1
|
Ryther CM, Ortmann AC, Wohlgeschaffen G, Robinson BJ. Temperate Coastal Microbial Communities Rapidly Respond to Low Concentrations of Partially Weathered Diesel. MICROBIAL ECOLOGY 2022; 84:1122-1132. [PMID: 34888738 PMCID: PMC9747835 DOI: 10.1007/s00248-021-01939-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/05/2021] [Indexed: 05/23/2023]
Abstract
Diesel is frequently encountered in coastal ecosystems due to land run-off from road surfaces. The current study investigates how partially weathered diesel at environmentally relevant concentrations, as may be seen during a run-off event, affect coastal microbial communities. A mesocosm experiment using seawater from the Bedford Basin, Nova Scotia, was followed for 72 h after the addition of partially weathered diesel. Sequencing data suggests partially weathered diesel acts quickly to alter the prokaryotic community, as both opportunistic (Vibrio and Lentibacter) and oil-degrading (Colwellia, Sulfitobacter, and Pseudoalteromonas) bacteria proliferated after 24 h in comparison to the control. In addition, total prokaryotes seemed to recover in abundance after 24 h, where eukaryotes only ceased to decrease slightly at 72 h, likely because of an inability to adapt to the oil-laden conditions, unlike the prokaryotes. Considering there were no highly volatile components (benzene, toluene, ethylbenzene, and xylene) present in the diesel when the communities were exposed, the results indicate that even a relatively small concentration of diesel run-off can cause a drastic change to the microbial community under low energy conditions. Higher energy conditions due to wave action may mitigate the response of the microbial communities by dilution and additional weathering of the diesel.
Collapse
Affiliation(s)
- Camilla M Ryther
- Biology Department, Dalhousie University, 6299 South Street, Halifax, NS, B3H 4R2, Canada
| | - Alice C Ortmann
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada.
| | - Gary Wohlgeschaffen
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| | - Brian J Robinson
- Centre for Offshore Oil, Gas and Energy Research Laboratory, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS, B2Y 4A2, Canada
| |
Collapse
|
2
|
Gutiérrez MS, León AJ, Duel P, Bosch R, Piña MN, Morey J. Effective Elimination and Biodegradation of Polycyclic Aromatic Hydrocarbons from Seawater through the Formation of Magnetic Microfibres. Int J Mol Sci 2020; 22:E17. [PMID: 33375008 PMCID: PMC7792786 DOI: 10.3390/ijms22010017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/17/2022] Open
Abstract
Supramolecular aggregates formed between polycyclic aromatic hydrocarbons and either naphthalene or perylene-derived diimides have been anchored in magnetite magnetic nanoparticles. The high affinity and stability of these aggregates allow them to capture and confine these extremely carcinogenic contaminants in a reduced space. In some cases, the high cohesion of these aggregates leads to the formation of magnetic microfibres of several microns in length, which can be isolated from the solution by the direct action of a magnet. Here we show a practical application of bioremediation aimed at the environmental decontamination of naphthalene, a very profuse contaminant, based on the uptake, sequestration, and acceleration of the biodegradation of the formed supramolecular aggregate, by the direct action of a bacterium of the lineage Roseobacter (biocompatible with nanostructured receptors and very widespread in marine environments) without providing more toxicity to the environment.
Collapse
Affiliation(s)
- M. Susana Gutiérrez
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain; (M.S.G.); (A.J.L.); (P.D.); (J.M.)
| | - Alberto J. León
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain; (M.S.G.); (A.J.L.); (P.D.); (J.M.)
| | - Paulino Duel
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain; (M.S.G.); (A.J.L.); (P.D.); (J.M.)
| | - Rafael Bosch
- Department of Biology, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain
- Environmental Microbiology, IMEDEA (CSIC-UIB), Miquel Marquès, 21, 07190 Esporles, Spain
| | - M. Nieves Piña
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain; (M.S.G.); (A.J.L.); (P.D.); (J.M.)
| | - Jeroni Morey
- Department of Chemistry, University of the Balearic Islands, Crta. de Valldemossa, Km. 7.5, 07122 Palma de Mallorca, Spain; (M.S.G.); (A.J.L.); (P.D.); (J.M.)
