1
|
Di Natale C, De Benedictis I, De Benedictis A, Marasco D. Metal-Peptide Complexes as Promising Antibiotics to Fight Emerging Drug Resistance: New Perspectives in Tuberculosis. Antibiotics (Basel) 2020; 9:antibiotics9060337. [PMID: 32570779 PMCID: PMC7344629 DOI: 10.3390/antibiotics9060337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
In metal-peptide interactions, cations form stable complexes through bonds with coordinating groups as side chains of amino acids. These compounds, among other things, exert a wide variety of antimicrobial activities through structural changes of peptides upon metal binding and redox chemistry. They exhibit different mechanisms of action (MOA), including the modification of DNA/RNA, protein and cell wall synthesis, permeabilization and modulation of gradients of cellular membranes. Nowadays, the large increase in antibiotic resistance represents a crucial problem to limit progression at the pandemic level of the diseases that seemed nearly eradicated, such as tuberculosis (Tb). Mycobacterium tuberculosis (Mtb) is intrinsically resistant to many antibiotics due to chromosomal mutations which can lead to the onset of novel strains. Consequently, the maximum pharmaceutical effort should be focused on the development of new therapeutic agents and antimicrobial peptides can represent a valuable option as a copious source of potential bioactive compounds. The introduction of a metal center can improve chemical diversity and hence specificity and bioavailability while, in turn, the coordination to peptides of metal complexes can protect them and enhance their poor water solubility and air stability: the optimization of these parameters is strictly required for drug prioritization and to obtain potent inhibitors of Mtb infections with novel MOAs. Here, we present a panoramic review of the most recent findings in the field of metal complex-peptide conjugates and their delivery systems with the potential pharmaceutical application as novel antibiotics in Mtb infections.
Collapse
Affiliation(s)
- Concetta Di Natale
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Center for Advanced Biomaterial for Health Care (CABHC), Istituto Italiano di Tecnologia, 80125 Naples, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, University of Naples Federico II, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Ilaria De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Arianna De Benedictis
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
| | - Daniela Marasco
- Department of Pharmacy, University of Naples “Federico II”, 80134 Napoli NA, Italy; (C.D.N.); (I.D.B.); (A.D.B.)
- Correspondence:
| |
Collapse
|
2
|
Specific metallo-protein interactions and antimicrobial activity in Histatin-5, an intrinsically disordered salivary peptide. Sci Rep 2019; 9:17303. [PMID: 31754129 PMCID: PMC6872563 DOI: 10.1038/s41598-019-52676-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 10/10/2019] [Indexed: 02/06/2023] Open
Abstract
Histatin-5 (Hst-5) is an antimicrobial, salivary protein that is involved in the host defense system. Hst-5 has been proposed to bind functionally relevant zinc and copper but presents challenges in structural studies due to its disordered conformation in aqueous solution. Here, we used circular dichroism (CD) and UV resonance Raman (UVRR) spectroscopy to define metallo-Hst-5 interactions in aqueous solution. A zinc-containing Hst-5 sample exhibits shifted Raman bands, relative to bands observed in the absence of zinc. Based on comparison to model compounds and to a family of designed, zinc-binding beta hairpins, the alterations in the Hst-5 UVRR spectrum are attributed to zinc coordination by imidazole side chains. Zinc addition also shifted a tyrosine aromatic ring UVRR band through an electrostatic interaction. Copper addition did not have these effects. A sequence variant, H18A/H19A, was employed; this mutant has less potent antifungal activity, when compared to Hst-5. Zinc addition had only a small effect on the thermal stability of this mutant. Interestingly, both zinc and copper addition shifted histidine UVRR bands in a manner diagnostic for metal coordination. Results obtained with a K13E/R22G mutant were similar to those obtained with wildtype. These experiments show that H18 and H19 contribute to a zinc binding site. In the H18A/H19A mutant the specificity of the copper/zinc binding sites is lost. The experiments implicate specific zinc binding to be important in the antimicrobial activity of Hst-5.
