1
|
Martinez-Ruiz M, Vazquez K, Losoya L, Gonzalez S, Robledo-Padilla F, Aquines O, Iqbal HM, Parra-Saldivar R. Microalgae growth rate multivariable mathematical model for biomass production. Heliyon 2023; 9:e12540. [PMID: 36691555 PMCID: PMC9860277 DOI: 10.1016/j.heliyon.2022.e12540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The use of microalgae has been emerging as a potential technology to reduce greenhouse gases and bioremediate polluted water and produce high-value products as pigments, phytohormones, biofuels, and bioactive compounds. The improvement in biomass production is a priority to make the technology implementation profitable in every application mentioned before. METHODS The present study was conducted to explore the use of microalgae from genus Chlorella and Tetradesmus for the generation of substances of interest with UV absorption capacity. A mathematical model was developed for both microalgae to characterize the production of microalgae biomass considering the effects of light intensity, temperature, and nutrient consumption. The model was programmed in MATLAB software, where the three parameters were incorporated into a single specific growth rate equation. RESULTS It was found that the optimal environmental conditions for each genus (Chlorella T=36°C, and I<787 μmol/m2s; Tetradesmus T=23°C and I<150 μmol/m2s), as well as the optimal specific growth rate depending on the personalized values of the three parameters. CONCLUSSION This work could be used in the production of microalgae biomass for the design and development of topical applications to replace commercial options based on compounds that compromise health and have a harmful impact on the environment.
Collapse
Affiliation(s)
- Manuel Martinez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Karina Vazquez
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Liliana Losoya
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Susana Gonzalez
- Department of Biomedical Engineering, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Felipe Robledo-Padilla
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Osvaldo Aquines
- Department of Physics and Mathematics, Universidad de Monterrey, Av. Morones Prieto 4500, San Pedro Garza García 66238, N.L., Mexico
| | - Hafiz M.N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | | |
Collapse
|
2
|
Santiesteban-Romero B, Martínez-Ruiz M, Sosa-Hernández JE, Parra-Saldívar R, Iqbal HMN. Microalgae Photo-Protectants and Related Bio-Carriers Loaded with Bioactive Entities for Skin Applications-An Insight of Microalgae Biotechnology. Mar Drugs 2022; 20:487. [PMID: 36005491 PMCID: PMC9409820 DOI: 10.3390/md20080487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/21/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Microalgae are photosynthetic organisms known for producing valuable metabolites under different conditions such as extreme temperatures, high salinity, osmotic pressure, and ultraviolet radiation. In recent years, these metabolites have become a trend due to their versatility in applications such as pharmaceuticals, cosmetics, and others. They have even been proposed as an alternative source of bioactive metabolites to avoid the harmful effects on the environment produced by active compounds such as oxybenzone in commercials sunscreens. One of the most studied applications is the use of microalgae for skin care and topical use as cosmeceuticals. With the increasing demand for more environmentally friendly products in cosmetics, microalgae have been further explored in relation to this application. It has been shown that some microalgae are resistant to UV rays due to certain compounds such as mycosporine-like amino acids, sporopollenin, scytonemin, and others. These compounds have different mechanisms of action to mitigate UV damage induced. Still, they all have been proven to confer UV tolerance to microalgae with an absorbance spectrum like the one in conventional sunscreens. This review focuses on the use of these microalgae compounds obtained by UV stimulation and takes advantage of their natural UV-resistant characteristics to potentially apply them as an alternative for UV protection products.
Collapse
Affiliation(s)
- Berenice Santiesteban-Romero
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
| | - Manuel Martínez-Ruiz
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico; (B.S.-R.); (M.M.-R.); (J.E.S.-H.)
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey 64849, Mexico
| |
Collapse
|
3
|
Grubišić M, Šantek B, Zorić Z, Čošić Z, Vrana I, Gašparović B, Čož-Rakovac R, Ivančić Šantek M. Bioprospecting of Microalgae Isolated from the Adriatic Sea: Characterization of Biomass, Pigment, Lipid and Fatty Acid Composition, and Antioxidant and Antimicrobial Activity. Molecules 2022; 27:molecules27041248. [PMID: 35209036 PMCID: PMC8875609 DOI: 10.3390/molecules27041248] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/25/2022] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Marine microalgae and cyanobacteria are sources of diverse bioactive compounds with potential biotechnological applications in food, feed, nutraceutical, pharmaceutical, cosmetic and biofuel industries. In this study, five microalgae, Nitzschia sp. S5, Nanofrustulum shiloi D1, Picochlorum sp. D3, Tetraselmis sp. Z3 and Tetraselmis sp. C6, and the cyanobacterium Euhalothece sp. C1 were isolated from the Adriatic Sea and characterized regarding their growth kinetics, biomass composition and specific products content (fatty acids, pigments, antioxidants, neutral and polar lipids). The strain Picochlorum sp. D3, showing the highest specific growth rate (0.009 h−1), had biomass productivity of 33.98 ± 0.02 mg L−1 day−1. Proteins were the most abundant macromolecule in the biomass (32.83–57.94%, g g−1). Nanofrustulum shiloi D1 contained significant amounts of neutral lipids (68.36%), while the biomass of Picochlorum sp. D3, Tetraselmis sp. Z3, Tetraselmis sp. C6 and Euhalothece sp. C1 was rich in glycolipids and phospholipids (75%). The lipids of all studied microalgae predominantly contained unsaturated fatty acids. Carotenoids were the most abundant pigments with the highest content of lutein and neoxanthin in representatives of Chlorophyta and fucoxanthin in strains belonging to the Bacillariophyta. All microalgal extracts showed antioxidant activity and antimicrobial activity against Gram-negative E. coli and S. typhimurium and Gram-positive S. aureus.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zoran Zorić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Zrinka Čošić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
| | - Ivna Vrana
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Blaženka Gašparović
- Laboratory for Marine and Atmospheric Biogeochemistry, Division for Marine and Environmental Research, Ruđer Bošković Institute, 10000 Zagreb, Croatia; (I.V.); (B.G.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (Z.Z.); (Z.Č.)
- Correspondence:
| |
Collapse
|
4
|
Vazirzadeh A, Jafarifard K, Ajdari A, Chisti Y. Removal of nitrate and phosphate from simulated agricultural runoff water by Chlorella vulgaris. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149988. [PMID: 34525699 DOI: 10.1016/j.scitotenv.2021.149988] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Microalgae such Chlorella vulgaris can effectively absorb nitrate and phosphate from contaminated water. This work characterized nitrate and phosphate removal from simulated agricultural runoff using C. vulgaris. Statistically designed experiments were used to model the following responses: (1) algal growth; (2) nitrate removal; (3) phosphate removal; (4) protein in the algal biomass; (5) chlorophyll content of the biomass; (6) the biomass phenolics content; and (7) the free radical scavenging antioxidant activity of the biomass. These response were modelled for the following key experimental factors: initial nitrate concentration in the simulated runoff (1080-3240 mg L-1, as NaNO3), initial phosphate concentration (20-60 mg L-1, as K2HPO4), photoperiod (8-24 h of light/day) and culture duration (5-15 days). The validated models were used to identify the factor levels to maximize the various responses. Nitrate removal was maximized at 85.6% when initial nitrate and phosphate concentrations were 2322 mg L-1 and 38 mg L-1 (N:P atom ratio ≈ 125:1), respectively, with a 17.2 h daily photoperiod in a 13-day culture. Phosphate removal was maximized at 95% when the initial nitrate and phosphate concentrations were 1402 mg L-1 and 56.7 mg L-1 (N:P ≈ 51:1), respectively, with a 15.7 h daily photoperiod in a 14.7-day culture. At least ~14 h of a daily photoperiod and a ~11-day culture period were required to maximize all the studied responses. C. vulgaris is edible and may be used as animal feed. Nutritional aspects of the biomass were characterized. Biomass with more than 24% protein could be produced. Under the best conditions, the chlorophyll (potential food colorants) content of the biomass was 8.5% and the maximum level of total phenolics (antioxidants) in the biomass was nearly 13 mg gallic acid equivalent g-1.