| |
Collapse
|
3
|
Pinto M, Polania Zenner P, Langer TM, Harrison J, Simon M, Varela MM, Herndl GJ. Putative degraders of low-density polyethylene-derived compounds are ubiquitous members of plastic-associated bacterial communities in the marine environment. Environ Microbiol 2020; 22:4779-4793. [PMID: 32935476 PMCID: PMC7702132 DOI: 10.1111/1462-2920.15232] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/12/2020] [Indexed: 11/28/2022]
Abstract
It remains unknown whether and to what extent marine prokaryotic communities are capable of degrading plastic in the ocean. To address this knowledge gap, we combined enrichment experiments employing low‐density polyethylene (LDPE) as the sole carbon source with a comparison of bacterial communities on plastic debris in the Pacific, the North Atlantic and the northern Adriatic Sea. A total of 35 operational taxonomic units (OTUs) were enriched in the LDPE‐laboratory incubations after 1 year, of which 20 were present with relative abundances > 0.5% in at least one plastic sample collected from the environment. From these, OTUs classified as Cognatiyoonia, Psychrobacter, Roseovarius and Roseobacter were found in the communities of plastics collected at all oceanic sites. Additionally, OTUs classified as Roseobacter, Pseudophaeobacter, Phaeobacter, Marinovum and Cognatiyoonia, also enriched in the LDPE‐laboratory incubations, were enriched on LDPE communities compared to the ones associated to glass and polypropylene in in‐situ incubations in the northern Adriatic Sea after 1 month of incubation. Some of these enriched OTUs were also related to known alkane and hydrocarbon degraders. Collectively, these results demonstrate that there are prokaryotes capable of surviving with LDPE as the sole carbon source living on plastics in relatively high abundances in different water masses of the global ocean.
Collapse
Affiliation(s)
- Maria Pinto
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Research Platform 'Plastics in the Environment and Society', University of Vienna, Vienna, Austria
| | - Paula Polania Zenner
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Teresa M Langer
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Jesse Harrison
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, Oldenburg, Germany
| | - Marta M Varela
- IEO, Instituto Español de Oceanografía, Centro Oceanográfico de A Coruña, A Coruña, Spain
| | - Gerhard J Herndl
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria.,Research Platform 'Plastics in the Environment and Society', University of Vienna, Vienna, Austria.,NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| |
Collapse
|
4
|
Xue B, Yu X, Yu R, Liao J, Zhu W, Tian S, Wang L. Photocatalytic degradation of marine diesel oil spills using composite CuO/ZrO 2 under visible light. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1257-1265. [PMID: 32532181 DOI: 10.1080/10934529.2020.1779533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/27/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
Diesel oil spills in marine environments pose a severe threat to both aquatic and terrestrial ecosystems. Photocatalysis is an environment-friendly method for marine oil remediation; however, its practical usage is limited due to several issues. In this study, we demonstrate the enhanced efficacy of doped CuO/ZrO2 photocatalyst at degrading marine diesel in comparison to undoped ZrO2. The photocatalysts were prepared using co-precipitation method, and their physical and chemical properties were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and ultraviolet-visible spectroscopy (UV-Vis). XRD analysis showed that the photocatalytic crystallite size of ZrO2 and CuO/ZrO2 was 28.80 nm and 40.32 nm, respectively. Both catalysts exhibited stable crystalline forms. UV-Vis analysis showed that doping of ZrO2 with CuO significantly reduced its band gap from 4.61 eV to 1.18 eV, thus enhancing the utilization of visible light. The effect of catalyst dosage, doping ratio, and initial diesel concentration on the degradation rate of diesel was investigated by performing single-factor experiments. The optimization experiment results showed that 96.96% of diesel could be degraded under visible light. This study laid an experimental foundation for expanding the practical applications of photocatalytic technology.
