1
|
Radenkovs V, Valdovska A, Galina D, Cairns S, Jakovlevs D, Gaidukovs S, Cinkmanis I, Juhnevica-Radenkova K. Elaboration of Nanostructured Levan-Based Colloid System as a Biological Alternative with Antimicrobial Activity for Applications in the Management of Pathogenic Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2969. [PMID: 37999323 PMCID: PMC10674346 DOI: 10.3390/nano13222969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/05/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
Considering the documented health benefits of bacterial exopolysaccharides (EPSs), specifically of bacterial levan (BL), including its intrinsic antimicrobial activity against certain pathogenic species, the current study concentrated on the development of active pharmaceutical ingredients (APIs) in the form of colloid systems (CoSs) containing silver nanoparticles (AgNPs) employing in-house biosynthesized BL as a reducing and capping agent. The established protocol of fermentation conditions implicating two species of lactic acid bacteria (LAB), i.e., Streptococcus salivarius K12 and Leuconostoc mesenteroides DSM 20343, ensured a yield of up to 25.7 and 13.7 g L-1 of BL within 72 h, respectively. An analytical approach accomplished by Fourier-transform infrared (FT-IR) spectroscopy allowed for the verification of structural features attributed to biosynthesized BL. Furthermore, scanning electron microscopy (SEM) revealed the crystalline morphology of biosynthesized BL with a smooth and glossy surface and highly porous structure. Molecular weight (Mw) estimated by multi-detector size-exclusion chromatography (SEC) indicated that BL biosynthesized using S. salivarius K12 has an impressively high Mw, corresponding to 15.435 × 104 kilodaltons (kDa). In turn, BL isolated from L. mesenteroides DSM 20343 was found to have an Mw of only 26.6 kDa. Polydispersity index estimation (PD = Mw/Mn) of produced BL displayed a monodispersed molecule isolated from S. salivarius K12, corresponding to 1.08, while this was 2.17 for L. mesenteroides DSM 20343 isolate. The presence of fructose as the main backbone and, to a lesser extent, glucose and galactose as side chain molecules in EPS hydrolysates was supported by HPLC-RID detection. In producing CoS-BL@AgNPs within green biosynthesis, the presence of nanostructured objects with a size distribution from 12.67 ± 5.56 nm to 46.97 ± 20.23 was confirmed by SEM and energy-dispersive X-ray spectroscopy (EDX). The prominent inhibitory potency of elaborated CoS-BL@AgNPs against both reference test cultures, i.e., Pseudomonas aeruginosa, Escherichia coli, Enterobacter aerogenes, and Staphylococcus aureus and those of clinical origin with multi-drug resistance (MDR), was confirmed by disc and well diffusion tests and supported by the values of the minimum inhibitory and bactericidal concentrations. CoS-BL@AgNPs can be treated as APIs suitable for designing new antimicrobial agents and modifying therapies in controlling MDR pathogens.
Collapse
Affiliation(s)
- Vitalijs Radenkovs
- Processing and Biochemistry Department, Institute of Horticulture, LV-3701 Dobele, Latvia;
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Anda Valdovska
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Daiga Galina
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
- Faculty of Veterinary Medicine, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia
| | - Stefan Cairns
- Malvern Panalytical Ltd., Worcestershire, Malvern WR14 1XZ, UK
| | - Dmitrijs Jakovlevs
- Research Laboratory of Biotechnology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia; (A.V.); (D.G.); (D.J.)