Collapse
Affiliation(s)
- Arya Vazirzadeh
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran.
| | - Kiyanoush Jafarifard
- Department of Natural Resources and Environmental Engineering, School of Agriculture, Shiraz University, Shiraz 71441-65186, Iran
| | - Ashkan Ajdari
- Offshore Fisheries Research Center, Iranian Fisheries Science Research Institute, Agricultural Research Education, and Extension Organization (AREEO), Chabahar, Iran
| | - Yusuf Chisti
- School of Engineering, Massey University, Private Bag 11 222, Palmerston North, New Zealand
| |
Collapse
|
5
|
Impact of Light Stress on the Synthesis of Both Antioxidants Polyphenols and Carotenoids, as Fast Photoprotective Response in Chlamydomonas reinhardtii: New Prospective for Biotechnological Potential of This Microalga. Symmetry (Basel) 2021. [DOI: 10.3390/sym13112220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The aim of this study was to investigate the potential role of the microalga Chlamydomonas reinhardtii as an antioxidant source of enriched biomass. This microalga is a model organism deeply investigated for physiological studies, particularly considering carotenoid synthesis in response to stress, to counteract the effects of the formation of free radicals. Less attention has been paid to the profile characterization of other antioxidant compounds, such as polyphenols, which can be synthesized, concomitantly with carotenoids, under photooxidative stress, especially high light. The cultures of C. reinhardtii were exposed to three different light intensities, 70, 800 and 1500 µmoles photons m−2 s−1. The increasing light intensity symmetrically induced the increasing accumulation of both carotenoids and phenolic compounds. The results showed that exposure to high light intensities caused the accumulation of electrons in the electron transport chain, with a reduction in photosynthetic activity. In the same cultures, high light intensity induced the strong increment of polyphenols such as gallic, chlorogenic and coumaric acids, which resulted 6.2-fold, 4-fold and 3.7-fold higher, respectively, than in cells exposed to the lowest intensities. As expected, at the highest light intensity, the strong induction of the xanthophyll cycle and the largest increment of loroxanthin, lutein, α-carotene and ß-carotene could be detected. Antioxidant properties doubled with respect to the initial time, both in acetone and methanol cellular extracts of these cultures, revealing a new potential role for biotechnological application of this microalga.
Collapse
|
6
|
Kapoor S, Singh M, Srivastava A, Chavali M, Chandrasekhar K, Verma P. Extraction and characterization of microalgae-derived phenolics for pharmaceutical applications: A systematic review. J Basic Microbiol 2021; 62:1044-1063. [PMID: 34766645 DOI: 10.1002/jobm.202100458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/18/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022]
Abstract
Microalgae are regarded as a rich trove of diverse secondary metabolites that exert remarkable biological activities. In particular, microalgae-derived bioactive phenolic compounds (MBPCs) are a boon to biopharmaceutical and nutraceutical industries due to their diverse bioactivities, including antimicrobial, anticancer, antiviral, and immunomodulatory activities. The state-of-the-art green technologies for extraction and purification of MBPCs, along with the modern progress in the identification and characterization of MBPCs, have accelerated the discovery of novel active pharmaceutical compounds. However, several factors regulate the production of these bioactive phenolic compounds in microalgae. Furthermore, some microalgae species produce toxic phenolic compounds that negatively impact the aquatic ecosystem, animal, and human life. Therefore, the focus of this review paper is to bring into light the current innovations in bioprospection, extraction, purification, and characterization of MBPCs. This review is also aimed at a better understanding of the physicochemical factors regulating the production of MBPCs at an industrial scale. Finally, the present review covers the recent advances in toxicological evaluation, diverse applications, and future prospects of MBPCs in biopharmaceutical industries.
Collapse
Affiliation(s)
- Sahil Kapoor
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Botany, Goswami Ganesh Dutta S.D. College, Chandigarh, India
| | - Meenakshi Singh
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India.,Department of Ecology & Biodiversity, Terracon Ecotech Pvt. Ltd., Mumbai, Maharashtra, India
| | - Atul Srivastava
- Department of Botany, MS University of Baroda, Vadodara, Gujarat, India
| | - Murthy Chavali
- Office of the Dean (Research) & Department of Chemistry, Faculty of Science & Technology, Alliance University (Central Campus), Bengaluru, Karnataka, India.,NTRC-MCETRC and Aarshanano Composite Technologies Pvt. Ltd., Guntur, Andhra Pradesh, India
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, Republic of Korea
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory, Department of Microbiology, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
7
|
Jin H, Wang Y, Zhao P, Wang L, Zhang S, Meng D, Yang Q, Cheong LZ, Bi Y, Fu Y. Potential of Producing Flavonoids Using Cyanobacteria As a Sustainable Chassis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:12385-12401. [PMID: 34649432 DOI: 10.1021/acs.jafc.1c04632] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous plant secondary metabolites have remarkable impacts on both food supplements and pharmaceuticals for human health improvement. However, higher plants can only generate small amounts of these chemicals with specific temporal and spatial arrangements, which are unable to satisfy the expanding market demands. Cyanobacteria can directly utilize CO2, light energy, and inorganic nutrients to synthesize versatile plant-specific photosynthetic intermediates and organic compounds in large-scale photobioreactors with outstanding economic merit. Thus, they have been rapidly developed as a "green" chassis for the synthesis of bioproducts. Flavonoids, chemical compounds based on aromatic amino acids, are considered to be indispensable components in a variety of nutraceutical, pharmaceutical, and cosmetic applications. In contrast to heterotrophic metabolic engineering pioneers, such as yeast and Escherichia coli, information about the biosynthesis flavonoids and their derivatives is less comprehensive than that of their photosynthetic counterparts. Here, we review both benefits and challenges to promote cyanobacterial cell factories for flavonoid biosynthesis. With increasing concerns about global environmental issues and food security, we are confident that energy self-supporting cyanobacteria will attract increasing attention for the generation of different kinds of bioproducts. We hope that the work presented here will serve as an index and encourage more scientists to join in the relevant research area.
Collapse
Affiliation(s)
- Haojie Jin
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Yan Wang
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing 100191, P.R. China
| | - Pengquan Zhao
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Litao Wang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Su Zhang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Dong Meng
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Qing Yang
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| | - Ling-Zhi Cheong
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Science, Ningbo University, Ningbo 315211, China
| | - Yonghong Bi
- State Key Laboratory of Fresh Water Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430070, P.R. China
| | - Yujie Fu
- College of Forestry, Beijing Forestry University, Beijing 100083, P.R. China
| |
Collapse
|
8
|
Bagnato C, Nadal MS, Tobia D, Raineri M, Vasquez Mansilla M, Winkler EL, Zysler RD, Lima E. Reactive Oxygen Species in Emulated Martian Conditions and Their Effect on the Viability of the Unicellular Alga Scenedesmus dimorphus. ASTROBIOLOGY 2021; 21:692-705. [PMID: 33819428 DOI: 10.1089/ast.2020.2329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Formation of oxygen-based free radicals from photochemical decomposition of hydrogen peroxide (H2O2) on Mars may be a key factor in the potential survival of terrestrial-like organisms on the red planet. Martian conditions that generate reactive oxygen species involve the decomposition of H2O2 at temperatures of around 278 K under relatively high doses of C-band ultraviolet radiation (UVC). This process is further amplified by the presence of iron oxides and perchlorates. Photosynthetic organisms exhibit a number of evolutionary traits that allow them to withstand both oxidative stress and UVC radiation. Here, we examine the effect of free radicals produced by the decomposition of H2O2 under emulated martian conditions on the viability of Scenedesmus dimorphus, a unicellular alga that is resistant to UVC radiation and varying levels of perchlorate and H2O2, both of which are present on Mars. Identification and quantification of free radicals formed under these conditions were performed with Electron Paramagnetic Resonance spectroscopy. These results were correlated with the viability of S. dimorphus, and the formation of oxygen-based free radicals and survival of the alga were found to be strongly dependent on the amount of H2O2 available. For H2O2 amounts close to those present in the rarefied martian environment, the products of these catalytic reactions did not have a significant effect on the algal population growth curve.
Collapse
Affiliation(s)
- Carolina Bagnato
- Instituto de Energía y Desarrollo Sustentable (IEDS), CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Marcela S Nadal
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Dina Tobia
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Mariana Raineri
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Marcelo Vasquez Mansilla
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Elin L Winkler
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Roberto D Zysler
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Departamento de Física Médica, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Instituto Balseiro, CNEA-Universidad Nacional de Cuyo, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| | - Enio Lima
- Instituto de Nanociencia y Nanotecnología (INN), CNEA-CONICET, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
- Laboratorio de Resonancias Magnéticas, Gerencia de Física, CNEA, Centro Atómico Bariloche, San Carlos de Bariloche, Argentina
| |
Collapse
|
9
|
El-Sheekh MM, Alwaleed EA, Ibrahim A, Saber H. Detrimental effect of UV-B radiation on growth, photosynthetic pigments, metabolites and ultrastructure of some cyanobacteria and freshwater chlorophyta. Int J Radiat Biol 2020; 97:265-275. [PMID: 33196340 DOI: 10.1080/09553002.2021.1851060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Global warming directly influencing ozone layer depletion, which eventually is increasing ultraviolet radiation penetration having far-reaching impacts on living biota. This particularly influences the primary producer microalgae which are the basic unit of food webs in the aquatic habitats. Therefore, it is necessary to concentrate the research at this micro-level to understand the harmful impact of increased UV-B radiation ever before. Consequently, the present attempt aimed to focus on the influence of UV-B on growth criteria, photosynthetic pigments, some metabolites, and ultrastructure of the freshwater cyanobacteria, Planktothrix cryptovaginata (Microcoleaceae), Nostoc carneum (Nostocaceae), Microcystis aeruginosa (Microcystaceae), the Chlorophyte Scenedesmus acutus (Scenedesmaceae), and the marine Cyanobacterium Microcystis (Microcystaceae). METHODS The cultures of investigated algae were subjected directly to different duration periods (1, 3, 5, and 7 h) of artificial UV-B in addition to unirradiated control culture and allowed to grow for 10 days, after which the algal samples were analyzed for growth, photosynthetic activities, primary metabolities and cellular ultrastructure. RESULTS A remarkable inhibitory influence of UV-B was observed on growth criteria (measured as optical density and dry weight) and photosynthetic pigments of P. cryptovaginata, N. carneum, M. aeruginosa, S. acutus, and marine Microcystis. Where increasing the exposure time of UV-B was accompanied by increased inhibition. The variation in carbohydrate and protein contents under UV stress was based on the exposure periods and the algal species. The variation in algal ultrastructure by UV-B stress was noticed by an Electron Microscope. Cells damage and lysis, cell wall and cell membrane ruptured and release of intracellular substances, loss of cell inclusion, plasmolysis and necrosis, or apoptosis of the algal cells were observed by exposure to 7 h of UV-B. CONCLUSION Exposure to UV-B has a marked harmful impact on the growth, pigments, and metabolic activity, as well as the cellular ultrastructure of some cyanobacteria and chlorophytes.