Collapse
Affiliation(s)
- Bining Xue
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Xiaocai Yu
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Runqiang Yu
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Jiaqi Liao
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Wanting Zhu
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Siyao Tian
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| | - Liping Wang
- College of Ocean Technique and Environment department, Dalian Ocean University, Dalian, Liaoning, China
| |
Collapse
|
5
|
Valencia-Agami SS, Cerqueda-García D, Putzeys S, Uribe-Flores MM, García-Cruz NU, Pech D, Herrera-Silveira J, Aguirre-Macedo ML, García-Maldonado JQ. Changes in the Bacterioplankton Community Structure from Southern Gulf of Mexico During a Simulated Crude Oil Spill at Mesocosm Scale. Microorganisms 2019; 7:microorganisms7100441. [PMID: 31614583 PMCID: PMC6843455 DOI: 10.3390/microorganisms7100441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/28/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
The southern Gulf of Mexico (sGoM) is highly susceptible to receiving environmental impacts due to the recent increase in oil-related activities. In this study, we assessed the changes in the bacterioplankton community structure caused by a simulated oil spill at mesocosms scale. The 16S rRNA gene sequencing analysis indicated that the initial bacterial community was mainly represented by Gamma-proteobacteria, Alpha-proteobacteria, Flavobacteriia, and Cyanobacteria. The hydrocarbon degradation activity, measured as the number of culturable hydrocarbonoclastic bacteria (CHB) and by the copy number of the alkB gene, was relatively low at the beginning of the experiment. However, after four days, the hydrocarbonoclastic activity reached its maximum values and was accompanied by increases in the relative abundance of the well-known hydrocarbonoclastic Alteromonas. At the end of the experiment, the diversity was restored to similar values as those observed in the initial time, although the community structure and composition were clearly different, where Marivita, Pseudohongiella, and Oleibacter were detected to have differential abundances on days eight–14. These changes were related with total nitrogen (p value = 0.030 and r2 = 0.22) and polycyclic aromatic hydrocarbons (p value = 0.048 and r2 = 0.25), according to PERMANOVA. The results of this study contribute to the understanding of the potential response of the bacterioplankton from sGoM to crude oil spills.
Collapse
Affiliation(s)
- Sonia S Valencia-Agami
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| | - Daniel Cerqueda-García
- Consorcio de Investigación del Golfo de México (CIGoM)-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| | - Sébastien Putzeys
- Consorcio de Investigación del Golfo de México (CIGoM)-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| | - María Magdalena Uribe-Flores
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| | - Norberto Ulises García-Cruz
- Consorcio de Investigación del Golfo de México (CIGoM)-Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| | - Daniel Pech
- Laboratorio de Biodiversidad Marina y Cambio Climático, El Colegio de la Frontera Sur, Lerma Campeche, Campeche 24500, Mexico.
| | - Jorge Herrera-Silveira
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| | - M Leopoldina Aguirre-Macedo
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| | - José Q García-Maldonado
- CONACYT - Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mérida, Yucatán 97310, Mexico.
| |
Collapse
|
6
|
Suja LD, Summers S, Gutierrez T. Role of EPS, Dispersant and Nutrients on the Microbial Response and MOS Formation in the Subarctic Northeast Atlantic. Front Microbiol 2017; 8:676. [PMID: 28484435 PMCID: PMC5399796 DOI: 10.3389/fmicb.2017.00676] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 04/03/2017] [Indexed: 11/17/2022] Open
Abstract
In this study we report the formation of marine oil snow (MOS), its associated microbial community, the factors influencing its formation, and the microbial response to crude oil in surface waters of the Faroe-Shetland Channel (FSC). The FSC is a subarctic region that is hydrodynamically complex located in the northeast Atlantic where oil extraction is currently occurring and where exploration is likely to expand into its deeper waters (>500 m). A major oil spill in this region may mirror the aftermath that ensued following the Deepwater Horizon (DWH) blowout in the Gulf of Mexico, where the massive influx of Macondo crude oil triggered the formation of copious quantities of rapidly sinking MOS and successional blooms of opportunistic oil-degrading bacteria. In laboratory experiments, we simulated environmental conditions in sea surface waters of the FSC using water collected from this site during the winter of 2015. We demonstrated that the presence of dispersant triggers the formation of MOS, and that nutrient amendments magnify this. Illumina MiSeq sequencing revealed the enrichment on MOS of associated oil-degrading (Cycloclasticus, Thalassolituus, Marinobacter) and EPS-producing (Halomonas, Pseudoalteromonas, Alteromonas) bacteria, and included major representation by Psychrobacter and Cobetia with putative oil-degrading/EPS-producing qualities. The formation of marine snow, in the absence of crude oil and dispersant, in seawater amended with nutrients alone indicated that the de novo synthesis of bacterial EPS is a key factor in MOS formation, and the glycoprotein composition of the MOS aggregates confirmed that its amorphous biopolymeric matrix was of microbial (likely bacterial) origin. The presence of dispersants and crude oil with/without nutrients resulted in distinct microbial responses marked by intermittent, and in some cases short-lived, blooms of opportunistic heterotrophs, principally obligate hydrocarbonoclastic (Alcanivorax, Cycloclasticus, Thalassolituus, Marinobacter) and EPS-producing (Halomonas, Alteromonas, Pseudoalteromonas) bacteria. Interestingly, members of the Vibrionales (principally the genus Vibrio) were strongly enriched by crude oil (with/without dispersant or nutrients), highlighting a putative importance for these organisms in crude oil biodegradation in the FSC. Our findings mirror those observed at DWH and hence underscore their broad relevance.