Collapse
|
3
|
Chen J, Chen J, Liu Y, Zheng Y, Zhu Q, Han G, Shen JR. Proton-Coupled Electron Transfer of Plastoquinone Redox Reactions in Photosystem II: A Pump-Probe Ultraviolet Resonance Raman Study. J Phys Chem Lett 2019; 10:3240-3247. [PMID: 31117681 DOI: 10.1021/acs.jpclett.9b00959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Plastoquinones (PQs) act as electron and proton mediators in photosystem II (PSII) for solar-to-chemical energy conversion. It is known that the redox potential of PQ varies in a wide range spanning hundreds of millivolts; however, its structural origin is not known yet. Here, by developing a pump-probe ultraviolet resonance Raman technique, we measured the vibrational structures of PQs including QA and QB in cyanobacterial PSII directly. The conversion of QA to QA•- in the Mn-depleted PSII is verified by direct observation of the distinct QA•- vibrational bands. A frequency upshift of the ring C=O/C=C stretch band at 1565 cm-1 for QA•- was observed, which suggests a π-π interaction between the quinone ring and Trp253. In contrast, proton-coupled reduction of QA to QAH upon light-driven electron transfer is demonstrated in PSII without QB bound. The H-bond between QA and His214 is likely the proton origin of this proton-coupled electron transfer.
Collapse
Affiliation(s)
- Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory , Jiangyou 621908 , China
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Jinfan Chen
- Science and Technology on Surface Physics and Chemistry Laboratory , Jiangyou 621908 , China
| | - Ying Liu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621907 , China
| | - Yang Zheng
- State Key Laboratory of Catalysis , Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023 , China
| | - Qingjun Zhu
- Photosynthesis Research Center, Key Laboratory of Photobiology , Institute of Botany, Chinese Academy of Sciences , No. 20, Nanxincun , Xiangshan, Beijing , 100093 , China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology , Institute of Botany, Chinese Academy of Sciences , No. 20, Nanxincun , Xiangshan, Beijing , 100093 , China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology , Institute of Botany, Chinese Academy of Sciences , No. 20, Nanxincun , Xiangshan, Beijing , 100093 , China
- Research Institute of Interdisciplinary Science, Graduate School of Natural Science and Technology , Okayama University , Tsushima Naka 3-1-1 , Okayama 700-8530 , Japan
| |
Collapse
|
4
|
Yao M, Liu Y, Fei L, Zhou Y, Wang F, Chen J. Self-Adaptable Quinone-Quinol Exchange Mechanism of Photosystem II. J Phys Chem B 2018; 122:10478-10489. [PMID: 30380868 DOI: 10.1021/acs.jpcb.8b09641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The step of plastoquinone (PQ) reduction to plastoquinol (PQH2) can regulate the photoreaction rate of photosystem II (PSII). To experimentally unravel the PQ-PQH2 exchange mechanism of PSII, we investigate the reaction kinetics of plant PSII membranes and the subunits-trimmed PSII core complexes with various PQ analogues and directly probe the reductions of PQ and other quinones by 257 nm resonance Raman scattering. Two phases of quinone concentration effect on the reaction rate originate from the quinone-quinol exchange mechanism. The results indicate that high concentrations of quinone, more than one movable quinone molecule per PSII reaction center, could trigger quinone-quinol exchange adapting to the unidirectional route: quinones enter through channel I and/or III, and quinols leave through channel II. A weak quinone binding site near QB probably plays a crucial role in pushing quinone-quinol exchange forward in the unidirectional route. Our work provides experimental proofs demonstrating a self-adaptable quinone-quinol exchange mechanism of PSII.
