1
|
Córdova-Fletes C, Rangel-Sosa MM, Martínez-Jacobo LA, Becerra-Solano LE, Arellano-Valdés CA, Tlacuilo-Parra JA, Galán-Huerta KA, Rivas-Estilla AM, Hernandez-Orozco AA, García-Ortiz JE. Whole-exome sequencing in three children with sporadic Blau syndrome, one of them co-presenting with recurrent polyserositis. Autoimmunity 2020; 53:344-352. [PMID: 32597225 DOI: 10.1080/08916934.2020.1786068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Blau syndrome (BS) is a rare, chronic autoinflammatory disease with onset before age 4 and mainly characterised by granulomatous arthritis, recurrent uveitis, and skin rash. Sporadic (also known as early-onset sarcoidosis) or familial BS is caused by gain-of-function mutations in the NOD2 gene, which encodes for a multi-task protein that plays a crucial role in the innate immune defense. We report on three Mexican patients clinically diagnosed with BS who exhibited a likely pathogenic variant in NOD2 as revealed by whole-exome sequencing (WES) and Sanger sequencing: two variants (c.1000 C > T/p.Arg334Trp and c.1538 T > C/p.Met513Thr) lie in the ATP/Mg2+ binding site, whereas the other (c.3019dupC/p.Leu1007ProfsTer2) introduces a premature stop codon disrupting the last LRR domain (LRR9) formation; all three variants are consistent with gain-of-function changes. Interestingly, all these patients presented concomitant likely pathogenic variants in other inflammatory disease-related genes, i.e. TLR10, PRR12, MEFV and/or SLC22A5. Although the clinical presentation in these patients included the BS diagnostic triad, overall it was rather heterogeneous. It is plausible that this clinical variability depends partly on the patients' genetic background as suggested by our WES results. After this molecular diagnosis and given the absence of NOD2 mutations (demonstrated in two trios) and related symptoms in the respective parents (confirmed in all trios), patients 1 and 2 were considered to have sporadic BS, while patient 3, a sporadic BS-recurrent polyserositis compound phenotype. Altogether, our observations and findings underscore the overlapping among inflammatory diseases and the importance of determining the underlying genetic cause by high-throughput methods. Likewise, this study further reinforces a pathogenic link between the here found NOD2 variants and BS and envisages potential additive effects from other loci in these, and probably other patients.
Collapse
Affiliation(s)
- Carlos Córdova-Fletes
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Martha M Rangel-Sosa
- Vicerrectoría de Ciencias de la Salud, Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, México
| | - Lizeth A Martínez-Jacobo
- Vicerrectoría de Ciencias de la Salud, Departamento de Ciencias Básicas, Universidad de Monterrey, San Pedro Garza García, México
| | - Luis Eduardo Becerra-Solano
- Unidad de Investigación Médica en Medicina Reproductiva, Hospital de Gineco-Obstetricia No. 4 Luis Castelazo Ayala, IMSS, Ciudad de México, México
| | | | | | - Kame Alberto Galán-Huerta
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | - Ana María Rivas-Estilla
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, México
| | | | - José Elías García-Ortiz
- División de Genética, Centro de Investigación Biomédica de Occidente, Instituto Mexicano del Seguro Social.,Dirección de Educación e Investigación en Salud, UMAE Hospital de Gineco-Obstretricia, CMNO-IMSS, Guadalajara, México
| |
Collapse
|
2
|
Halliwell B, Cheah IK, Drum CL. Ergothioneine, an adaptive antioxidant for the protection of injured tissues? A hypothesis. Biochem Biophys Res Commun 2016; 470:245-250. [PMID: 26772879 DOI: 10.1016/j.bbrc.2015.12.124] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 12/30/2015] [Indexed: 12/30/2022]
Abstract
Ergothioneine (ET) is a diet-derived, thiolated derivative of histidine with antioxidant properties. Although ET is produced only by certain fungi and bacteria, it can be found at high concentrations in certain human and animal tissues and is absorbed through a specific, high affinity transporter (OCTN1). In liver, heart, joint and intestinal injury, elevated ET concentrations have been observed in injured tissues. The physiological role of ET remains unclear. We thus review current literature to generate a specific hypothesis: that the accumulation of ET in vivo is an adaptive mechanism, involving the regulated uptake and concentration of an exogenous natural compound to minimize oxidative damage.
