1
|
Rezazadeh‐Gavgani E, Majidazar R, Lotfinejad P, Kazemi T, Shamekh A. Immune Checkpoint Molecules: A Review on Pathways and Immunotherapy Implications. Immun Inflamm Dis 2025; 13:e70196. [PMID: 40243372 PMCID: PMC12004596 DOI: 10.1002/iid3.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 03/12/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Today, treating cancer patients with monoclonal antibodies (mAbs), by targeting immune checkpoints, is one of the most outstanding immunotherapeutic methods. Immune checkpoints are special molecules having regulatory role in immune system responses. Once these molecules are presented on cancer cells, these cells will be capable of evading the immune system through their own specific pathways. This Evasion can be prevented by counterbalancing immune system responses with immune checkpoints related antibodies. AIMS The current study aimed to highlight immunotherapy and its methods, describe the immune checkpoints pathways, outline the immune checkpoint inhibitors (ICIs), and recent advances in this field, and sketch an outlook on the best treatment options for the most prevalent cancers. MATERIALS & METHODS This research implemented a narrative review method. A comprehensive literature review on the history, molecular and cellular biology, and the clinical aspects of immune checkpoint molecules was performed to illustrate the pathways involved in various cancers. Also, currently-available and future potential immunotherapies targeting these pathways were extracted from the searched studies. RESULTS The immune checkpoint family consists of many molecules, including CTLA-4, PD-1, PD-L1, LAG-3, TIM-3, and TIGIT. Attempts to modify these molecules in cancer treatment led to the development of therapeutic monoclonal antibodies. Most of these antibodies have entered clinical studies and some of them have been approved by the Food and Drug Administration (FDA) to be used in cancer patients' treatment plans. DISCUSSION With these novel treatments and the combination therapies they offer, there is also hope for better treatment outcomes for the previously untreatable metastatic cancers. In spite of the beneficial aspects of immune checkpoint therapy, similar to other treatments, they may cause side effects in some patients. Therefore, more studies are needed to reduce the probable side effects and uncover their underlying mechanism. CONCLUSION Based on the data shown in this review, there is still a lack of knowledge about the complete properties of ICIs and the possible combination therapies that we may be able to implement to achieve a better treatment response in cancer patients.
Collapse
Affiliation(s)
| | - Reza Majidazar
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
| | - Parisa Lotfinejad
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Tohid Kazemi
- Immunology Research CenterTabriz University of Medical SciencesTabrizIran
- Department of ImmunologyTabriz University of Medical SciencesTabrizIran
| | - Ali Shamekh
- Student Research CommitteeTabriz University of Medical SciencesTabrizIran
- Aging Research InstituteTabriz University of Medical SciencesTabrizIran
| |
Collapse
|
2
|
Biphenyl-based small molecule inhibitors: Novel cancer immunotherapeutic agents targeting PD-1/PD-L1 interaction. Bioorg Med Chem 2022; 73:117001. [PMID: 36126447 DOI: 10.1016/j.bmc.2022.117001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/25/2022] [Accepted: 09/03/2022] [Indexed: 11/23/2022]
Abstract
The immune checkpoint proteins are those key to the body's immunity which can either boost the immune system to protect the body from pathogens; or suppress the body's immunity system for the goal of self-tolerance. Cancer cells have evolved some mechanisms to boost the immuno-inhibitory checkpoints to bypass the immune system of the body. The binding of Programmed Cell Death-1 (PD-1) protein with its ligand Programmed Cell Death Ligand-1 (PD-L1) promotes this kind of immune-inhibitory signal. The discovery of immune checkpoint inhibitors was started in the early 21st century; with some success through monoclonal antibodies, peptides, and small molecules. Being the most reliable and safest way to target immune checkpoints, the scientific community is exploring possibilities to develop small molecule inhibitors. Among the different scaffolds of the small molecule, the most exposed and researched core molecule is Biphenyl-based scaffolds. We have described all of the possible biphenyl-based small molecules in this article, as well as their interactions with various amino acids in the binding cavity. The link between the in silico, in vitro, and in vivo activities of the PD-1/PD-L1 inhibitors are well connected. The Tyr56, Met115, Ala121, and Asp122 were detected as the crucial amino acids of the PD-1/PD-L1 inhibition. Additionally, a detailed binding pocket analysis of the PD-L1 receptor was carried out, where it was observed and confirmed that the binding pocket is tunnel-shaped and hydrophobic in nature. Finally, the structure-activity relationship of the biphenyl-based small molecule inhibitors was developed based on their activity and the binding interactions.