Collapse
Affiliation(s)
- Mingdong Yao
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China.,Key Laboratory of Systems Bioengineering (Ministry of Education) , Tianjin University , Tianjin 300072 , China
| | - Ying Liu
- Institute of Materials , China Academy of Engineering Physics , Mianyang 621907 , China
| | - Liping Fei
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Ye Zhou
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Fangjun Wang
- Key Laboratory of Separation Sciences for Analytical Chemistry, National Chromatographic R&A Center, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Jun Chen
- Science and Technology on Surface Physics and Chemistry Laboratory , Jiangyou 621908 , China.,State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
5
|
Geng J, Aioub M, El-Sayed MA, Barry BA. An Ultraviolet Resonance Raman Spectroscopic Study of Cisplatin and Transplatin Interactions with Genomic DNA. J Phys Chem B 2017; 121:8975-8983. [PMID: 28925698 DOI: 10.1021/acs.jpcb.7b08156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ultraviolet resonance Raman (UVRR) spectroscopy is a label-free method to define biomacromolecular interactions with anticancer compounds. Using UVRR, we describe the binding interactions of two Pt(II) compounds, cisplatin (cis-diamminedichloroplatinum(II)) and its isomer, transplatin, with nucleotides and genomic DNA. Cisplatin binds to DNA and other cellular components and triggers apoptosis, whereas transplatin is clinically ineffective. Here, a 244 nm UVRR study shows that purine UVRR bands are altered in frequency and intensity when mononucleotides are treated with cisplatin. This result is consistent with previous suggestions that purine N7 provides the cisplatin-binding site. The addition of cisplatin to DNA also causes changes in the UVRR spectrum, consistent with binding of platinum to purine N7 and disruption of hydrogen-bonding interactions between base pairs. Equally important is that transplatin treatment of DNA generates similar UVRR spectral changes, when compared to cisplatin-treated samples. Kinetic analysis, performed by monitoring decreases of the 1492 cm-1 band, reveals biphasic kinetics and is consistent with a two-step binding mechanism for both platinum compounds. For cisplatin-DNA, the rate constants (6.8 × 10-5 and 6.5 × 10-6 s-1) are assigned to the formation of monofunctional adducts and to bifunctional, intrastrand cross-linking, respectively. In transplatin-DNA, there is a 3.4-fold decrease in the rate constant of the slow phase, compared with the cisplatin samples. This change is attributed to generation of interstrand, rather than intrastrand, adducts. This longer reaction time may result in increased competition in the cellular environment and account, at least in part, for the lower pharmacological efficacy of transplatin.
Collapse
Affiliation(s)
- Jiafeng Geng
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mena Aioub
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Mostafa A El-Sayed
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, ‡Parker H. Petit Institute of Bioengineering and Bioscience, and §Laser Dynamics Laboratory, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Hwang H, McCaslin TG, Hazel A, Pagba CV, Nevin CM, Pavlova A, Barry BA, Gumbart JC. Redox-Driven Conformational Dynamics in a Photosystem-II-Inspired β-Hairpin Maquette Determined through Spectroscopy and Simulation. J Phys Chem B 2017; 121:3536-3545. [DOI: 10.1021/acs.jpcb.6b09481] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Hyea Hwang
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Tyler G. McCaslin
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anthony Hazel
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Cynthia V. Pagba
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Christina M. Nevin
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Anna Pavlova
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C. Gumbart
- School
of Materials Science and Engineering, ‡School of Chemistry and Biochemistry, §Petit Institute for
Bioengineering and Biosciences, and ∥School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Pagba CV, McCaslin TG, Veglia G, Porcelli F, Yohannan J, Guo Z, McDaniel M, Barry BA. A tyrosine-tryptophan dyad and radical-based charge transfer in a ribonucleotide reductase-inspired maquette. Nat Commun 2015; 6:10010. [PMID: 26627888 PMCID: PMC4686667 DOI: 10.1038/ncomms10010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 10/23/2015] [Indexed: 01/29/2023] Open
Abstract
In class 1a ribonucleotide reductase (RNR), a substrate-based radical is generated in the α2 subunit by long-distance electron transfer involving an essential tyrosyl radical (Y122O·) in the β2 subunit. The conserved W48 β2 is ∼10 Å from Y122OH; mutations at W48 inactivate RNR. Here, we design a beta hairpin peptide, which contains such an interacting tyrosine–tryptophan dyad. The NMR structure of the peptide establishes that there is no direct hydrogen bond between the phenol and the indole rings. However, electronic coupling between the tyrosine and tryptophan occurs in the peptide. In addition, downshifted ultraviolet resonance Raman (UVRR) frequencies are observed for the radical state, reproducing spectral downshifts observed for β2. The frequency downshifts of the ring and CO bands are consistent with charge transfer from YO· to W or another residue. Such a charge transfer mechanism implies a role for the β2 Y-W dyad in electron transfer. Tyrosine-tryptophan dyads are known to mediate electron transfer reactions in a range of different proteins. Here, the authors study a beta hairpin peptide, probing the tyrosine-tryptophan interaction and showing no hydrogen bonding but rather charge transfer between the tyrosyl radical and tryptophan'.