Collapse
Affiliation(s)
| | - Eman A Alwaleed
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Aml Ibrahim
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| | - Hani Saber
- Botany and Microbiology Department, Faculty of Science, South Valley University, Qena, Egypt
| |
Collapse
|
10
|
Toranzo R, Ferraro G, Beligni MV, Perez GL, Castiglioni D, Pasquevich D, Bagnato C. Natural and acquired mechanisms of tolerance to chromium in a Scenedesmus dimorphus strain. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Keddar M, Ballesteros-Gómez A, Amiali M, Siles J, Zerrouki D, Martín M, Rubio S. Efficient extraction of hydrophilic and lipophilic antioxidants from microalgae with supramolecular solvents. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Antioxidant and Cytotoxic Effects on Tumor Cells of Exopolysaccharides From Tetraselmis suecica (Kylin) Butcher Grown Under Autotrophic and Heterotrophic Conditions. Mar Drugs 2020; 18:md18110534. [PMID: 33114784 PMCID: PMC7693365 DOI: 10.3390/md18110534] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/22/2020] [Accepted: 10/25/2020] [Indexed: 01/15/2023] Open
Abstract
Marine microalgae produce extracellular metabolites such as exopolysaccharides (EPS) with potentially beneficial biological applications to human health, especially antioxidant and antitumor properties, which can be increased with changes in crop trophic conditions. This study aimed to develop the autotrophic and heterotrophic culture of Tetraselmis suecica (Kylin) Butcher in order to increase EPS production and to characterize its antioxidant activity and cytotoxic effects on tumor cells. The adaptation of autotrophic to heterotrophic culture was carried out by progressively reducing the photoperiod and adding glucose. EPS extraction and purification were performed. EPS were characterized by Fourier-transform infrared spectroscopy and gas chromatography-mass spectrometry. The antioxidant capacity of EPS was analyzed by the 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) method, and the antitumor capacity was measured by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, showing high activity on human leukemia, breast and lung cancer cell lines. Although total EPS showed no cytotoxicity, acidic EPS showed cytotoxicity over the gingival fibroblasts cell line. Heterotrophic culture has advantages over autotrophic, such as increasing EPS yield, higher antioxidant capacity of the EPS and, to the best of our knowledge, this is the first probe that T. suecica EPS have cytotoxic effects on tumor cells; therefore, they could offer greater advantages as possible natural nutraceuticals for the pharmaceutical industry.
Collapse
|
13
|
Li S, Tao Y, Zhan XM, Dao GH, Hu HY. UV-C irradiation for harmful algal blooms control: A literature review on effectiveness, mechanisms, influencing factors and facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137986. [PMID: 32222502 DOI: 10.1016/j.scitotenv.2020.137986] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
UV-C irradiation has drawn much attention in recent years as a candidate for controlling harmful algal blooms (HABs). In this review, we have collated the recent knowledge about the UV-C irradiation technique for suppressing HABs, including the effectiveness, mechanisms, influencing factors, growth recovery pattern, and UV-C irradiation facilities. Most microalgal species have been proved to be effectively suppressed by UV-C irradiation and the suppression effects had positive correlation with UV-C dose. However, the effectiveness on difference algal species varied dramatically. The understanding for growth suppression mechanisms upon UV-C irradiation has been significantly deepened beyond pyrimidine dimers. The suppression effects on algal cell density were the results of UV-induced damage on nucleic acid, light harvesting and electron transfer and transportation, nitrogen fixation and assimilation, toxin synthesis, settle ability, antioxidative capacity and cellular membrane integrity. While several influencing factors, such as algal sensitivities, UV transmittance (UVT), salinity, pH, and microalgal growth recovery should be paid attention to in practical application. UV-C facilities with high maturity, especially flow-through reactors, make it possible to develop ship-born UV-C facilities and put UV-C irradiation technique into real practice on controlling HABs.
Collapse
Affiliation(s)
- Shang Li
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Yi Tao
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Xin-Min Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
14
|
Li S, Dao GH, Tao Y, Zhou J, Jiang HS, Xue YM, Yu WW, Yong XL, Hu HY. The growth suppression effects of UV-C irradiation on Microcystis aeruginosa and Chlorella vulgaris under solo-culture and co-culture conditions in reclaimed water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 713:136374. [PMID: 31955073 DOI: 10.1016/j.scitotenv.2019.136374] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 12/25/2019] [Accepted: 12/26/2019] [Indexed: 06/10/2023]
Abstract
Harmful algal blooms (HABs) are serious problems in landscape waters sourced from reclaimed water. In this study, the suppression effects of UV-C irradiation on microalgal growth were researched to find a possible preventive approach. Microcystis aeruginosa and Chlorella vulgaris were exposed to UV-C irradiation and then cultured in real reclaimed water for 7-18 d. UV-C irradiation at 50-200 mJ cm-2 could inhibit the growth of M. aeruginosa, C. vulgaris, and both microalgae in co-culture for 3-14, 1-3, and 1-5 d respectively. In addition, UV-C irradiation could cause damage to the cell integrity. At 100-200 mJ cm-2 UV-C, the proportion of microalgal membrane damage (Pmd) in M. aeruginosa cells increased rapidly to 56%-76% from day 3, whereas that in C. vulgaris cells increased to 23%-62% within 3 d. The photochemical efficiency (represented by Y value) of the irradiated groups was negatively affected immediately after UV-C irradiation and recovered gradually during the incubation. The Y value of M. aeruginosa cells began to recover from days 3 to 14, whereas that of C. vulgaris recovered much more quickly, from days 0.1 to 1. Overall, the irradiation-induced suppressive effects on algal growth correlated positively with the UV-C doses. Because M. aeruginosa was more sensitive to UV-C irradiation, UV-C irradiation not only controlled the total biomass of the mixed algae but also selectively reestablished the dominance of the nontoxic C. vulgaris.
Collapse
Affiliation(s)
- Shang Li
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China
| | - Guo-Hua Dao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Tao
- Key Laboratory of Microorganism Application and Risk Control (MARC) of Shenzhen, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| | - Ji Zhou
- Chengdu Xingrong Environmental Co., Ltd., Chengdu 610041, China
| | - Hai-Sha Jiang
- Chengdu Xingrong Environmental Co., Ltd., Chengdu 610041, China
| | - Yuan-Mei Xue
- Chengdu Xingrong Environmental Co., Ltd., Chengdu 610041, China
| | - Wen-Wen Yu
- Chengdu Xingrong Environmental Co., Ltd., Chengdu 610041, China
| | - Xiao-Lei Yong
- Chengdu Xingrong Environmental Co., Ltd., Chengdu 610041, China
| | - Hong-Ying Hu
- Shenzhen Environmental Science and New Energy Technology Engineering Laboratory, Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China; Environmental Simulation and Pollution Control State Key Joint Laboratory, State Environmental Protection Key Laboratory of Microorganism Application and Risk Control (SMARC), School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
15
|
Haoujar I, Cacciola F, Abrini J, Mangraviti D, Giuffrida D, Oulad El Majdoub Y, Kounnoun A, Miceli N, Fernanda Taviano M, Mondello L, Rigano F, Skali Senhaji N. The Contribution of Carotenoids, Phenolic Compounds, and Flavonoids to the Antioxidative Properties of Marine Microalgae Isolated from Mediterranean Morocco. Molecules 2019; 24:molecules24224037. [PMID: 31703456 PMCID: PMC6891583 DOI: 10.3390/molecules24224037] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/20/2022] Open
Abstract
This study aimed to investigate the potential of four sea water microalgae, isolated and cultivated at M′diq Bay in Morocco, as a new source of natural antioxidants. These microalgae belong to different classes, including Phaedactylium tricornitum (Bacillariophyceae), Nannochloropsis gaditana (Eustigmatophyceae), Nannochloris sp (Trebouxiophyceae), and Tetraselmis suecica (Chlorodendrophycea). The antioxidant properties were screened by the use of in vitro assays, namely 2,2-difenil-1-picrylhydrazyl, Ferric reducing antioxidant power, and Ferrous ions chelating activity, and compoundidentification was carried out in methanol and acetone extracts of both dried and fresh microalgae biomass by HPLC–PDA–MS analysis. Among the investigated microalgae, Phaedactylium tricornutum was the richest one regarding its carotenoid (especially all-E-fucoxanthin) and phenolic (especially protocatechuic acid) contents, as well as antioxidant activity (65.5%), followed by Nannochloris sp, Tetraselmis suicica, and Nannochloropsis gaditana, with antioxidant activity of 56.8%, 54.9%, and 51.1%, respectively.