Collapse
|
3
|
Hosseini A, Gharibi T, Marofi F, Babaloo Z, Baradaran B. CTLA-4: From mechanism to autoimmune therapy. Int Immunopharmacol 2020; 80:106221. [PMID: 32007707 DOI: 10.1016/j.intimp.2020.106221] [Citation(s) in RCA: 170] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
CD28 and CTLA-4 are both important stimulatory receptors for the regulation of T cell activation. Because receptors share common ligands, B7.1 and B7.2, the expression and biological function of CTLA-4 is important for the negative regulation of T cell responses. Therefore, elimination of CTLA-4 can result in the breakdown of immune tolerance and the development of several diseases such as autoimmunity. Inhibitory signals of CTLA-4 suppress T cell responses and protect against autoimmune diseases in many ways. In this review, we summarize the structure, expression and signaling pathway of CTLA-4. We also highlight how CTLA-4 defends against potentially self-reactive T cells. Finally, we discuss how the CTLA-4 regulates a number of autoimmune diseases that indicate manipulation of this inhibitory molecule is a promise as a strategy for the immunotherapy of autoimmune diseases.
Collapse
Affiliation(s)
- Arezoo Hosseini
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Gharibi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran; Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Faroogh Marofi
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Babaloo
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
4
|
Pistillo MP, Fontana V, Morabito A, Dozin B, Laurent S, Carosio R, Banelli B, Ferrero F, Spano L, Tanda E, Ferrucci PF, Martinoli C, Cocorocchio E, Guida M, Tommasi S, De Galitiis F, Pagani E, Antonini Cappellini GC, Marchetti P, Quaglino P, Fava P, Osella-Abate S, Ascierto PA, Capone M, Simeone E, Romani M, Spagnolo F, Queirolo P. Soluble CTLA-4 as a favorable predictive biomarker in metastatic melanoma patients treated with ipilimumab: an Italian melanoma intergroup study. Cancer Immunol Immunother 2019; 68:97-107. [PMID: 30311027 PMCID: PMC11028053 DOI: 10.1007/s00262-018-2258-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 10/04/2018] [Indexed: 12/11/2022]
Abstract
CTLA-4 blockade by means of ipilimumab (IPI) potentiates the immune response and improves overall survival (OS) in a minority of metastatic melanoma (MM) patients. We investigated the role of soluble CTLA-4 (sCTLA-4) as a possible biomarker for identifying this subset of patients. sCTLA-4 levels were analyzed at baseline in sera from 113 IPI-treated MM patients by ELISA, and the median value (200 pg/ml) was used to create two equally sized subgroups. Associations of sCTLA-4 with best overall response (BOR) to IPI and immune-related adverse events (irAEs) were evaluated through logistic regression. Kaplan-Meier and Cox regression methods were used to analyze OS. A remarkable association between sCTLA-4 levels and BOR was found. Specifically, the proportion of patients with sCTLA-4 > 200 pg/ml in irSD or irPD (immune-related stable or progressive disease) was, respectively, 80% (OR = 0.23; 95%CL = 0.03-1.88) and 89% (OR = 0.11; 95%CL = 0.02-0.71) and was lower than that observed among patients in irCR/irPR (immune-related complete/partial response). sCTLA-4 levels increased during IPI treatment, since the proportion of patients showing sCTLA > 200 pg/ml after 3 cycles was 4 times higher (OR = 4.41, 95%CL = 1.02-19.1) than that after 1 cycle. Moreover, a significantly lower death rate was estimated for patients with sCTLA-4 > 200 pg/ml (HR = 0.61, 95%CL = 0.39-0.98). Higher baseline sCTLA-4 levels were also associated with the onset of any irAE (p value = 0.029), in particular irAEs of the digestive tract (p value = 0.041). In conclusion, our results suggest that high sCTLA-4 serum levels might predict favorable clinical outcome and higher risk of irAEs in IPI-treated MM patients.