| | - Sergejs Gaidukovs
- Institute of Polymer Materials, Faculty of Materials Science and Applied Chemistry, Riga Technical University, LV-1048 Riga, Latvia;
| | - Ingmars Cinkmanis
- Faculty of Agriculture and Food Technology, Latvia University of Life Sciences and Technologies, LV-3004 Jelgava, Latvia;
| | | |
Collapse
|
2
|
Structure, physicochemical characterization, and antioxidant activity of the highly arabinose-branched exopolysaccharide EPS-M2 from Streptococcus thermophilus CS6. Int J Biol Macromol 2021; 192:716-727. [PMID: 34655584 DOI: 10.1016/j.ijbiomac.2021.10.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022]
Abstract
Streptococcus thermophilus CS6 could produce the high exopolysaccharide (EPS) level in optimized skimmed milk medium. However, physicochemical properties and structure of these polymers have not been fully characterized. In this study, two purified fractions (EPS-M1 and EPS-M2) exhibited good rheology, thermostability and antioxidant activity. Further monosaccharide composition, molecular weight and NMR analysis indicated EPS-M2 was composed of galactose, arabinose and glucose (5:2.5:1) with an average molecular weight of 2.22 × 104 Da and its suggested repeating unit was →6)-[α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 4)-β-D-Galp-(1 → 6)-[α-L-Araf-(1 → 5)-{α-L-Araf-(1 → 3)}-α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 4)-β-D-Galp-(1 → 6)-[β-D-Galp-(1 → 5)-α-L-Araf-(1 → 5)-α-L-Araf-(1 → 3)]-β-D-Galp-(1 → 6)-[β-D-Galp-(1 → 5)-α-L-Araf-(1 → 5)-{α-L-Araf-(1 → 3)}-α-L-Araf-(1 → 3)]-β-D-Galp-(1→. High EPS production relied on the expression of eps gene cluster and key enzymes of nucleotide sugar metabolism. Overall, EPS-M2 from a potential functional starter S. thermophilus CS6 provided opportunities for natural thickener, stabilizer, and antioxidant agent exploration in the food industry.
Collapse
|
3
|
Zhai Z, Xie S, Zhang H, Yi H, Hao Y. Homologous Over-Expression of Chain Length Determination Protein EpsC Increases the Molecular Weight of Exopolysaccharide in Streptococcus thermophilus 05-34. Front Microbiol 2021; 12:696222. [PMID: 34354691 PMCID: PMC8329376 DOI: 10.3389/fmicb.2021.696222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/29/2021] [Indexed: 11/30/2022] Open
Abstract
In Streptococcus thermophilus, EpsC is a polysaccharide co-polymerase which is involved in determining the chain length of EPS synthesized by the Wzx/Wzy-dependent pathway. Our previous study found that there was a positive correlation between transcription level of epsC and molecular weight of EPS in S. thermophilus 05-34. To further investigate the effects of EpsC on EPS biosynthesis, this gene was over-expressed in S. thermophilus 05-34 in this study. Reverse transcription qPCR and Western blotting confirmed the successful transcription and translation of epsC in 05-34, respectively. The yield of EPS was not affected by the over-expression of EpsC. Gas chromatography-mass spectrometry (GC-MS) showed that the monosaccharide composition was still composed of galactose and glucose in a molar ratio of 1.0:0.8, whereas high performance gel permeation chromatography (HPGPC) indicated that the molecular weight of EPS was increased from 4.62 × 105 Da to 9.17 × 105 Da by the over-expression of EpsC. In addition, S. thermophilus 05epsC which could produce higher molecular weight EPS improved the viscoelasticity and water-holding capacity of yogurt, but significantly reduced the level of syneresis in yogurt. In summary, these results indicated that homologous over-expression of EpsC in S. thermophilus could increase the molecular weight of EPS and improve the microrheological or physical properties of yogurt.
Collapse
Affiliation(s)
- Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuxin Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongxing Zhang
- Department of Food Science, Beijing University of Agriculture, Beijing, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Xu Z, Guo Q, Zhang H, Xiong Z, Zhang X, Ai L. Structural characterisation of EPS of Streptococcus thermophilus S-3 and its application in milk fermentation. Int J Biol Macromol 2021; 178:263-269. [PMID: 33639187 DOI: 10.1016/j.ijbiomac.2021.02.173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
The application of Streptococcus thermophilus S-3 into yogurt production was studied and the structural properties of the generated exopolysaccharides (EPS-S3) were characterized. The proposed structure of EPS-S3 was obtained. EPS-S3 contained a high ratio of N-Acetyl-galactosamine with the Mw of 574 kDa, which was higher than that of AR333 (314 kD) leading to higher apparent viscosity. Streptococcus thermophilus strain S-3 was co-cultured with Lactobacillus delbrueckii for yogut production which highly increased the acidifying rate and post-acidification rate. The quality of the co-cultured yogurts in terms of apparent viscosity, syneresis capacity, water holding capacity and rheological properties were much better than that by using Lactobacillus bulgaricus only. The production mechanism of EPS-S3 from gene regulated level was also discussed which is helpful to facilitate the application of Streptococcus thermophilus strain into milk production.