Collapse
Affiliation(s)
- Cynthia V Pagba
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Tyler G McCaslin
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Gianluigi Veglia
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Fernando Porcelli
- Department of Biochemistry, Biophysics and Molecular Biology, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, USA.,Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, Viterbo 01100, Italy
| | - Jiby Yohannan
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Zhanjun Guo
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Miranda McDaniel
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Bridgette A Barry
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
8
|
López-Peña I, Leigh BS, Schlamadinger DE, Kim JE. Insights into Protein Structure and Dynamics by Ultraviolet and Visible Resonance Raman Spectroscopy. Biochemistry 2015. [PMID: 26219819 DOI: 10.1021/acs.biochem.5b00514] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Raman spectroscopy is a form of vibrational spectroscopy based on inelastic scattering of light. In resonance Raman spectroscopy, the wavelength of the incident light falls within an absorption band of a chromophore, and this overlap of excitation and absorption energy greatly enhances the Raman scattering efficiency of the absorbing species. The ability to probe vibrational spectra of select chromophores within a complex mixture of molecules makes resonance Raman spectroscopy an excellent tool for studies of biomolecules. In this Current Topic, we discuss the type of molecular insights obtained from steady-state and time-resolved resonance Raman studies of a prototypical photoactive protein, rhodopsin. We also review recent efforts in ultraviolet resonance Raman investigations of soluble and membrane-associated biomolecules, including integral membrane proteins and antimicrobial peptides. These examples illustrate that resonance Raman is a sensitive, selective, and practical method for studying the structures of biological molecules, and the molecular bonding, geometry, and environments of protein cofactors, the backbone, and side chains.
Collapse
Affiliation(s)
- Ignacio López-Peña
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Brian S Leigh
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Diana E Schlamadinger
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Judy E Kim
- Department of Chemistry and Biochemistry, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
9
|
Chen J, Yao M, Pagba CV, Zheng Y, Fei L, Feng Z, Barry BA. Directly probing redox-linked quinones in photosystem II membrane fragments via UV resonance Raman scattering. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:558-64. [DOI: 10.1016/j.bbabio.2015.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/19/2015] [Accepted: 03/10/2015] [Indexed: 10/23/2022]
|
10
|
An irradiation density dependent energy relaxation in plant photosystem II antenna assembly. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:286-293. [DOI: 10.1016/j.bbabio.2014.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 10/28/2014] [Accepted: 11/24/2014] [Indexed: 11/22/2022]
|
11
|
Wang W, Chen J, Li C, Tian W. Achieving solar overall water splitting with hybrid photosystems of photosystem II and artificial photocatalysts. Nat Commun 2014; 5:4647. [DOI: 10.1038/ncomms5647] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 07/09/2014] [Indexed: 12/12/2022] Open
|
12
|
Offenbacher AR, Pagba CV, Polander BC, Brahmachari U, Barry BA. First site-specific incorporation of a noncanonical amino acid into the photosynthetic oxygen-evolving complex. ACS Chem Biol 2014; 9:891-6. [PMID: 24437616 DOI: 10.1021/cb400880u] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
In photosystem II (PSII), water is oxidized at the oxygen-evolving complex. This process occurs through a light-induced cycle that produces oxygen and protons. While coupled proton and electron transfer reactions play an important role in PSII and other proteins, direct detection of internal proton transfer reactions is challenging. Here, we demonstrate that the unnatural amino acid, 7-azatryptophan (7AW), has unique, pH-sensitive vibrational frequencies, which are sensitive markers of proton transfer. The intrinsically disordered, PSII subunit, PsbO, which contains a single W residue (Trp241), was engineered to contain 7AW at position 241. Fluorescence shows that 7AW-241 is buried in a hydrophobic environment. Reconstitution of 7AW(241)PsbO to PSII had no significant impact on oxygen evolution activity or flash-dependent protein dynamics. We conclude that directed substitution of 7AW into other structural domains is likely to provide a nonperturbative spectroscopic probe, which can be used to define internal proton pathways in PsbO.