Collapse
Affiliation(s)
- Imane Haoujar
- Laboratory of Microbiology and Applied Biotechnology, Department of Biology, Faculty of Sciences of Tetouan, Abd Al-Malek Essaadi University, Tetouan 93000, Morocco; (J.A.); (A.K.); (N.S.S.)
- Correspondence: (I.H.); (F.C.); Tel.: +21-262-422-8056 (I.H.); +39-090-676-6570 (F.C.)
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98166 Messina, Italy;
- Correspondence: (I.H.); (F.C.); Tel.: +21-262-422-8056 (I.H.); +39-090-676-6570 (F.C.)
| | - Jamal Abrini
- Laboratory of Microbiology and Applied Biotechnology, Department of Biology, Faculty of Sciences of Tetouan, Abd Al-Malek Essaadi University, Tetouan 93000, Morocco; (J.A.); (A.K.); (N.S.S.)
| | - Domenica Mangraviti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.M.); (Y.O.E.M.); (M.F.T.); (L.M.)
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98166 Messina, Italy;
| | - Yassine Oulad El Majdoub
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.M.); (Y.O.E.M.); (M.F.T.); (L.M.)
- Laboratory of Plant Biotechnologies and Molecular Biology, Department of Biology, Faculty of Sciences of Meknes, Moulay Ismail University, Meknes 50000, Morocco
| | - Ayoub Kounnoun
- Laboratory of Microbiology and Applied Biotechnology, Department of Biology, Faculty of Sciences of Tetouan, Abd Al-Malek Essaadi University, Tetouan 93000, Morocco; (J.A.); (A.K.); (N.S.S.)
| | - Natalizia Miceli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.M.); (Y.O.E.M.); (M.F.T.); (L.M.)
| | - Maria Fernanda Taviano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.M.); (Y.O.E.M.); (M.F.T.); (L.M.)
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (D.M.); (Y.O.E.M.); (M.F.T.); (L.M.)
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
- BeSeps.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Francesca Rigano
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy;
| | - Nadia Skali Senhaji
- Laboratory of Microbiology and Applied Biotechnology, Department of Biology, Faculty of Sciences of Tetouan, Abd Al-Malek Essaadi University, Tetouan 93000, Morocco; (J.A.); (A.K.); (N.S.S.)
| |
Collapse
|
16
|
Pereira MIB, Chagas BME, Sassi R, Medeiros GF, Aguiar EM, Borba LHF, Silva EPE, Neto JCA, Rangel AHN. Mixotrophic cultivation of Spirulina platensis in dairy wastewater: Effects on the production of biomass, biochemical composition and antioxidant capacity. PLoS One 2019; 14:e0224294. [PMID: 31648264 PMCID: PMC6812818 DOI: 10.1371/journal.pone.0224294] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 10/09/2019] [Indexed: 11/30/2022] Open
Abstract
Mixotrophic cultivation of microalgae provides a very promising alternative for producing carbohydrate-rich biomass to convert into bioethanol and value-added biocompounds, such as vitamins, pigments, proteins, lipids and antioxidant compounds. Spirulina platensis may present high yields of biomass and carbohydrates when it is grown under mixotrophic conditions using cheese whey. However, there are no previous studies evaluating the influence of this culture system on the profile of fatty acids or antioxidant compounds of this species, which are extremely important for food and pharmaceutical applications and would add value to the cultivation process. S. platensis presented higher specific growth rates, biomass productivity and carbohydrate content under mixotrophic conditions; however, the antioxidant capacity and the protein and lipid content were lower than that of the autotrophic culture. The maximum biomass yield was 2.98 ±0.07 g/L in growth medium with 5.0% whey. The phenolic compound concentration was the same for the biomass obtained under autotrophic and mixotrophic conditions with 2.5% and 5.0% whey. The phenolic compound concentrations showed no significant differences except for that in the growth medium with 10.0% whey, which presented an average value of 22.37±0.14 mg gallic acid/g. Mixotrophic cultivation of S. platensis using whey can be considered a viable alternative to reduce the costs of producing S. platensis biomass and carbohydrates, shorten cultivation time and produce carbohydrates, as it does not require adding expensive chemical nutrients to the growth medium and also takes advantage of cheese whey, an adverse dairy industry byproduct.
Collapse
Affiliation(s)
- Maria I. B. Pereira
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Bruna M. E. Chagas
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Roberto Sassi
- Department of Systematic Ecology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Guilherme F. Medeiros
- Department of Oceanography and Limnology, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Emerson M. Aguiar
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Luiz H. F. Borba
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Emanuelle P. E. Silva
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Júlio C. Andrade Neto
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| | - Adriano H. N. Rangel
- Agricultural School of Jundiaí, Federal University of Rio Grande do Norte, Natal, RN, Brazil
| |
Collapse
|
17
|
Matos J, Cardoso CL, Falé P, Afonso CM, Bandarra NM. Investigation of nutraceutical potential of the microalgae
Chlorella vulgaris
and
Arthrospira platensis. Int J Food Sci Technol 2019. [DOI: 10.1111/ijfs.14278] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Joana Matos
- Division of Aquaculture and Upgrading (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Rua Alfredo Magalhães Ramalho, 6 Lisbon 1495‐006 Portugal
- Faculdade de Ciências da Universidade de Lisboa Campo Grande, 16 Lisbon 1749‐016 Portugal
| | - Carlos L. Cardoso
- Division of Aquaculture and Upgrading (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Rua Alfredo Magalhães Ramalho, 6 Lisbon 1495‐006 Portugal
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto Rua dos Bragas 289 Porto4050‐123Portugal
| | - Pedro Falé
- Faculdade de Ciências da Universidade de Lisboa Campo Grande, 16 Lisbon 1749‐016 Portugal
| | - Cláudia M. Afonso
- Division of Aquaculture and Upgrading (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Rua Alfredo Magalhães Ramalho, 6 Lisbon 1495‐006 Portugal
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto Rua dos Bragas 289 Porto4050‐123Portugal
| | - Narcisa M. Bandarra
- Division of Aquaculture and Upgrading (DivAV) Portuguese Institute for the Sea and Atmosphere (IPMA, IP) Rua Alfredo Magalhães Ramalho, 6 Lisbon 1495‐006 Portugal
- CIIMAR Interdisciplinary Centre of Marine and Environmental Research University of Porto Rua dos Bragas 289 Porto4050‐123Portugal
| |
Collapse
|
18
|
Smerilli A, Balzano S, Maselli M, Blasio M, Orefice I, Galasso C, Sansone C, Brunet C. Antioxidant and Photoprotection Networking in the Coastal Diatom Skeletonema marinoi. Antioxidants (Basel) 2019; 8:E154. [PMID: 31159429 PMCID: PMC6617368 DOI: 10.3390/antiox8060154] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022] Open
Abstract
Little is known on the antioxidant activity modulation in microalgae, even less in diatoms. Antioxidant molecule concentrations and their modulation in microalgae has received little attention and the interconnection between light, photosynthesis, photoprotection, and antioxidant network in microalgae is still unclear. To fill this gap, we selected light as external forcing to drive physiological regulation and acclimation in the costal diatom Skeletonema marinoi. We investigated the role of light regime on the concentration of ascorbic acid, phenolic compounds and among them flavonoids and their connection with photoprotective mechanisms. We compared three high light conditions, differing in either light intensity or wave distribution, with two low light conditions, differing in photoperiod, and a prolonged darkness. The change in light distribution, from sinusoidal to square wave distribution was also investigated. Results revealed a strong link between photoprotection, mainly relied on xanthophyll cycle operation, and the antioxidant molecules and activity modulation. This study paves the way for further investigation on the antioxidant capacity of diatoms, which resulted to be strongly forced by light conditions, also in the view of their potential utilization in nutraceuticals or new functional cosmetic products.