Collapse
Affiliation(s)
- Laura Duran Suja
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| | - Stephen Summers
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| | - Tony Gutierrez
- Institute of Mechanical, Process and Energy Engineering, School of Engineering and Physical Sciences, Heriot-Watt UniversityEdinburgh, UK
| |
Collapse
|
7
|
Al-Saleh E, Hassan A. Enhanced crude oil biodegradation in soil via biostimulation. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2016; 18:822-831. [PMID: 26854134 DOI: 10.1080/15226514.2016.1146223] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Research on feasible methods for the enhancement of bioremediation in soil contaminated by crude oil is vital in oil-exporting countries such as Kuwait, where crude oil is a major pollutant and the environment is hostile to biodegradation. This study investigated the possibility of enhancing crude oil bioremediation by supplementing soil with cost-effective organic materials derived from two widespread locally grown trees, Conocarpus and Tamarix. Amendments in soils increased the counts of soil microbiota by up to 98% and enhanced their activity by up to 95.5%. The increase in the biodegradation of crude oil (75%) and high levels of alkB expression substantiated the efficiency of the proposed amendment technology for the bioremediation of hydrocarbon-contaminated sites. The identification of crude-oil-degrading bacteria revealed the dominance of the genus Microbacterium (39.6%), Sphingopyxis soli (19.3%), and Bordetella petrii (19.6%) in unamended, Conocarpus-amended, and Tamarix-amended contaminated soils, respectively. Although soil amendments favored the growth of Gram-negative bacteria and reduced bacterial diversity, the structures of bacterial communities were not significantly altered.
Collapse
Affiliation(s)
- Esmaeil Al-Saleh
- a Department of Biological Sciences , College of Science, Kuwait University , Kuwait
| | - Ali Hassan
- a Department of Biological Sciences , College of Science, Kuwait University , Kuwait
| |
Collapse
|
8
|
Guibert LM, Loviso CL, Borglin S, Jansson JK, Dionisi HM, Lozada M. Diverse Bacterial Groups Contribute to the Alkane Degradation Potential of Chronically Polluted Subantarctic Coastal Sediments. MICROBIAL ECOLOGY 2016; 71:100-112. [PMID: 26547568 DOI: 10.1007/s00248-015-0698-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 10/27/2015] [Indexed: 06/05/2023]
Abstract
We aimed to gain insight into the alkane degradation potential of microbial communities from chronically polluted sediments of a subantarctic coastal environment using a combination of metagenomic approaches. A total of 6178 sequences annotated as alkane-1-monooxygenases (EC 1.14.15.3) were retrieved from a shotgun metagenomic dataset that included two sites analyzed in triplicate. The majority of the sequences binned with AlkB described in Bacteroidetes (32 ± 13 %) or Proteobacteria (29 ± 7 %), although a large proportion remained unclassified at the phylum level. Operational taxonomic unit (OTU)-based analyses showed small differences in AlkB distribution among samples that could be correlated with alkane concentrations, as well as with site-specific variations in pH and salinity. A number of low-abundance OTUs, mostly affiliated with Actinobacterial sequences, were found to be only present in the most contaminated samples. On the other hand, the molecular screening of a large-insert metagenomic library of intertidal sediments from one of the sampling sites identified two genomic fragments containing novel alkB gene sequences, as well as various contiguous genes related to lipid metabolism. Both genomic fragments were affiliated with the phylum Planctomycetes, and one could be further assigned to the genus Rhodopirellula due to the presence of a partial sequence of the 23S ribosomal RNA (rRNA) gene. This work highlights the diversity of bacterial groups contributing to the alkane degradation potential and reveals patterns of functional diversity in relation with environmental stressors in a chronically polluted, high-latitude coastal environment. In addition, alkane biodegradation genes are described for the first time in members of Planctomycetes.