Collapse
Affiliation(s)
- Adam R. Offenbacher
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Cynthia V. Pagba
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Brandon C. Polander
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Udita Brahmachari
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| | - Bridgette A. Barry
- Department of Chemistry and
Biochemistry and the Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United States
| |
Collapse
|
13
|
Pagba CV, Barry BA. Redox-Induced Conformational Switching in Photosystem-II-Inspired Biomimetic Peptides: A UV Resonance Raman Study. J Phys Chem B 2012; 116:10590-9. [DOI: 10.1021/jp303607b] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Cynthia V. Pagba
- School of Chemistry and
Biochemistry and the Parker
H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| | - Bridgette A. Barry
- School of Chemistry and
Biochemistry and the Parker
H. Petit Institute of Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332,
United States
| |
Collapse
|
14
|
Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK. UV resonance Raman investigations of peptide and protein structure and dynamics. Chem Rev 2012; 112:2604-28. [PMID: 22335827 PMCID: PMC3349015 DOI: 10.1021/cr200198a] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
| | - Kan Xiong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Zhenmin Hong
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Sanford A. Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Joseph Handen
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| | - Igor K. Lednev
- Department of Chemistry, University at Albany, SUNY, 1400 Washington Ave., Albany, NY 12222
| |
Collapse
|
15
|
Wang H, Wang L, Shen S, Zhang W, Li M, Du L, Zheng X, Phillips DL. Effects of hydrogen bond and solvent polarity on the C=O stretching of bis(2-thienyl)ketone in solution. J Chem Phys 2012; 136:124509. [DOI: 10.1063/1.3697482] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
16
|
Barry BA, Chen J, Keough J, Jenson D, Offenbacher A, Pagba C. Proton Coupled Electron Transfer and Redox Active Tyrosines: Structure and Function of the Tyrosyl Radicals in Ribonucleotide Reductase and Photosystem II. J Phys Chem Lett 2012; 3:543-554. [PMID: 22662289 PMCID: PMC3362996 DOI: 10.1021/jz2014117] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Proton coupled electron transfer (PCET) reactions are important in many biological processes. Tyrosine oxidation/reduction can play a critical role in facilitating these reactions. Two examples are photosystem II (PSII) and ribonucleotide reductase (RNR). RNR is essential in DNA synthesis in all organisms. In E. coli RNR, a tyrosyl radical, Y122(•), is required as a radical initiator. Photosystem II (PSII) generates molecular oxygen from water. In PSII, an essential tyrosyl radical, YZ(•), oxidizes the oxygen evolving center. However, the mechanisms, by which the extraordinary oxidizing power of the tyrosyl radical is controlled, are not well understood. This is due to the difficulty in acquiring high-resolution structural information about the radical state. Spectroscopic approaches, such as EPR and UV resonance Raman (UVRR), can give new information. Here, we discuss EPR studies of PCET and the PSII YZ radical. We also present UVRR results, which support the conclusion that Y122 undergoes an alteration in ring and backbone dihedral angle when it is oxidized. This conformational change results in a loss of hydrogen bonding to the phenolic oxygen. Our analysis suggests that access of water is an important factor in determining tyrosyl radical lifetime and function. TOC graphic.