Collapse
Affiliation(s)
- Arianna Smerilli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
| | - Sergio Balzano
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
| | - Maira Maselli
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
- Department of Biology, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Martina Blasio
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
| | - Christian Galasso
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
| | - Clementina Sansone
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
| | - Christophe Brunet
- Stazione Zoologica Anton Dohrn, Istituto Nazionale di Biologia, Ecologia e Biotecnologie marine, Villa Comunale, 80121 Napoli, Italy.
| |
Collapse
|
19
|
Kang JW, Kang DH. The Synergistic Bactericidal Mechanism of Simultaneous Treatment with a 222-Nanometer Krypton-Chlorine Excilamp and a 254-Nanometer Low-Pressure Mercury Lamp. Appl Environ Microbiol 2019; 85:e01952-18. [PMID: 30315076 PMCID: PMC6293110 DOI: 10.1128/aem.01952-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to investigate the synergistic bactericidal effect of 222-nm KrCl excilamp and 254-nm low-pressure (LP) Hg lamp simultaneous treatment against Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium, and Listeria monocytogenes in tap water and to identify the synergistic bactericidal mechanism. Sterilized tap water inoculated with pathogens was treated individually or simultaneously with a 254-nm LP Hg lamp or 222-nm KrCl excilamp. Overall, for all pathogens, an additional reduction was found compared to the sum of the log unit reductions of the individual treatments resulting from synergy in the simultaneous treatment with both kinds of lamps. In order to identify the mechanism of this synergistic bactericidal action, the form and cause of membrane damage were analyzed. Total reactive oxygen species (ROS) and superoxide generation as well as the activity of ROS defense enzymes then were measured, and the overall mechanism was described as follows. When the 222-nm KrCl excilamp and the 254-nm LP Hg lamp were treated simultaneously, inactivation of ROS defense enzymes by the 222-nm KrCl excilamp induced additional ROS generation following exposure to 254-nm LP Hg lamp (synergistic) generation, resulting in synergistic lipid peroxidation in the cell membrane. As a result, there was a synergistic increase in cell membrane permeability leading to a synergistic bactericidal effect. This identification of the fundamental mechanism of the combined disinfection system of the 222-nm KrCl excilamp and 254-nm LP Hg lamp, which exhibited a synergistic bactericidal effect, can provide important baseline data for further related studies or industrial applications in the future.IMPORTANCE Contamination of pathogenic microorganisms in water plays an important role in inducing outbreaks of food-borne illness by causing cross-contamination in foods. Thus, proper disinfection of water before use in food production is essential to prevent outbreaks of food-borne illness. As technologies capable of selecting UV radiation wavelengths (such as UV-LEDs and excilamps) have been developed, wavelength combination treatment with UV radiation, which is widely used in water disinfection systems, is actively being studied. In this regard, we have confirmed synergistic bactericidal effects in combination with 222-nm and 254-nm wavelengths and have identified mechanisms for this. This study clearly analyzed the mechanism of synergistic bactericidal effect by wavelength combination treatment, which has not been attempted in other studies. Therefore, it is also expected that these results will play an important role as baseline data for future research on, as well as industrial applications for, the disinfection strategy of effective wavelength combinations.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|
20
|
Gnouma A, Sehli E, Medhioub W, Ben Dhieb R, Masri M, Mehlmer N, Slimani W, Sebai K, Zouari A, Brück T, Medhioub A. Strain selection of microalgae isolated from Tunisian coast: characterization of the lipid profile for potential biodiesel production. Bioprocess Biosyst Eng 2018; 41:1449-1459. [DOI: 10.1007/s00449-018-1973-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 06/22/2018] [Indexed: 12/27/2022]
|
21
|
Chokshi K, Pancha I, Ghosh A, Mishra S. Nitrogen starvation-induced cellular crosstalk of ROS-scavenging antioxidants and phytohormone enhanced the biofuel potential of green microalga Acutodesmus dimorphus. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:60. [PMID: 28293290 PMCID: PMC5345260 DOI: 10.1186/s13068-017-0747-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 03/01/2017] [Indexed: 05/08/2023]
Abstract
BACKGROUND Microalgae accumulate a considerable amount of lipids and carbohydrate under nutrient-deficient conditions, which makes them one of the promising sustainable resources for biofuel production. In the present study, to obtain the biomass with higher lipid and carbohydrate contents, we implemented a short-term nitrogen starvation of 1, 2, and 3 days in a green microalga Acutodesmus dimorphus. Few recent reports suggest that oxidative stress-tolerant microalgae are highly efficient for biofuel production. To study the role of oxidative stress due to nitrogen deficiency, responses of various stress biomarkers like reactive oxygen species (ROS), cellular enzymatic antioxidants superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and non-enzymatic scavengers proline and polyphenols were also evaluated. Further, the endogenous levels of phytohormones abscisic acid (ABA) and indole-3-acetic acid (IAA) were also determined to study their response to nitrogen deficiency. RESULTS We observed that nitrogen starvation of 2 days is effective to produce biomass containing 29.92% of lipid (comprising about 75% of neutral lipid) and 34.80% of carbohydrate, which is significantly higher (about 23 and 64%, respectively) than that of the control culture. Among all nitrogen-starved cultures, the accumulations of ROS were lower in 2 days starved culture, which can be linked with the several folds higher activities of SOD and CAT in this culture. The accumulations of proline and total polyphenols were also significantly higher (about 4.7- and 1.7-folds, respectively, than that of the control) in 2 days nitrogen-starved culture. The levels of phytohormones once decreased significantly after 1 day, increased continuously up to 3 days of nitrogen starvation. CONCLUSION The findings of the present study highlight the interaction of nitrogen starvation-induced oxidative stress with the signaling involved in the growth and development of microalga. The study presents a comprehensive picture of the adaptive mechanisms of the cells from a physiological perspective along with providing the strategy to improve the biofuel potential of A. dimorphus through a short-term nitrogen starvation.
Collapse
Affiliation(s)
- Kaumeel Chokshi
- Division of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
| | - Imran Pancha
- Division of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, 226-8503 Japan
| | - Arup Ghosh
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Division of Plant Omics, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
| | - Sandhya Mishra
- Division of Salt & Marine Chemicals, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
- Academy of Scientific & Innovative Research (AcSIR), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat 364002 India
| |
Collapse
|
22
|
Smerilli A, Orefice I, Corato F, Gavalás Olea A, Ruban AV, Brunet C. Photoprotective and antioxidant responses to light spectrum and intensity variations in the coastal diatomSkeletonema marinoi. Environ Microbiol 2016; 19:611-627. [DOI: 10.1111/1462-2920.13545] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/09/2016] [Accepted: 09/22/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Arianna Smerilli
- Stazione Zoologica Anton Dohrn; Villa Comunale Napoli 80121 Italy
| | - Ida Orefice
- Stazione Zoologica Anton Dohrn; Villa Comunale Napoli 80121 Italy
| | - Federico Corato
- Stazione Zoologica Anton Dohrn; Villa Comunale Napoli 80121 Italy
| | - Antonio Gavalás Olea
- Instituto de Investigaciones Marinas CSIC; Av. Eduardo Cabello 6 Vigo 36208 Spain
| | - Alexander V. Ruban
- School of Biological and Chemical Sciences; Queen Mary University of London; Mile End Road London E1 4NS United Kingdom
| | | |
Collapse
|
23
|
Kula M, Rys M, Saja D, Tys J, Skoczowski A. Far-red dependent changes in the chemical composition ofSpirulina platensis. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Monika Kula
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Magdalena Rys
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Diana Saja
- The Franciszek Górski Institute of Plant Physiology; Polish Academy of Sciences; Cracow Poland
| | - Jerzy Tys
- The Bohdan Dobrzański Institute of Agrophysics of the Polish Academy of Sciences; Lublin Poland
| | | |
Collapse
|
24
|
Maadane A, Merghoub N, Ainane T, El Arroussi H, Benhima R, Amzazi S, Bakri Y, Wahby I. Antioxidant activity of some Moroccan marine microalgae: Pufa profiles, carotenoids and phenolic content. J Biotechnol 2015; 215:13-9. [PMID: 26113214 DOI: 10.1016/j.jbiotec.2015.06.400] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/04/2015] [Accepted: 06/16/2015] [Indexed: 11/16/2022]
Abstract
In order to promote Moroccan natural resources, this study aims to evaluate the potential of microalgae isolated from Moroccan coastlines, as new source of natural antioxidants. Different extracts (ethanolic, ethanol/water and aqueous) obtained from 9 microalgae strains were screened for their in vitro antioxidant activity using DPPH free radical-scavenging assay. The highest antioxidant potentials were obtained in Dunalliela sp., Tetraselmis sp. and Nannochloropsis gaditana extracts. The obtained results indicate that ethanol extract of all microalgae strains exhibit higher antioxidant activity, when compared to water and ethanol/water extracts. Therefore, total phenolic and carotenoid content measurement were performed in active ethanol extracts. The PUFA profiles of ethanol extracts were also determined by GC/MS analysis. The studied microalgae strains displayed high PUFA content ranging from 12.9 to 76.9 %, total carotenoids content varied from 1.9 and 10.8mg/g of extract and total polyphenol content varied from 8.1 to 32.0mg Gallic acid Equivalent/g of extract weight. The correlation between the antioxidant capacities and the phenolic content and the carotenoids content were found to be insignificant, indicating that these compounds might not be major contributor to the antioxidant activity of these microalgae. The microalgae extracts exerting the high antioxidant activity are potential new source of natural antioxidants.