Collapse
Affiliation(s)
- Lilian M Guibert
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina
| | - Claudia L Loviso
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina
| | - Sharon Borglin
- Energy Geosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hebe M Dionisi
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina
| | - Mariana Lozada
- Laboratorio de Microbiología Ambiental, Centro para el Estudio de Sistemas Marinos (CESIMAR, CENPAT-CONICET), Blvd. Brown 2915, U9120ACD, Puerto Madryn, Chubut Province, Argentina.
| |
Collapse
|
9
|
Lanfranconi MP, Alvarez AF, Alvarez HM. Identification of genes coding for putative wax ester synthase/diacylglycerol acyltransferase enzymes in terrestrial and marine environments. AMB Express 2015; 5:128. [PMID: 26228353 PMCID: PMC4520822 DOI: 10.1186/s13568-015-0128-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 07/06/2015] [Indexed: 11/29/2022] Open
Abstract
Synthesis of neutral lipids such as triacylglycerols (TAG) and wax esters (WE) is catalyzed in bacteria by wax ester synthase/diacylglycerol acyltransferase enzymes (WS/DGAT). We investigated
the diversity of genes encoding this enzyme in contrasting natural environments from Patagonia (Argentina). The content of petroleum hydrocarbons in samples collected from oil-producing areas was measured. PCR-based analysis covered WS/DGAT occurrence in marine sediments and soil. No product was obtained in seawater samples. All clones retrieved from marine sediments affiliated with gammaproteobacterial sequences and within them, most phylotypes formed a unique cluster related to putative WS/DGAT belonging to marine OM60 clade. In contrast, soils samples contained phylotypes only related to actinomycetes. Among them, phylotypes affiliated with representatives largely or recently reported as oleaginous bacteria, as well as with others considered as possible lipid-accumulating bacteria based on the analysis of their annotated genomes. Our study shows for the first time that the environment could contain a higher variety of ws/dgat than that reported from bacterial isolates. The results of this study highlight the relevance of the environment in a natural process such as the synthesis and accumulation of neutral lipids. Particularly, both marine sediments and soil may serve as a useful source for novel WS/DGAT with biotechnological interest.
Collapse
|
10
|
Sanni GO, Coulon F, McGenity TJ. Dynamics and distribution of bacterial and archaeal communities in oil-contaminated temperate coastal mudflat mesocosms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15230-15247. [PMID: 25869427 DOI: 10.1007/s11356-015-4313-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 03/02/2015] [Indexed: 06/04/2023]
Abstract
Mudflats are ecologically important habitats that are susceptible to oil pollution, but intervention is difficult in these fine-grained sediments, and so clean-up usually relies on natural attenuation. Therefore, we investigated the impact of crude oil on the bacterial, diatom and archaeal communities within the upper parts of the diatom-dominated sediment and the biofilm that detached from the surface at high tide. Biodegradation of petroleum hydrocarbons was rapid, with a 50 % decrease in concentration in the 0-2-mm section of sediment by 3 days, indicating the presence of a primed hydrocarbon-degrading community. The biggest oil-induced change was in the biofilm that detached from the sediment, with increased relative abundance of several types of diatom and of the obligately hydrocarbonoclastic Oleibacter sp., which constituted 5 % of the pyrosequences in the oiled floating biofilm on day 3 compared to 0.6 % in the non-oiled biofilm. Differences in bacterial community composition between oiled and non-oiled samples from the 0-2-mm section of sediment were only significant at days 12 to 28, and the 2-4-mm-sediment bacterial communities were not significantly affected by oil. However, specific members of the Chromatiales were detected (1 % of sequences in the 2-4-mm section) only in the oiled sediment, supporting other work that implicates them in anaerobic hydrocarbon degradation. Unlike the Bacteria, the archaeal communities were not significantly affected by oil. In fact, changes in community composition over time, perhaps caused by decreased nutrient concentration and changes in grazing pressure, overshadowed the effect of oil for both Bacteria and Archaea. Many obligate hydrocarbonoclastic and generalist oil-degrading bacteria were isolated, and there was little correspondence between the isolates and the main taxa detected by pyrosequencing of sediment-extracted DNA, except for Alcanivorax, Thalassolituus, Cycloclasticus and Roseobacter spp., which were detected by both methods.