Collapse
|
17
|
Halsey CM, Oshokoya OO, Jiji RD, Cooley JW. Deep-UV Resonance Raman Analysis of theRhodobacter capsulatusCytochromebc1Complex Reveals a Potential Marker for the Transmembrane Peptide Backbone. Biochemistry 2011; 50:6531-8. [DOI: 10.1021/bi200596w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
18
|
Dreaden TM, Chen J, Rexroth S, Barry BA. N-formylkynurenine as a marker of high light stress in photosynthesis. J Biol Chem 2011; 286:22632-41. [PMID: 21527632 PMCID: PMC3121407 DOI: 10.1074/jbc.m110.212928] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 04/28/2011] [Indexed: 11/06/2022] Open
Abstract
Photosystem II (PSII) is the membrane protein complex that catalyzes the photo-induced oxidation of water at a manganese-calcium active site. Light-dependent damage and repair occur in PSII under conditions of high light stress. The core reaction center complex is composed of the D1, D2, CP43, and CP47 intrinsic polypeptides. In this study, a new chromophore formed from the oxidative post-translational modification of tryptophan is identified in the CP43 subunit. Tandem mass spectrometry peptide sequencing is consistent with the oxidation of the CP43 tryptophan side chain, Trp-365, to produce N-formylkynurenine (NFK). Characterization with ultraviolet visible absorption and ultraviolet resonance Raman spectroscopy supports this assignment. An optical assay suggests that the yield of NFK increases 2-fold (2.2 ± 0.5) under high light illumination. A concomitant 2.4 ± 0.5-fold decrease is observed in the steady-state rate of oxygen evolution under the high light conditions. NFK is the product formed from reaction of tryptophan with singlet oxygen, which can be produced under high light stress in PSII. Reactive oxygen species reactions lead to oxidative damage of the reaction center, D1 protein turnover, and inhibition of electron transfer. Our results are consistent with a role for the CP43 NFK modification in photoinhibition.
Collapse
Affiliation(s)
- Tina M. Dreaden
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Jun Chen
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Sascha Rexroth
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- From the School of Chemistry and Biochemistry and the Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
19
|
Offenbacher AR, Chen J, Barry BA. Perturbations of aromatic amino acids are associated with iron cluster assembly in ribonucleotide reductase. J Am Chem Soc 2011; 133:6978-88. [PMID: 21486062 DOI: 10.1021/ja107918g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The β2 subunit of class Ia ribonucleotide reductases (RNR) contains an antiferromagnetically coupled μ-oxo bridged diiron cluster and a tyrosyl radical (Y122•). In this study, an ultraviolet resonance Raman (UVRR) difference technique describes the structural changes induced by the assembly of the iron cluster and by the reduction of the tyrosyl radical. Spectral contributions from aromatic amino acids are observed through UV resonance enhancement at 229 nm. Vibrational bands are assigned by comparison to histidine, phenylalanine, tyrosine, tryptophan, and 3-methylindole model compound data and by isotopic labeling of histidine in the β2 subunit. Reduction of the tyrosyl radical reveals Y122• Raman bands at 1499 and 1556 cm(-1) and Y122 Raman bands at 1170, 1199, and 1608 cm(-1). There is little perturbation of other aromatic amino acids when Y122• is reduced. Assembly of the iron cluster is shown to be accompanied by deprotonation of histidine. A p(2)H titration study supports the assignment of an elevated pK for the histidine. In addition, structural perturbations of tyrosine and tryptophan are detected. For tryptophan, comparison to model compound data suggests an increase in hydrogen bonding and a change in conformation when the iron cluster is removed. pH and (2)H(2)O studies imply that the perturbed tryptophan is in a low dielectric environment that is close to the metal center and protected from solvent exchange. Tyrosine contributions are attributed to a conformational or hydrogen-bonding change. In summary, our work shows that electrostatic and conformational perturbations of aromatic amino acids are associated with metal cluster assembly in RNR. These conformational changes may contribute to the allosteric effects, which regulate metal binding.