Collapse
Affiliation(s)
- Amal Maadane
- Green Biotechnology Center, MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research) Rabat Design Center, Rabat, Morocco; Laboratory of Biochemistry-Immunology, Sciences Faculty-University Mohammed V of Rabat, Morocco
| | - Nawal Merghoub
- Green Biotechnology Center, MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research) Rabat Design Center, Rabat, Morocco.
| | - Tarik Ainane
- Green Biotechnology Center, MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research) Rabat Design Center, Rabat, Morocco
| | - Hicham El Arroussi
- Green Biotechnology Center, MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research) Rabat Design Center, Rabat, Morocco
| | - Redouane Benhima
- Green Biotechnology Center, MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research) Rabat Design Center, Rabat, Morocco
| | - Saaid Amzazi
- Laboratory of Biochemistry-Immunology, Sciences Faculty-University Mohammed V of Rabat, Morocco
| | - Youssef Bakri
- Laboratory of Biochemistry-Immunology, Sciences Faculty-University Mohammed V of Rabat, Morocco
| | - Imane Wahby
- Green Biotechnology Center, MAScIR (Moroccan Foundation for Advanced Science, Innovation & Research) Rabat Design Center, Rabat, Morocco
| |
Collapse
|
25
|
Microalgae for the prevention of cardiovascular disease and stroke. Life Sci 2015; 125:32-41. [DOI: 10.1016/j.lfs.2014.09.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 02/07/2023]
|
26
|
Kumar J, Dhar P, Tayade AB, Gupta D, Chaurasia OP, Upreti DK, Toppo K, Arora R, Suseela MR, Srivastava RB. Chemical composition and biological activities of trans-Himalayan alga Spirogyra porticalis (Muell.) Cleve. PLoS One 2015; 10:e0118255. [PMID: 25693168 PMCID: PMC4333294 DOI: 10.1371/journal.pone.0118255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 12/25/2014] [Indexed: 12/15/2022] Open
Abstract
The freshwater alga Spirogyra porticalis (Muell.) Cleve, a filamentous charophyte, collected from the Indian trans-Himalayan cold desert, was identified on the basis of morpho-anatomical characters. Extracts of this alga were made using solvents of varying polarity viz. n-hexane, acetonitrile, methanol and water. The antioxidant capacities and phenolic profile of the extracts were estimated. The methanol extract showing highest antioxidant capacity and rich phenolic attributes was further investigated and phytochemical profiling was conducted by gas chromatography-mass spectrometry (GC/MS) hyphenated technique. The cytotoxic activity of methanol extract was evaluated on human hepatocellular carcinoma HepG2 and colon carcinoma RKO cell lines. The anti-hypoxic effect of methanol extract of the alga was tested on in vivo animal system to confirm its potential to ameliorate oxidative stress. The antioxidant assays viz. ferric reducing antioxidant power (FRAP), 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 1,1-diphenyl-2-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging capacities, β-carotene-linoleic acid bleaching property and lipid peroxidation exhibited analogous results, wherein the algal extracts showed significantly high antioxidant potential. The extracts were also found to possess high content of total proanthocyanidin, flavonoid and polyphenol. GC/MS analysis revealed the presence of thirteen chemotypes in the methanol extract representing different phytochemical groups like fatty acid esters, sterols, unsaturated alcohols, alkynes etc. with substantial phyto-pharmaceutical importance. The methanol extract was observed to possess anticancer activity as revealed from studies on HepG2 and RKO cell lines. In the present study, S. porticalis methanol extract also provided protection from hypoxia-induced oxidative stress and accelerated the onset of adaptative changes in rats during exposure to hypobaric hypoxia. The bioactive phytochemicals present in this trans-Himalayan alga are of enormous interest and can be utilized sustainably for discovery of novel drugs against oxidative stress.
Collapse
Affiliation(s)
- Jatinder Kumar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Priyanka Dhar
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Amol B. Tayade
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Damodar Gupta
- Medicinal and Aromatic Plants Laboratory, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig S. K. Mazumdar Marg, Delhi, India
| | - Om P. Chaurasia
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| | - Dalip K. Upreti
- National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Kiran Toppo
- National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Rajesh Arora
- Medicinal and Aromatic Plants Laboratory, Radiation Biotechnology Group, Institute of Nuclear Medicine and Allied Sciences, Defence Research and Development Organisation, Brig S. K. Mazumdar Marg, Delhi, India
- Office of the Director General-Life Sciences, DRDO Bhawan, Rajaji Marg, New Delhi, India
| | - M. R. Suseela
- National Botanical Research Institute, Rana Pratap Marg, Lucknow, Uttar Pradesh, India
| | - Ravi B. Srivastava
- Defence Institute of High Altitude Research, Defence Research & Development Organisation, Leh-Ladakh, Jammu & Kashmir, India
| |
Collapse
|
27
|
Goiris K, Van Colen W, Wilches I, León-Tamariz F, De Cooman L, Muylaert K. Impact of nutrient stress on antioxidant production in three species of microalgae. ALGAL RES 2015. [DOI: 10.1016/j.algal.2014.12.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Shetty V, Sibi G. Relationship Between Total Phenolics Content and Antioxidant Activities of Microalgae Under Autotrophic, Heterotrophic and Mixotrophic Growth. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/jfrs.2015.1.9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Xi H, Ma L, Liu G, Wang N, Wang J, Wang L, Dai Z, Li S, Wang L. Transcriptomic analysis of grape (Vitis vinifera L.) leaves after exposure to ultraviolet C irradiation. PLoS One 2014; 9:e113772. [PMID: 25464056 PMCID: PMC4252036 DOI: 10.1371/journal.pone.0113772] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 10/29/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Only a small amount of solar ultraviolet C (UV-C) radiation reaches the Earth's surface. This is because of the filtering effects of the stratospheric ozone layer. Artificial UV-C irradiation is used on leaves and fruits to stimulate different biological processes in plants. Grapes are a major fruit crop and are grown in many parts of the world. Research has shown that UV-C irradiation induces the biosynthesis of phenols in grape leaves. However, few studies have analyzed the overall changes in gene expression in grape leaves exposed to UV-C. METHODOLOGY/PRINCIPAL FINDINGS In the present study, transcriptional responses were investigated in grape (Vitis vinifera L.) leaves before and after exposure to UV-C irradiation (6 W·m-2 for 10 min) using an Affymetrix Vitis vinifera (Grape) Genome Array (15,700 transcripts). A total of 5274 differentially expressed probe sets were defined, including 3564 (67.58%) probe sets that appeared at both 6 and 12 h after exposure to UV-C irradiation but not before exposure. A total of 468 (8.87%) probe sets and 1242 (23.55%) probe sets were specifically expressed at these times. The probe sets were associated with a large number of important traits and biological pathways, including cell rescue (i.e., antioxidant enzymes), protein fate (i.e., HSPs), primary and secondary metabolism, and transcription factors. Interestingly, some of the genes involved in secondary metabolism, such as stilbene synthase, responded intensely to irradiation. Some of the MYB and WRKY family transcription factors, such as VvMYBPA1, VvMYB14, VvMYB4, WRKY57-like, and WRKY 65, were also strongly up-regulated (about 100 to 200 fold). CONCLUSIONS UV-C irridiation has an important role in some biology processes, especially cell rescue, protein fate, secondary metabolism, and regulation of transcription.These results opened up ways of exploring the molecular mechanisms underlying the effects of UV-C irradiation on grape leaves and have great implications for further studies.