Collapse
Affiliation(s)
- Gbemisola O Sanni
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Frédéric Coulon
- School of Energy, Environment and Agrifood, Cranfield University, Building 40, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Terry J McGenity
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK.
| |
Collapse
|
11
|
Chronopoulou PM, Sanni GO, Silas-Olu DI, van der Meer JR, Timmis KN, Brussaard CPD, McGenity TJ. Generalist hydrocarbon-degrading bacterial communities in the oil-polluted water column of the North Sea. Microb Biotechnol 2014; 8:434-47. [PMID: 25251384 PMCID: PMC4408176 DOI: 10.1111/1751-7915.12176] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 08/13/2014] [Accepted: 08/14/2014] [Indexed: 11/29/2022] Open
Abstract
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.
Collapse
|
12
|
Comparative genomics of the protocatechuate branch of the β-ketoadipate pathway in the Roseobacter lineage. Mar Genomics 2014; 17:25-33. [PMID: 24906178 DOI: 10.1016/j.margen.2014.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 11/23/2022]
Abstract
The protocatechuate branch of the β-ketoadipate pathway is the most common pathway for degradation of monoaromatic compounds in the Roseobacter lineage. We analyzed 43 Roseobacter genomes in order to determine if they possessed all genetic elements for this pathway and if there were common patterns in gene organization. The eight genes of the pathway (pcaG, -H, -B, -C, -D, -I, -J, and -F), possible regulators, and genes encoding for proteins with related function (i.e. catabolism of 4-hydroxybenzoate, catechol, and meta-cleavage of protocatechuate) were predicted by sequence homology analysis. Most of the Roseobacters studied had putatively a complete protocatechuate branch of the β-ketoadipate pathway while 11 of them would probably have an incomplete pathway. Thirty-one Roseobacters would be potentially able of transforming 4-hydroxybenzoate to protocatechuate, and 13 of them might transform catechol via ortho-cleavage, the starting reaction of the catechol branch of the β-ketoadipate pathway. We observed variability in gene organization, with no clear relationship between gene order and Roseobacter taxonomy. Genes were usually organized in several gene clusters. One of the clusters (pcaRIJF) was not reported previously in Roseobacters. The presence of the putative regulator pcaR in these bacteria was also a novel finding. The conserved ORF (chp), encoding for a protein of family DUF849 whose functional role has been proven recently, was detected in 34 genomes. Sequence homology confirmed that proteins encoded by chp corresponded to putative BKACE G4 proteins, which are able to transform β-ketoadipate. Therefore, most Roseobacters seemed to possess two different enzymes for transforming β-ketoadipate. We also report two possible regulation mechanisms of gene pobA (encoding for the enzyme transforming 4-hydroxybenzoate to protocatechuate): via PcaQ, the regulator commonly found with pca genes, and via an independent regulator (PobR). The results of this study evidence the relevance of 4-hydroxybenzoate, protocatechuate and β-ketoadipate degradation pathways in Roseobacters and provide a more complex view of possible regulation mechanisms.