Collapse
Affiliation(s)
- Zhiyuan Xu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; State Key Laboratory of Dairy Biotechnology, Technology Center Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Qingbin Guo
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiumin Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instruments and Food Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
5
|
Shultana R, Kee Zuan AT, Yusop MR, Saud HM. Characterization of salt-tolerant plant growth-promoting rhizobacteria and the effect on growth and yield of saline-affected rice. PLoS One 2020; 15:e0238537. [PMID: 32886707 PMCID: PMC7473536 DOI: 10.1371/journal.pone.0238537] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022] Open
Abstract
In this study, we characterized, identified, and determined the effect of salt-tolerant PGPR isolated from coastal saline areas on rice growth and yield. A total of 44 bacterial strains were isolated, and 5 were found to be tolerant at high salt concentration. These isolates were further characterized for salinity tolerance and beneficial traits through a series of quantitative tests. Biochemical characterization showed that bacterial survivability decreases gradually with the increase of salt concentration. One of the strains, UPMRB9, produced the highest amount of exopolysaccharides when exposed to 1.5M of NaCl. Moreover, UPMRB9 absorbed the highest amount of sodium from the 1.5M of NaCl-amended media. The highest floc yield and biofilm were produced by UPMRE6 and UPMRB9 respectively, at 1M of NaCl concentration. The SEM observation confirmed the EPS production of UPMRB9 and UPMRE6 at 1.5M of NaCl concentration. These two isolates were identified as Bacillus tequilensis and Bacillus aryabhattai based on the 16S rRNA gene sequence. The functional group characterization of EPS showed the presence of hydroxyl, carboxyl, and amino groups. This corresponded to the presence of carbohydrates and proteins in the EPS and glucose was identified as the major type of carbohydrate. The functional groups of EPS can help to bind and chelate Na+ in the soil and thereby reduces the plant’s exposure to the ion under saline conditions. The plant inoculation study revealed significant beneficial effects of bacterial inoculation on photosynthesis, transpiration, and stomatal conductance of the plant which leads to a higher yield. The Bacillus tequilensis and Bacillus aryabhattai strains showed good potential as PGPR for salinity mitigation practice for coastal rice cultivation.
Collapse
Affiliation(s)
- Rakiba Shultana
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Agronomy Division, Bangladesh Rice Research Institute, Gazipur, Bangladesh
| | - Ali Tan Kee Zuan
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Rafii Yusop
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Halimi Mohd Saud
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
6
|
Wang G, Li J, Xie S, Zhai Z, Hao Y. The N-terminal domain of rhamnosyltransferase EpsF influences exopolysaccharide chain length determination in Streptococcus thermophilus 05-34. PeerJ 2020; 8:e8524. [PMID: 32095353 PMCID: PMC7023835 DOI: 10.7717/peerj.8524] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 01/07/2020] [Indexed: 12/17/2022] Open
Abstract
Glycosyltransferases are key enzymes involved in the assembly of repeating units of exopolysaccharides (EPS). A glycosyltransferase generally consists of the N-terminal and the C-terminal domain, however, the functional role of these domains in EPS biosynthesis remains largely unknown. In this study, homologous overexpression was employed to investigate the effects of EpsFN, a truncated form of rhamnosyltransferase EpsF with only the N-terminal domain, on EPS biosynthesis in Streptococcus thermophilus 05-34. Reverse transcription qPCR and Western blotting analysis confirmed the successful expression of epsFN in 05-34 at the transcription and translation level, respectively. Further analysis showed that the monosaccharide composition and yield of EPS were not affected by the overexpression of epsFN, whereas the molecular mass decreased by 5-fold. Accordingly, the transcription levels of genes involved in EPS biosynthesis, including chain-length determination gene epsC, were down-regulated by 5- to 6-fold. These results indicated that the N-terminal domain of EpsF alone could influence the molecular mass of EPS, probably via lowering the concentration of sugar precursors, which may lead to decreased expression of genes responsible for chain-length determination.