Collapse
Affiliation(s)
- Huifen Xi
- Key Laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Ling Ma
- Key Laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Guotian Liu
- Key Laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Nian Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R.China
| | - Junfang Wang
- Key Laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
- University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Lina Wang
- Key Laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R.China
| | - Zhanwu Dai
- INRA, ISVV, UMR 1287 EGFV, Villenave d'Ornon, France
| | - Shaohua Li
- Key Laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, P.R.China
| | - Lijun Wang
- Key Laboratory of Plant Resources and Beijing Key Laboratory of Grape Science and Enology, Institute of Botany, the Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
30
|
Wase N, Pham TK, Ow SY, Wright PC. Quantitative analysis of UV-A shock and short term stress using iTRAQ, pseudo selective reaction monitoring (pSRM) and GC-MS based metabolite analysis of the cyanobacterium Nostoc punctiforme ATCC 29133. J Proteomics 2014; 109:332-55. [DOI: 10.1016/j.jprot.2014.06.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 06/11/2014] [Accepted: 06/22/2014] [Indexed: 11/29/2022]
|
31
|
Goiris K, Muylaert K, Voorspoels S, Noten B, De Paepe D, E Baart GJ, De Cooman L. Detection of flavonoids in microalgae from different evolutionary lineages. JOURNAL OF PHYCOLOGY 2014; 50:483-92. [PMID: 26988321 DOI: 10.1111/jpy.12180] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 02/09/2014] [Indexed: 05/08/2023]
Abstract
Flavonoids are important secondary plant metabolites believed to be present mainly in land plants. As phenolics were detected previously in microalgae using photometric assays, we wanted to investigate the nature of these phenolics and verify whether flavonoids are present. Therefore, in this study, we used state-of-the-art ultra-high performance liquid chromatography-two-dimensional mass spectrometry (UHPLC-MS/MS) technology to investigate whether microalgae also contain flavonoids. For this, representative microalgal biomass samples from divergent evolutionary lineages (Cyanobacteria, Rhodophyta, Chlorophyta, Haptophyta, Ochrophyta) were screened for a set of carefully selected precursors, intermediates, and end products of the flavonoid biosynthesis pathways. Our data unequivocally showed that microalgae contain a wide range of flavonoids and thus must possess the enzyme pool required for their biosynthesis. Further, some of the microalgae displayed an intricate flavonoid pattern that is compatible with the established basic flavonoid pathway as observed in higher plants. This implies that the flavonoid biosynthesis pathway arose much earlier in evolution compared to what is generally accepted.
Collapse
Affiliation(s)
- Koen Goiris
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), KAHO Sint-Lieven, KU Leuven, Gebroeders De Smetstraat 1, Gent, 9000, Belgium
- Research Unit Aquatic Biology, KU Leuven Kulak, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Koenraad Muylaert
- Research Unit Aquatic Biology, KU Leuven Kulak, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Stefan Voorspoels
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Bart Noten
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
| | - Domien De Paepe
- Separation and Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, Mol, 2400, Belgium
- Technology and Food Science Unit (T&V), Institute for Agricultural and Fisheries Research (ILVO), Burgemeester Van Gansberghelaan 115, Merelbeke, 9820, Belgium
| | - Gino J E Baart
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG) and Leuven Institute for Beer Research (LIBR), VIB Laboratory for Systems Biology, KU Leuven, Gaston Geenslaan 1, Leuven, 3001, Belgium
| | - Luc De Cooman
- Faculty of Engineering Technology, Department of Microbial and Molecular Systems (M2S), Cluster for Bioengineering Technology (CBeT), Laboratory of Enzyme, Fermentation and Brewing Technology (EFBT), KAHO Sint-Lieven, KU Leuven, Gebroeders De Smetstraat 1, Gent, 9000, Belgium
| |
Collapse
|
32
|
Ryckebosch E, Bruneel C, Termote-Verhalle R, Lemahieu C, Muylaert K, Van Durme J, Goiris K, Foubert I. Stability of omega-3 LC-PUFA-rich photoautotrophic microalgal oils compared to commercially available omega-3 LC-PUFA oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10145-10155. [PMID: 24111711 DOI: 10.1021/jf402296s] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Microalgae are the primary producers of omega-3 LC-PUFA, which are known for their health benefits. Their oil may thus be a potential alternative for fish oil. However, oxidative and hydrolytic stability of omega-3 LC-PUFA oils are important parameters. The purpose of this work was therefore to evaluate these parameters in oils from photoautotrophic microalgae (Isochrysis, Phaeodactylum, Nannochloropsis gaditana, and Nannochloropsis sp.) obtained with hexane/isopropanol (HI) and hexane (H) and compare them with commercial omega-3 LC-PUFA oils. When the results of both the primary and secondary oxidation parameters were put together, it was clear that fish, tuna, and heterotrophic microalgae oil are the least oxidatively stable oils, whereas krill oil and the microalgae oils performed better. The microalgal HI oils were shown to be more oxidatively stable than the microalgal H oils. The hydrolytic stability was shown not to be a problem during the storage of any of the oils.
Collapse
Affiliation(s)
- Eline Ryckebosch
- KU Leuven Kulak, Research Unit Food and Lipids, Department of Molecular and Microbial Systems Kulak, , Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Santos AL, Moreirinha C, Lopes D, Esteves AC, Henriques I, Almeida A, Domingues MRM, Delgadillo I, Correia A, Cunha A. Effects of UV radiation on the lipids and proteins of bacteria studied by mid-infrared spectroscopy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6306-6315. [PMID: 23692317 DOI: 10.1021/es400660g] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Knowledge of the molecular effects of UV radiation (UVR) on bacteria can contribute to a better understanding of the environmental consequences of enhanced UV levels associated with global climate changes and will help to optimize UV-based disinfection strategies. In the present work, the effects of exposure to UVR in different spectral regions (UVC, 100-280 nm; UVB, 280-320 nm; and UVA, 320-400 nm) on the lipids and proteins of two bacterial strains ( Acinetobacter sp. strain PT5I1.2G and Pseudomonas sp. strain NT5I1.2B) with distinct UV sensitivities were studied by mid-infrared spectroscopy. Exposure to UVR caused an increase in methyl groups associated with lipids, lipid oxidation, and also led to alterations in lipid composition, which were confirmed by gas chromatography. Additionally, mid-infrared spectroscopy revealed the effects of UVR on protein conformation and protein composition, which were confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), oxidative damage to amino acids, and changes in the propionylation, glycosylation and/or phosphorylation status of cell proteins. Differences in the targets of UVR in the two strains tested were identified and may explain their discrepant UV sensitivities. The significance of the results is discussed from an ecological standpoint and with respect to potential improvements in UV-based disinfection technologies.
Collapse
Affiliation(s)
- Ana L Santos
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Cirulis JT, Scott JA, Ross GM. Management of oxidative stress by microalgae. Can J Physiol Pharmacol 2013; 91:15-21. [PMID: 23368282 DOI: 10.1139/cjpp-2012-0249] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of this review is to provide an overview of the current research on oxidative stress in eukaryotic microalgae and the antioxidant compounds microalgae utilize to control oxidative stress. With the potential to exploit microalgae for the large-scale production of antioxidants, interest in how microalgae manage oxidative stress is growing. Microalgae can experience increased levels of oxidative stress and toxicity as a result of environmental conditions, metals, and chemicals. The defence mechanisms for microalgae include antioxidant enzymes such as superoxide dismutase, catalase, peroxidases, and glutathione reductase, as well as non-enzymatic antioxidant molecules such as phytochelatins, pigments, polysaccharides, and polyphenols. Discussed herein are the 3 areas the literature has focused on, including how conditions stress microalgae and how microalgae respond to oxidative stress by managing reactive oxygen species. The third area is how beneficial microalgae antioxidants are when administered to cancerous mammalian cells or to rodents experiencing oxidative stress.
Collapse
Affiliation(s)
- Judith T Cirulis
- Medical Sciences, Northern Ontario School of Medicine, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON P3E 2C6, Canada
| | | | | |
Collapse
|
35
|
Pichrtová M, Remias D, Lewis LA, Holzinger A. Changes in phenolic compounds and cellular ultrastructure of arctic and antarctic strains of Zygnema (Zygnematophyceae, Streptophyta) after exposure to experimentally enhanced UV to PAR ratio. MICROBIAL ECOLOGY 2013; 65:68-83. [PMID: 22903087 PMCID: PMC3541927 DOI: 10.1007/s00248-012-0096-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 07/16/2012] [Indexed: 05/07/2023]
Abstract
Ultraviolet (UV) radiation has become an important stress factor in polar regions due to anthropogenically induced ozone depletion. Although extensive research has been conducted on adaptations of polar organisms to this stress factor, few studies have focused on semi-terrestrial algae so far, in spite of their apparent vulnerability. This study investigates the effect of UV on two semi-terrestrial arctic strains (B, G) and one Antarctic strain (E) of the green alga Zygnema, isolated from Arctic and Antarctic habitats. Isolates of Zygnema were exposed to experimentally enhanced UV A and B (predominant UV A) to photosynthetic active radiation (PAR) ratio. The pigment content, photosynthetic performance and ultrastructure were studied by means of high-performance liquid chromatography (HPLC), chlorophyll a fluorescence and transmission electron microscopy (TEM). In addition, phylogenetic relationships of the investigated strains were characterised using rbcL sequences, which determined that the Antarctic isolate (E) and one of the Arctic isolates (B) were closely related, while G is a distinct lineage. The production of protective phenolic compounds was confirmed in all of the tested strains by HPLC analysis for both controls and UV-exposed samples. Moreover, in strain E, the content of phenolics increased significantly (p = 0.001) after UV treatment. Simultaneously, the maximum quantum yield of photosystem II photochemistry significantly decreased in UV-exposed strains E and G (p < 0.001), showing a clear stress response. The phenolics were most probably stored at the cell periphery in vacuoles and cytoplasmic bodies that appear as electron-dense particles when observed by TEM after high-pressure freeze fixation. While two strains reacted moderately on UV exposure in their ultrastructure, in strain G, damage was found in chloroplasts and mitochondria. Plastidal pigments and xanthophyll cycle pigments were investigated by HPLC analysis; UV A- and UV B-exposed samples had a higher deepoxidation state as controls, particularly evident in strain B. The results indicate that phenolics are involved in UV protection of Zygnema and also revealed different responses to UV stress across the three strains, suggesting that other protection mechanisms may be involved in these organisms.