Collapse
Affiliation(s)
- Adam R Offenbacher
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | |
Collapse
|
20
|
Chen J, Bender SL, Keough JM, Barry BA. Tryptophan as a probe of photosystem I electron transfer reactions: a UV resonance Raman study. J Phys Chem B 2009; 113:11367-70. [PMID: 19639977 PMCID: PMC2846372 DOI: 10.1021/jp906491r] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Photosystem I (PSI) is one of the two membrane-associated reaction centers involved in oxygenic photosynthesis. In photosynthesis, solar energy is converted to chemical energy in the form of a transmembrane charge separation. PSI oxidizes cytochrome c(6) or plastocyanin and reduces ferredoxin. In cyanobacterial PSI, there are 10 tryptophan residues with indole side chains located less than 10 A from the electron transfer cofactors. In this study, we apply pump-probe difference UV resonance Raman (UVRR) spectroscopy to acquire the spectrum of aromatic amino acids in cyanobacterial PSI. This UVRR technique allows the use of the tryptophan vibrational spectrum as a reporter for structural changes, which are linked to PSI electron transfer reactions. Our results show that photo-oxidation of the chlorophyll a/a' heterodimer, P(700), causes shifts in the vibrational frequencies of two or more tryptophan residues. Similar perturbations of tryptophan are observed when P(700) is chemically oxidized. The observed spectral frequencies suggest that the perturbed tryptophan side chains are only weakly or not hydrogen bonded and are located in an environment in which there is steric repulsion. The direction of the spectral shifts is consistent with an oxidation-induced increase in dielectric constant or a change in hydrogen bonding. To explain our results, the perturbation of tryptophan residues must be linked to a PSI conformational change, which is, in turn, driven by P(700) oxidation.
Collapse
Affiliation(s)
- Jun Chen
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | | | - James M. Keough
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Bridgette A. Barry
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| |
Collapse
|
21
|
Pezzella A, Panzella L, Crescenzi O, Napolitano A, Navaratnam S, Edge R, Land EJ, Barone V, d’Ischia M. Lack of Visible Chromophore Development in the Pulse Radiolysis Oxidation of 5,6-Dihydroxyindole-2-carboxylic Acid Oligomers: DFT Investigation and Implications for Eumelanin Absorption Properties. J Org Chem 2009; 74:3727-34. [DOI: 10.1021/jo900250v] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alessandro Pezzella
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Lucia Panzella
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Orlando Crescenzi
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Alessandra Napolitano
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Suppiah Navaratnam
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Ruth Edge
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Edward J. Land
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Vincenzo Barone
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| | - Marco d’Ischia
- Department of Organic Chemistry and Biochemistry and “Paolo Corradini” Department of Chemistry, University of Naples Federico II, Via Cinthia 4, I-80126 Naples, Italy, STFC Daresbury Laboratory, Daresbury, WA4 4AD, United Kingdom, BioScience Research Institute, Peel Building, University of Salford, Salford M5 4WT, United Kingdom, Chemistry Section, School of Physical and Geographical Sciences, Keele University, Staffs ST5 5BG, United Kingdom, School of Chemistry, University of Manchester, Oxford Road,
| |
Collapse
|
22
|
Balakrishnan G, Weeks CL, Ibrahim M, Soldatova AV, Spiro TG. Protein dynamics from time resolved UV Raman spectroscopy. Curr Opin Struct Biol 2008; 18:623-9. [PMID: 18606227 DOI: 10.1016/j.sbi.2008.06.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2008] [Accepted: 06/04/2008] [Indexed: 10/21/2022]
Abstract
Raman spectroscopy can provide unique information on the evolution of structure in proteins over a wide range of time scales; the picosecond to millisecond range can be accessed with pump-probe techniques. Specific parts of the molecule are interrogated by tuning the probe laser to a resonant electronic transition, including the UV transitions of aromatic residues and of the peptide bond. Advances in laser technology have enabled the characterization of transient species at an unprecedented level of structural detail. Applications to protein unfolding and allostery are reviewed.
Collapse
|