation in the brain leads to lipid peroxidation, reactive oxygen species (ROS) production, mitochondrial dysfunction and neuroinflammatory responses, resulting in cellular and neuronal damage. For this reason, eliminating factors like iron deposition and inhibiting lipid peroxidation may be a promising therapy. Iron chelators can be used to eliminate excess iron and to alleviate some of the clinical manifestations of TBI. In this review we will focus on the mechanisms of iron and ferroptosis involving the manifestations of TBI, broaden our understanding of the use of iron chelators for TBI. Through this review, we were able to better find novel clinical therapeutic directions for further TBI study.
Collapse
Affiliation(s)
- Sicheng Tang
- Medical Clinic and Polyclinic IV, Ludwig-Maximilians-University Munich (LMU), Munich, Germany
| | - Pan Gao
- Department of Translational Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Hanmin Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyue Zhou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yibo Ou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|