Collapse
Affiliation(s)
- Martina Pichrtová
- Department of Botany, Faculty of Science, Charles University in Prague, Benátská 2, 12801 Prague 2, Czech Republic
- Institute of Botany, Academy of Sciences of the Czech Republic, Dukelská 135, 37982 Třeboň, Czech Republic
| | - Daniel Remias
- Pharmacognosy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020 Innsbruck, Austria
| | - Louise A. Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269-3043 USA
| | - Andreas Holzinger
- Functional Plant Biology, Institute of Botany, University of Innsbruck, Sternwartestr. 15, 6020 Innsbruck, Austria
| |
Collapse
|
36
|
Kottuparambil S, Shin W, Brown MT, Han T. UV-B affects photosynthesis, ROS production and motility of the freshwater flagellate, Euglena agilis Carter. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2012; 122-123:206-213. [PMID: 22832280 DOI: 10.1016/j.aquatox.2012.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 06/06/2012] [Accepted: 06/10/2012] [Indexed: 06/01/2023]
Abstract
The effects of ultraviolet B (UV-B; 295-320 nm) radiation on certain vital physiological (photosynthesis), biochemical (production of reactive oxygen species - ROS) and behavioral (motility and orientation) characteristics were investigated in the unicellular photoautotroph, Euglena agilis Carter. The photosynthetic performance of E. agilis was recorded after exposure of between 15 and 60 min followed by a period of recovery lasting 6-24h under dim light (5-10 μmol photons m(-2) s(-1)). The maximum quantum yield of PS II (F(v)/F(m)) was reduced to 65% and 14% of initial values immediately following 15 and 30 min UV-B exposure, but recovered to 100 and 86% of the initials, respectively. Values of rETR(max) in E. agilis exposed to 15 min UV-B were similar to those of the initials, but a 30 min UV exposure resulted in 75% reduction of rETR(max) with only a 43% recovery as compared with the initial after 24h recovery. After a 60 min UV-B exposure, there were no Chl a fluorescence signals, and hence no F(v)/F(m) or rETR(max). A UV dose-dependent increase in DCFH-DA fluorescence was found in E. agilis cells, reflecting an increase in ROS production. After exposures to UV-B for between 15 and 60 min, the percentages of motile cells in the population decreased to 76, 39 and 15%, respectively. Following 24h in dim light, the percentage of motile cells increased to between 66% and 95% of the initial value. The velocity of non-irradiated cells was 60 μm s(-1), which decreased to 16-35 μm s(-1) immediately following exposure for 15-60 min. After periods of time in dim light (6, 12 and 24h) velocities had recovered to between 44 and 81% of the initial value. In untreated controls, the r-value was 0.23, indicating random movement of E. agilis, but it increased to 0.35 and 0.72 after exposure to UV-B for 30 and 60 min, respectively. There was a tendency towards vertical downward movement of cells proportional to the duration of exposure. The compactness of E. agilis decreased from 2.9 in controls to 1.8-2.3 in cells treated with UV-B although significant recovery followed. UV-B dose-dependent interaction between photosynthetic activity, ROS production and movement is discussed in terms of a UV-protective mechanism in E. agilis.
Collapse
Affiliation(s)
- Sreejith Kottuparambil
- Institute of Green Environmental Research Center, University of Incheon, Incheon, Republic of Korea
| | | | | | | |
Collapse
|
37
|
Kováčik J, Klejdus B, Štork F, Hedbavny J, Bačkor M. COMPARISON OF METHYL JASMONATE AND CADMIUM EFFECT ON SELECTED PHYSIOLOGICAL PARAMETERS IN SCENEDESMUS QUADRICAUDA (CHLOROPHYTA, CHLOROPHYCEAE)(1). JOURNAL OF PHYCOLOGY 2011; 47:1044-1049. [PMID: 27020185 DOI: 10.1111/j.1529-8817.2011.01027.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Effect of methyl jasmonate (MeJA) in the concentrations of 10 or 100 μM on selected physiological parameters in Scenedesmus quadricauda (Turp.) Bréb. after 24 h of exposure was studied. Results were compared with the application of general toxic metal (cadmium, Cd) to identify MeJA-specific responses. Accumulation of reactive oxygen species (ROS; hydrogen peroxide and superoxide) was the most elevated by 10 μM MeJA and 100 μM Cd, while total chls showed decrease (Cd) and increase (MeJA) in these variants. The amount of carotenoids and cell viability were affected neither by MeJA nor by Cd application. The sum of free amino acids was considerably elevated by 10 μM Cd (increase in histidine, threonine, arginine, leucine, and lysine mainly) but depleted by 100 μM MeJA (14 from 17 compounds decreased), while accumulation of soluble proteins was unaffected by Cd and enhanced by MeJA. Cadmium application reduced the amount of Ca and also Mg in the case of 100 μM Cd, while MeJA had no effect on the content of mineral nutrients. Total Cd content reached 557 and 1,334 μg · g(-1) dry weight (dwt) in 10 and 100 μM Cd variant, respectively. Intracellular Cd uptake was ca. 55% from total Cd content in both Cd variants. The present findings are discussed in the context of the available literature, and possible explanations are suggested.
Collapse
Affiliation(s)
- Jozef Kováčik
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak Republic
| | - Bořivoj Klejdus
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak Republic
| | - František Štork
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak Republic
| | - Josef Hedbavny
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak Republic
| | - Martin Bačkor
- Department of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak RepublicDepartment of Chemistry and Biochemistry, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czech RepublicDepartment of Botany, Institute of Biology and Ecology, Faculty of Science, P. J. Šafárik University, Mánesova 23, 041 67 Košice, Slovak Republic
| |
Collapse
|
38
|
Sensitivity of Xanthoria parietina to UV-A: Role of metabolic modulators. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 103:243-50. [DOI: 10.1016/j.jphotobiol.2011.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 03/29/2011] [Accepted: 04/04/2011] [Indexed: 11/17/2022]
|
39
|
Hlavová M, Čížková M, Vítová M, Bišová K, Zachleder V. DNA damage during G2 phase does not affect cell cycle progression of the green alga Scenedesmus quadricauda. PLoS One 2011; 6:e19626. [PMID: 21603605 PMCID: PMC3095609 DOI: 10.1371/journal.pone.0019626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 04/11/2011] [Indexed: 11/19/2022] Open
Abstract
DNA damage is a threat to genomic integrity in all living organisms. Plants and green algae are particularly susceptible to DNA damage especially that caused by UV light, due to their light dependency for photosynthesis. For survival of a plant, and other eukaryotic cells, it is essential for an organism to continuously check the integrity of its genetic material and, when damaged, to repair it immediately. Cells therefore utilize a DNA damage response pathway that is responsible for sensing, reacting to and repairing damaged DNA. We have studied the effect of 5-fluorodeoxyuridine, zeocin, caffeine and combinations of these on the cell cycle of the green alga Scenedesmus quadricauda. The cells delayed S phase and underwent a permanent G2 phase block if DNA metabolism was affected prior to S phase; the G2 phase block imposed by zeocin was partially abolished by caffeine. No cell cycle block was observed if the treatment with zeocin occurred in G2 phase and the cells divided normally. CDKA and CDKB kinases regulate mitosis in S. quadricauda; their kinase activities were inhibited by Wee1. CDKA, CDKB protein levels were stabilized in the presence of zeocin. In contrast, the protein level of Wee1 was unaffected by DNA perturbing treatments. Wee1 therefore does not appear to be involved in the DNA damage response in S. quadricauda. Our results imply a specific reaction to DNA damage in S. quadricauda, with no cell cycle arrest, after experiencing DNA damage during G2 phase.
Collapse
Affiliation(s)
- Monika Hlavová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Mária Čížková
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| | - Milada Vítová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| | - Kateřina Bišová
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
- * E-mail:
| | - Vilém Zachleder
- Laboratory of Cell Cycles of Algae, Institute of Microbiology, ASCR, Třeboň, Czech Republic
| |
Collapse
|