Collapse
|
13
|
McGenity TJ, Folwell BD, McKew BA, Sanni GO. Marine crude-oil biodegradation: a central role for interspecies interactions. AQUATIC BIOSYSTEMS 2012; 8:10. [PMID: 22591596 PMCID: PMC3465203 DOI: 10.1186/2046-9063-8-10] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/25/2012] [Indexed: 05/11/2023]
Abstract
The marine environment is highly susceptible to pollution by petroleum, and so it is important to understand how microorganisms degrade hydrocarbons, and thereby mitigate ecosystem damage. Our understanding about the ecology, physiology, biochemistry and genetics of oil-degrading bacteria and fungi has increased greatly in recent decades; however, individual populations of microbes do not function alone in nature. The diverse array of hydrocarbons present in crude oil requires resource partitioning by microbial populations, and microbial modification of oil components and the surrounding environment will lead to temporal succession. But even when just one type of hydrocarbon is present, a network of direct and indirect interactions within and between species is observed. In this review we consider competition for resources, but focus on some of the key cooperative interactions: consumption of metabolites, biosurfactant production, provision of oxygen and fixed nitrogen. The emphasis is largely on aerobic processes, and especially interactions between bacteria, fungi and microalgae. The self-construction of a functioning community is central to microbial success, and learning how such "microbial modules" interact will be pivotal to enhancing biotechnological processes, including the bioremediation of hydrocarbons.
Collapse
Affiliation(s)
- Terry J McGenity
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Benjamin D Folwell
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Boyd A McKew
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Gbemisola O Sanni
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| |
Collapse
|
14
|
Central role of dynamic tidal biofilms dominated by aerobic hydrocarbonoclastic bacteria and diatoms in the biodegradation of hydrocarbons in coastal mudflats. Appl Environ Microbiol 2012; 78:3638-48. [PMID: 22407688 DOI: 10.1128/aem.00072-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mudflats and salt marshes are habitats at the interface of aquatic and terrestrial systems that provide valuable services to ecosystems. Therefore, it is important to determine how catastrophic incidents, such as oil spills, influence the microbial communities in sediment that are pivotal to the function of the ecosystem and to identify the oil-degrading microbes that mitigate damage to the ecosystem. In this study, an oil spill was simulated by use of a tidal chamber containing intact diatom-dominated sediment cores from a temperate mudflat. Changes in the composition of bacteria and diatoms from both the sediment and tidal biofilms that had detached from the sediment surface were monitored as a function of hydrocarbon removal. The hydrocarbon concentration in the upper 1.5 cm of sediments decreased by 78% over 21 days, with at least 60% being attributed to biodegradation. Most phylotypes were minimally perturbed by the addition of oil, but at day 21, there was a 10-fold increase in the amount of cyanobacteria in the oiled sediment. Throughout the experiment, phylotypes associated with the aerobic degradation of hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs) (Cycloclasticus) and alkanes (Alcanivorax, Oleibacter, and Oceanospirillales strain ME113), substantively increased in oiled mesocosms, collectively representing 2% of the pyrosequences in the oiled sediments at day 21. Tidal biofilms from oiled cores at day 22, however, consisted mostly of phylotypes related to Alcanivorax borkumensis (49% of clones), Oceanospirillales strain ME113 (11% of clones), and diatoms (14% of clones). Thus, aerobic hydrocarbon biodegradation is most likely to be the main mechanism of attenuation of crude oil in the early weeks of an oil spill, with tidal biofilms representing zones of high hydrocarbon-degrading activity.