Collapse
Affiliation(s)
- Guohong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiaxi Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Shuxin Xie
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yanling Hao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, Beijing, China
| |
Collapse
|
7
|
Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou Y, Lü X. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
8
|
Physicochemical properties of a high molecular weight levan from Brenneria sp. EniD312. Int J Biol Macromol 2018; 109:810-818. [DOI: 10.1016/j.ijbiomac.2017.11.056] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/24/2017] [Accepted: 11/09/2017] [Indexed: 01/12/2023]
|
9
|
Characterization of Exopolysaccharide Produced by Streptococcus thermophilus CC30. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4201809. [PMID: 28815181 PMCID: PMC5549498 DOI: 10.1155/2017/4201809] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 05/23/2017] [Indexed: 11/18/2022]
Abstract
An exopolysaccharide (EPS) producing strain CC30 was isolated from raw milk and identified as Streptococcus thermophilus with morphological and 16S sequencing analysis. The strain was shown to produce 1.95 g/L of EPS when grown in skim milk lactose medium at 30°C by increasing the viscosity of the medium. The EPS was isolated and purified, and it was shown to consist of glucose and galactose in 1 : 1 ratio, with molecular weights ranging from 58 to 180 kDa. FTIR spectroscopy indicated the EPS to have amide, hydroxyl, and carboxyl groups. Under Atomic Force Microscopy, EPS showed spike-like lumps of EPS. Scanning Electron Microscopy (SEM) studies showed that it had irregular lumps with a coarse surface. The EPS displayed pseudoplastic nature. Thermogravimetric analysis (TGA) reported a degradation temperature of 110.84°C. The purified EPS exhibited reducing activity, hydrogen peroxide radical scavenging activity, and emulsification activity. The results of the present study indicated that EPS producing Streptococcus thermophilus could serve as a promising candidate for further exploitation in food industry.
Collapse
|
10
|
Zeidan AA, Poulsen VK, Janzen T, Buldo P, Derkx PMF, Øregaard G, Neves AR. Polysaccharide production by lactic acid bacteria: from genes to industrial applications. FEMS Microbiol Rev 2017; 41:S168-S200. [DOI: 10.1093/femsre/fux017] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/29/2017] [Indexed: 01/14/2023] Open
|
11
|
New advances in exopolysaccharides production of Streptococcus thermophilus. Arch Microbiol 2017; 199:799-809. [PMID: 28357474 DOI: 10.1007/s00203-017-1366-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 03/12/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
Streptococcus thermophilus is the most important thermophilic dairy starter, and is widely used in the dairy industry. Streptococcus thermophilus exopolysaccharides received wide attention over recent decades, because they can improve the properties of the dairy product and confer beneficial health effects. The understanding of the regulatory and biosynthetic mechanisms of EPS will improve the EPS biosynthesis, increase the productivity of EPSs, and develop EPSs with desirable properties. The structure of EPSs is the focus of this study. Revealing the structure-function relationship can lead to increase the knowledge base and from there to increased research of EPS. The EPS yield is a key limiting factor in the research and utilization of EPS. In the present review, biosynthetic pathways and genetics of S. thermophilus EPSs were described and reviewed. At the same time, functional properties and applications of EPS, and strategies for enhancement of EPS production are discussed.