Collapse
Affiliation(s)
- Barry Halliwell
- Department of Biochemistry, National University of Singapore, Singapore.
| | - Irwin K Cheah
- Department of Biochemistry, National University of Singapore, Singapore
| | - Chester L Drum
- Cardiovascular Research Institute, National University Health System, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Translational Laboratory in Genetic Medicine, 8A Biomedical Grove, Immunos, Level 5, 138648, Singapore
| |
Collapse
|
3
|
Namjou B, Marsolo K, Caroll RJ, Denny JC, Ritchie MD, Verma SS, Lingren T, Porollo A, Cobb BL, Perry C, Kottyan LC, Rothenberg ME, Thompson SD, Holm IA, Kohane IS, Harley JB. Phenome-wide association study (PheWAS) in EMR-linked pediatric cohorts, genetically links PLCL1 to speech language development and IL5-IL13 to Eosinophilic Esophagitis. Front Genet 2014; 5:401. [PMID: 25477900 PMCID: PMC4235428 DOI: 10.3389/fgene.2014.00401] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 10/31/2014] [Indexed: 02/06/2023] Open
Abstract
Objective: We report the first pediatric specific Phenome-Wide Association Study (PheWAS) using electronic medical records (EMRs). Given the early success of PheWAS in adult populations, we investigated the feasibility of this approach in pediatric cohorts in which associations between a previously known genetic variant and a wide range of clinical or physiological traits were evaluated. Although computationally intensive, this approach has potential to reveal disease mechanistic relationships between a variant and a network of phenotypes. Method: Data on 5049 samples of European ancestry were obtained from the EMRs of two large academic centers in five different genotyped cohorts. Recently, these samples have undergone whole genome imputation. After standard quality controls, removing missing data and outliers based on principal components analyses (PCA), 4268 samples were used for the PheWAS study. We scanned for associations between 2476 single-nucleotide polymorphisms (SNP) with available genotyping data from previously published GWAS studies and 539 EMR-derived phenotypes. The false discovery rate was calculated and, for any new PheWAS findings, a permutation approach (with up to 1,000,000 trials) was implemented. Results: This PheWAS found a variety of common variants (MAF > 10%) with prior GWAS associations in our pediatric cohorts including Juvenile Rheumatoid Arthritis (JRA), Asthma, Autism and Pervasive Developmental Disorder (PDD) and Type 1 Diabetes with a false discovery rate < 0.05 and power of study above 80%. In addition, several new PheWAS findings were identified including a cluster of association near the NDFIP1 gene for mental retardation (best SNP rs10057309, p = 4.33 × 10−7, OR = 1.70, 95%CI = 1.38 − 2.09); association near PLCL1 gene for developmental delays and speech disorder [best SNP rs1595825, p = 1.13 × 10−8, OR = 0.65(0.57 − 0.76)]; a cluster of associations in the IL5-IL13 region with Eosinophilic Esophagitis (EoE) [best at rs12653750, p = 3.03 × 10−9, OR = 1.73 95%CI = (1.44 − 2.07)], previously implicated in asthma, allergy, and eosinophilia; and association of variants in GCKR and JAZF1 with allergic rhinitis in our pediatric cohorts [best SNP rs780093, p = 2.18 × 10−5, OR = 1.39, 95%CI = (1.19 − 1.61)], previously demonstrated in metabolic disease and diabetes in adults. Conclusion: The PheWAS approach with re-mapping ICD-9 structured codes for our European-origin pediatric cohorts, as with the previous adult studies, finds many previously reported associations as well as presents the discovery of associations with potentially important clinical implications.