Collapse
|
15
|
Christie-Oleza JA, Piña-Villalonga JM, Bosch R, Nogales B, Armengaud J. Comparative proteogenomics of twelve Roseobacter exoproteomes reveals different adaptive strategies among these marine bacteria. Mol Cell Proteomics 2011; 11:M111.013110. [PMID: 22122883 DOI: 10.1074/mcp.m111.013110] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Roseobacters are generalist bacteria abundantly found in the oceans. Because little is known on how marine microorganisms interact in association or competition, we focused our attention on the microbial exoproteome, a key component in their interaction with extracellular milieu. Here we present a comparative analysis of the theoretically encoded exoproteome of twelve members of the Roseobacter group validated by extensive comparative proteogenomics. In silico analysis revealed that 30% of the encoded proteome of these microorganisms could be exported. The ratio of the different protein categories varied in accordance to the ecological distinctness of each strain, a trait reinforced by quantitative proteomics data. Despite the interspecies variations found, the most abundantly detected proteins by shotgun proteomics were from transporter, adhesion, motility, and toxin-like protein categories, defining four different plausible adaptive strategies within the Roseobacter group. In some strains the toxin-secretion strategy was over-represented with repeats-in-toxin-like proteins. Our results show that exoproteomes strongly depend on bacterial trophic strategy and can slightly change because of culture conditions. Simulated natural conditions and the effect of the indigenous microbial community on the exoproteome of Ruegeria pomeroyi DSS-3 were also assayed. Interestingly, we observed a significant depletion of the toxin-like proteins usually secreted by R. pomeroyi DSS-3 when grown in presence of a natural community sampled from a Mediterranean Sea port. The significance of this specific fraction of the exoproteome is discussed.
Collapse
|
16
|
Christie-Oleza JA, Fernandez B, Nogales B, Bosch R, Armengaud J. Proteomic insights into the lifestyle of an environmentally relevant marine bacterium. ISME JOURNAL 2011; 6:124-35. [PMID: 21776030 DOI: 10.1038/ismej.2011.86] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In terms of lifestyle, free-living bacteria are classified as either oligotrophic/specialist or opportunist/generalist. Heterogeneous marine environments such as coastal waters favour the establishment of marine generalist bacteria, which code for a large pool of functions. This is basically foreseen to cope with the heterogeneity of organic matter supplied to these systems. Nevertheless, it is not known what fraction of a generalist proteome is needed for house-keeping functions or what fraction is modified to cope with environmental changes. Here, we used high-throughput proteomics to define the proteome of Ruegeria pomeroyi DSS-3, a model marine generalist bacterium of the Roseobacter clade. We evaluated its genome expression under several natural environmental conditions, revealing the versatility of the bacterium to adapt to anthropogenic influence, poor nutrient concentrations or the presence of the natural microbial community. We also assayed 30 different laboratory incubations to increase proteome coverage and to dig further into the functional genomics of the bacterium. We established its core proteome and the proteome devoted to adaptation to general cellular physiological variations (almost 50%). We suggest that the other half of its theoretical proteome is the opportunist genetic pool devoted exclusively to very specific environmental conditions.
Collapse
|
17
|
Affiliation(s)
- Laura Giuliano
- Commission Internationale pour l'Exploration Scientifique de la Mer Méditerranée (CIESM) 16, Bd. de Suisse MC 98000, Monaco
| | | | | |
Collapse
|
18
|
Pseudomonas diversity in crude-oil-contaminated intertidal sand samples obtained after the Prestige oil spill. Appl Environ Microbiol 2010; 77:1076-85. [PMID: 21131512 DOI: 10.1128/aem.01741-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Galicia seashore, in northwestern Spain, was one of the shorelines affected by the Prestige oil spill in November 2002. The diversity of autochthonous Pseudomonas populations present at two beaches (Carnota municipality) was analyzed using culture-independent and culture-dependent methods. The first analysis involved the screening of an rpoD gene library. The second involved the isolation of 94 Pseudomonas strains that were able to grow on selective media by direct plating or after serial enrichments on several carbon sources: biphenyl, gentisate, hexadecane, methylnaphthalene, naphthalene, phenanthrene, salicylate, xylene, and succinate. Eight denitrifying Pseudomonas strains were also isolated by their ability to grow anaerobically with nitrate. The calculated coverage index for Pseudomonas species was 89% when clones and isolates were considered together, and there were 29 phylospecies detected. The most abundant were members of the species P. stutzeri, P. putida, P. anguilliseptica, and P. oleovorans. Thirty-one isolates could not be identified at the species level and were considered representatives of 16 putative novel Pseudomonas species. One isolate was considered representative of a novel P. stutzeri genomovar. Concordant results were obtained when the diversities of the cloned DNA library and the cultured strains were compared. The clone library obtained by the rpoD PCR method was a useful tool for evaluating Pseudomonas communities and also for microdiversity studies of Pseudomonas populations.
Collapse
|