Collapse
Affiliation(s)
- Maria Pia Pistillo
- Unit of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy.
| | - Vincenzo Fontana
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Morabito
- Unit of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Beatrice Dozin
- Unit of Clinical Epidemiology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Stefania Laurent
- Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - Roberta Carosio
- Unit of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Barbara Banelli
- Unit of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Department of Health Sciences, University of Genoa, Genoa, Italy
| | - Francesca Ferrero
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Laura Spano
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrica Tanda
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | - Chiara Martinoli
- Oncology of Melanoma Unit, European Institute of Oncology, Milan, Italy
- iTeos Therapeutics, Gosselies, Belgium
| | | | - Michele Guida
- Department of Medical Oncology and Molecular Genetics Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | - Stefania Tommasi
- Department of Medical Oncology and Molecular Genetics Laboratory, IRCCS Istituto Tumori "Giovanni Paolo II", Bari, Italy
| | | | - Elena Pagani
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
| | | | - Paolo Marchetti
- Istituto Dermopatico dell'Immacolata IDI-IRCCS, Rome, Italy
- Sapienza University of Rome, Rome, Italy
| | - Pietro Quaglino
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Turin, Italy
| | - Paolo Fava
- Department of Medical Sciences, Dermatologic Clinic, University of Turin, Turin, Italy
| | - Simona Osella-Abate
- Department of Medical Sciences, Section of Surgical Pathology, University of Turin, Turin, Italy
| | - Paolo Antonio Ascierto
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione'G. Pascale', Naples, Italy
| | - Mariaelena Capone
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione'G. Pascale', Naples, Italy
| | - Ester Simeone
- Melanoma, Cancer Immunotherapy and Innovative Therapy Unit, Istituto Nazionale Tumori Fondazione'G. Pascale', Naples, Italy
| | - Massimo Romani
- Unit of Tumor Epigenetics, IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Francesco Spagnolo
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Queirolo
- Department of Medical Oncology, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
5
|
Zhao JJ, Wang D, Yao H, Sun DW, Li HY. CTLA-4 and MDR1 polymorphisms increase the risk for ulcerative colitis: A meta-analysis. World J Gastroenterol 2015; 21:10025-10040. [PMID: 26379408 PMCID: PMC4566373 DOI: 10.3748/wjg.v21.i34.10025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/26/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the correlations between cytotoxic T lymphocyte-associated antigen-4 (CTLA-4) and multi-drug resistance 1 (MDR1) genes polymorphisms with ulcerative colitis (UC) risk.
METHODS: PubMed, EMBASE, Web of Science, Cochrane Library, CBM databases, Springerlink, Wiley, EBSCO, Ovid, Wanfang database, VIP database, China National Knowledge Infrastructure, and Weipu Journal databases were exhaustively searched using combinations of keywords relating to CTLA-4, MDR1 and UC. The published studies were filtered using our stringent inclusion and exclusion criteria, the quality assessment for each eligible study was conducted using Critical Appraisal Skill Program and the resultant high-quality data from final selected studies were analyzed using Comprehensive Meta-analysis 2.0 (CMA 2.0) software. The correlations between SNPs of CTLA-4 gene, MDR1 gene and the risk of UC were evaluated by OR at 95%CI. Z test was carried out to evaluate the significance of overall effect values. Cochran’s Q-statistic and I2 tests were applied to quantify heterogeneity among studies. Funnel plots, classic fail-safe N and Egger’s linear regression test were inspected for indication of publication bias.
RESULTS: A total of 107 studies were initially retrieved and 12 studies were eventually selected for meta-analysis. These 12 case-control studies involved 1860 UC patients and 2663 healthy controls. Our major result revealed that single nucleotide polymorphisms (SNPs) of CTLA-4 gene rs3087243 G > A and rs231775 G > A may increase the risk of UC (rs3087243 G > A: allele model: OR = 1.365, 95%CI: 1.023-1.822, P = 0.035; dominant model: OR = 1.569, 95%CI: 1.269-1.940, P < 0.001; rs231775 G > A: allele model: OR = 1.583, 95%CI: = 1.306-1.918, P < 0.001; dominant model: OR = 1.805, 95%CI: 1.393-2.340, P < 0.001). In addition, based on our result, SNPs of MDR1 gene rs1045642 C > T might also confer a significant increases for the risk of UC (allele model: OR = 1.389, 95%CI: 1.214-1.590, P < 0.001; dominant model: OR = 1.518, 95%CI: 1.222-1.886, P < 0.001).
CONCLUSION: CTLA-4 gene rs3087243 G > A and rs231775 G > A, and MDR1 gene rs1045642 C > T might confer an increase for UC risk.
Collapse
|