Collapse
Affiliation(s)
- Bahram Namjou
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; College of Medicine, University of Cincinnati Cincinnati, OH, USA
| | - Keith Marsolo
- College of Medicine, University of Cincinnati Cincinnati, OH, USA ; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Robert J Caroll
- Department of Biomedical Informatics, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University School of Medicine Nashville, TN, USA ; Department of Medicine, Vanderbilt University School of Medicine Nashville, TN, USA
| | - Marylyn D Ritchie
- Center for Systems Genomics, The Pennsylvania State University Philadelphia, PA, USA
| | - Shefali S Verma
- Center for Systems Genomics, The Pennsylvania State University Philadelphia, PA, USA
| | - Todd Lingren
- College of Medicine, University of Cincinnati Cincinnati, OH, USA ; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Aleksey Porollo
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; College of Medicine, University of Cincinnati Cincinnati, OH, USA ; Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Beth L Cobb
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Cassandra Perry
- Division of Genetics and Genomics, Boston Children's Hospital Boston, MA, USA
| | - Leah C Kottyan
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; College of Medicine, University of Cincinnati Cincinnati, OH, USA ; Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Department of Pediatrics, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA
| | - Susan D Thompson
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; College of Medicine, University of Cincinnati Cincinnati, OH, USA
| | - Ingrid A Holm
- Division of Genetics and Genomics, Department of Pediatrics, The Manton Center for Orphan Disease Research, Harvard Medical School, Boston Children's Hospital Boston, MA, USA
| | - Isaac S Kohane
- Children's Hospital Informatics Program, Center for Biomedical Informatics, Harvard Medical School Boston, MA, USA
| | - John B Harley
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center Cincinnati, OH, USA ; College of Medicine, University of Cincinnati Cincinnati, OH, USA ; U.S. Department of Veterans Affairs Medical Center Cincinnati, OH, USA
| |
Collapse
|
4
|
Toh DSL, Cheung FSG, Murray M, Pern TK, Lee EJD, Zhou F. Functional Analysis of Novel Variants in the Organic Cation/Ergothioneine Transporter 1 Identified in Singapore Populations. Mol Pharm 2013; 10:2509-16. [DOI: 10.1021/mp400193r] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Dorothy Su Lin Toh
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119245
| | | | - Michael Murray
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
- Discipline of Pharmacology, School
of Medical Sciences, The University of Sydney, NSW 2006, Australia
| | - Tan Kuan Pern
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Edmund Jon Deoon Lee
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119245
| | - Fanfan Zhou
- Faculty of Pharmacy, University of Sydney, NSW 2006, Australia
| |
Collapse
|
5
|
Chua KH, Lian LH, Kee BP, Thum CM, Lee WS, Hilmi I, Goh KL. Identification of DLG5 and SLC22A5 gene polymorphisms in Malaysian patients with Crohn's disease. J Dig Dis 2011; 12:459-466. [PMID: 22118696 DOI: 10.1111/j.1751-2980.2011.00533.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the association of DLG5 and SLC22A5 gene polymorphisms with the onset of Crohn's disease (CD) in a Malaysian cohort. METHODS Genomic DNA of 80 CD patients and 100 healthy unrelated control individuals was extracted and analyzed via polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) on DLG5 (4136 C/A), DLG5_e26 and SLC22A5 (-207 G/C) genetic polymorphisms. Data obtained from the study were then subjected to statistical analysis to test for risk association. RESULTS Significant associations of both DLG5 polymorphisms with the development of CD in the Malaysian patients were observed in this study. The homozygous C genotype of the DLG5 polymorphism was significantly related to CD patients (P = 0.0023, OR = 2.5320), while the homozygous A was significant in control individuals (P = 0.0224, OR = 0.4480). In DLG5_e26 polymorphisms, we found a significant distribution of the homozygous insA genotype in CD patients (P = 0.0006, OR = 2.8916), whereas the heterozygous insA/delA genotype was significant in controls (P = 0.0007, OR = 0.3487). We hypothesized that there might be a complex interaction of both alleles, which confered a protective effect against the onset of CD. However, we did not observe any significant correlation of SLC22A5 polymorphisms with this disease. CONCLUSIONS In our study, both polymorphisms in the DLG5 gene were found to be associated with CD patients in Malaysia. Therefore, these loci can be potentially used as susceptibility markers in the Malaysian population.
Collapse
Affiliation(s)
- Kek Heng Chua
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | | | | | | | | | | | | |
Collapse
|
6
|
Cheah IK, Halliwell B. Ergothioneine; antioxidant potential, physiological function and role in disease. Biochim Biophys Acta Mol Basis Dis 2011; 1822:784-93. [PMID: 22001064 DOI: 10.1016/j.bbadis.2011.09.017] [Citation(s) in RCA: 306] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 09/29/2011] [Indexed: 01/09/2023]
Abstract
Since its discovery, the unique properties of the naturally occurring amino acid, L-ergothioneine (EGT; 2-mercaptohistidine trimethylbetaine), have intrigued researchers for more than a century. This widely distributed thione is only known to be synthesized by non-yeast fungi, mycobacteria and cyanobacteria but accumulates in higher organisms at up to millimolar levels via an organic cation transporter (OCTN1). The physiological role of EGT has yet to be established. Numerous in vitro assays have demonstrated the antioxidant and cytoprotective capabilities of EGT against a wide range of cellular stressors, but an antioxidant role has yet to be fully verified in vivo. Nevertheless the accumulation, tissue distribution and scavenging properties, all highlight the potential for EGT to function as a physiological antioxidant. This article reviews our current state of knowledge. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
Collapse
Affiliation(s)
- Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, 28 Medical Drive, Singapore
| | | |
Collapse
|