Collapse
|
12
|
Technological, rheological and sensory characterizations of a yogurt containing an exopolysaccharide extract from Lactobacillus fermentum Lf2, a new food additive. Food Res Int 2016; 90:259-267. [PMID: 29195880 DOI: 10.1016/j.foodres.2016.10.045] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 10/07/2016] [Accepted: 10/29/2016] [Indexed: 11/20/2022]
Abstract
Lactobacillus fermentum Lf2, an autochthonous strain isolated as a non starter culture in Cremoso cheese, produces high EPS levels (~1g/L) in optimized conditions (SDM broth, pH6.0, 30°C, 72h). Technological (texture profile and rheological analysis) and sensory properties of non-fat yogurts with 300 and 600mg EPS/L were studied at 3 and 25days after manufacture. Yogurts with different EPS concentrations showed higher hardness values than the control group at both periods of time, being the only significant difference that remained stable during time. The consistency index was also higher for the treated samples at both times evaluated, being significantly different for samples with 300mg/L of EPS extract, while the flow behavior index was lower for EPS-added yogurts. The thixotropic index was lower (P<0.05) for samples with the highest EPS extract concentration at the end of the storage time. Regarding the sensory analysis, those yogurts with 600mg/L of EPS extract presented the highest values of consistency at 3days of storage. No considerable differences for defects (milk powder, acid, bitter and cooked milk flavors) were perceived between treated and control samples at both times evaluated. Syneresis was also studied and samples with 600mg/L of EPS extract presented the lowest syneresis values at 25days of storage, which considerably decreased with the time of storage. In conclusion, the EPS from L. fermentum Lf2, used as an additive, provided yogurt with creamy consistency and increased hardness, without the presence of unwanted defects and improving the water holding capacity of the product. All the analysis done showed the potential of this extract to be used as a technofunctional natural ingredient, and it should be considered its positive impact on health, according to previous studies.
Collapse
|
13
|
Li D, Li J, Zhao F, Wang G, Qin Q, Hao Y. The influence of fermentation condition on production and molecular mass of EPS produced by Streptococcus thermophilus 05-34 in milk-based medium. Food Chem 2016; 197:367-72. [DOI: 10.1016/j.foodchem.2015.10.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 08/29/2015] [Accepted: 10/24/2015] [Indexed: 10/22/2022]
|
14
|
Chen Z, Shi J, Yang X, Liu Y, Nan B, Wang Z. Isolation of exopolysaccharide-producing bacteria and yeasts from Tibetan kefir and characterisation of the exopolysaccharides. INT J DAIRY TECHNOL 2016. [DOI: 10.1111/1471-0307.12276] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhina Chen
- College of Food Science and Engineering; Northwest A & F University; 28 Xinong Road Yangling Shaanxi Province 712100 China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology; School of Life Sciences; Northwestern Polytechnical University; 127 Youyi Xilu Xi'an Shaanxi Province 710072 China
| | - Xijuan Yang
- Tibetan Plateau Laboratory of Agric-Product Processing; Qinghai Academy of Agriculture and Forestry; 253 Ningda Road Xining Qinghai Province 810016 China
| | - Yang Liu
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China; Life Science College; Northwest University; Xi'an 710069 China
| | - Bo Nan
- College of Food Science and Engineering; Northwest A & F University; 28 Xinong Road Yangling Shaanxi Province 712100 China
| | - Zhongfu Wang
- Educational Ministry Key Laboratory of Resource Biology and Biotechnology in Western China; Life Science College; Northwest University; Xi'an 710069 China
| |
Collapse
|
15
|
Mende S, Rohm H, Jaros D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int Dairy J 2016. [DOI: 10.1016/j.idairyj.2015.08.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2014.10.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Prasanna P, Grandison A, Charalampopoulos D. Bifidobacteria in milk products: An overview of physiological and biochemical properties, exopolysaccharide production, selection criteria of milk products and health benefits. Food Res Int 2014. [DOI: 10.1016/j.foodres.2013.11.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
18
|
Microbiological, chemical and rheological properties of low fat set yoghurt produced with exopolysaccharide (EPS) producing Bifidobacterium strains. Food Res Int 2013. [DOI: 10.1016/j.foodres.2012.11.016] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Prasanna P, Bell A, Grandison A, Charalampopoulos D. Emulsifying, rheological and physicochemical properties of exopolysaccharide produced by Bifidobacterium longum subsp. infantis CCUG 52486 and Bifidobacterium infantis NCIMB 702205. Carbohydr Polym 2012; 90:533-40. [DOI: 10.1016/j.carbpol.2012.05.075] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Revised: 05/17/2012] [Accepted: 05/19/2012] [Indexed: 01/24/2023]
|