1
|
Markovics A, Rosenthal KS, Mikecz K, Carambula RE, Ciemielewski JC, Zimmerman DH. Restoring the Balance between Pro-Inflammatory and Anti-Inflammatory Cytokines in the Treatment of Rheumatoid Arthritis: New Insights from Animal Models. Biomedicines 2021; 10:44. [PMID: 35052724 PMCID: PMC8772713 DOI: 10.3390/biomedicines10010044] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
Rheumatoid arthritis (RA) and other autoimmune inflammatory diseases are examples of imbalances within the immune system (disrupted homeostasis) that arise from the effects of an accumulation of environmental and habitual insults over a lifetime, combined with genetic predispositions. This review compares current immunotherapies-(1) disease-modifying anti-rheumatic drugs (DMARDs) and (2) Janus kinase (JAK) inhibitors (jakinibs)-to a newer approach-(3) therapeutic vaccines (using the LEAPS vaccine approach). The Ligand Epitope Antigen Presentation System (LEAPS) therapies are capable of inhibiting ongoing disease progression in animal models. Whereas DMARDs ablate or inhibit specific proinflammatory cytokines or cells and jakinibs inhibit the receptor activation cascade for expression of proinflammatory cytokines, the LEAPS therapeutic vaccines specifically modulate the ongoing antigen-specific, disease-driving, proinflammatory T memory cell responses. This decreases disease presentation and changes the cytokine conversation to decrease the expression of inflammatory cytokines (IL-17, IL-1(α or β), IL-6, IFN-γ, TNF-α) while increasing the expression of regulatory cytokines (IL-4, IL-10, TGF-β). This review refocuses the purpose of therapy for RA towards rebalancing the immune system rather than compromising specific components to stop disease. This review is intended to be thought provoking and look forward towards new therapeutic modalities rather than present a final definitive report.
Collapse
Affiliation(s)
- Adrienn Markovics
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | - Ken S. Rosenthal
- Department of Basic Sciences, Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA;
- Department of Integrative Medical Sciences, NE Ohio Medical University, Rootstown, OH 44272, USA
| | - Katalin Mikecz
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (A.M.); (K.M.)
| | | | | | | |
Collapse
|
2
|
The Role of Peptide-Based Tumor Vaccines on Cytokines of Adaptive Immunity: A Review. Int J Pept Res Ther 2021. [DOI: 10.1007/s10989-021-10270-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
3
|
Zimmerman DH, Carambula RE, Ciemielewski J, Rosenthal KS. Lessons from next generation influenza vaccines for inflammatory disease therapies. Int Immunopharmacol 2019; 74:105729. [PMID: 31280056 DOI: 10.1016/j.intimp.2019.105729] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022]
Abstract
Lessons can be learned for treating inflammatory diseases such as rheumatoid arthritis (RA) from next generation approaches for development of universal influenza vaccines. Immunomodulation of inflammatory diseases, rather than ablation of cytokine or cellular responses, can address the root cause of the disease and provide potential cure. Like influenza, there are different antigenic 'strains' and inflammatory T cell responses, Th1 or Th17, that drive each person's disease. As such, next generation vaccine-like antigen specific therapies for inflammatory diseases can be developed but will need to be customized to the patient depending upon the antigen and T cell response that is driving the disease.
Collapse
Affiliation(s)
| | | | | | - Ken S Rosenthal
- Roseman University of Health Sciences College of Medicine, 10530 Discovery Dr., Las Vegas, NV 89135, USA.
| |
Collapse
|
4
|
Mikecz K, Glant TT, Markovics A, Rosenthal KS, Kurko J, Carambula RE, Cress S, Steiner HL, Zimmerman DH. An epitope-specific DerG-PG70 LEAPS vaccine modulates T cell responses and suppresses arthritis progression in two related murine models of rheumatoid arthritis. Vaccine 2017; 35:4048-4056. [PMID: 28583308 DOI: 10.1016/j.vaccine.2017.05.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 05/03/2017] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune joint disease maintained by aberrant immune responses involving CD4+ T helper (Th)1 and Th17 cells. In this study, we tested the therapeutic efficacy of Ligand Epitope Antigen Presentation System (LEAPS™) vaccines in two Th1 cell-driven mouse models of RA, cartilage proteoglycan (PG)-induced arthritis (PGIA) and PG G1-domain-induced arthritis (GIA). The immunodominant PG peptide PG70 was attached to a DerG or J immune cell binding peptide, and the DerG-PG70 and J-PG70 LEAPS vaccines were administered to the mice after the onset of PGIA or GIA symptoms. As indicated by significant decreases in visual and histopathological scores of arthritis, the DerG-PG70 vaccine inhibited disease progression in both PGIA and GIA, while the J-PG70 vaccine was ineffective. Splenic CD4+ cells from DerG-PG70-treated mice were diminished in Th1 and Th17 populations but enriched in Th2 and regulatory T (Treg) cells. In vitro spleen cell-secreted and serum cytokines from DerG-PG70-treated mice demonstrated a shift from a pro-inflammatory to an anti-inflammatory/regulatory profile. DerG-PG70 peptide tetramers preferentially bound to CD4+ T-cells of GIA spleen cells. We conclude that the DerG-PG70 vaccine (now designated CEL-4000) exerts its therapeutic effect by interacting with CD4+ cells, which results in an antigen-specific down-modulation of pathogenic T-cell responses in both the PGIA and GIA models of RA. Future studies will need to determine the potential of LEAPS vaccination to provide disease suppression in patients with RA.
Collapse
Affiliation(s)
- Katalin Mikecz
- Rush University Medical Center, Department of Orthopedic Surgery, 1735 W. Harrison St., Cohn Research Building, Chicago, IL 60612, United States.
| | - Tibor T Glant
- Rush University Medical Center, Department of Orthopedic Surgery, 1735 W. Harrison St., Cohn Research Building, Chicago, IL 60612, United States.
| | - Adrienn Markovics
- Rush University Medical Center, Department of Orthopedic Surgery, 1735 W. Harrison St., Cohn Research Building, Chicago, IL 60612, United States.
| | - Kenneth S Rosenthal
- Roseman University of Health Sciences College of Medicine, 10530 Discovery Dr., Las Vegas, NV 89135, United States.
| | - Julia Kurko
- Rush University Medical Center, Department of Orthopedic Surgery, 1735 W. Harrison St., Cohn Research Building, Chicago, IL 60612, United States.
| | - Roy E Carambula
- CEL-SCI Corporation, 8229 Boone Blvd., Suite 802, Vienna, VA 22182, United States.
| | - Steve Cress
- CEL-SCI Corporation, 8229 Boone Blvd., Suite 802, Vienna, VA 22182, United States.
| | - Harold L Steiner
- CEL-SCI Corporation, 8229 Boone Blvd., Suite 802, Vienna, VA 22182, United States.
| | - Daniel H Zimmerman
- CEL-SCI Corporation, 8229 Boone Blvd., Suite 802, Vienna, VA 22182, United States.
| |
Collapse
|
5
|
LEAPS Vaccine Incorporating HER-2/neu Epitope Elicits Protection That Prevents and Limits Tumor Growth and Spread of Breast Cancer in a Mouse Model. J Immunol Res 2017; 2017:3613505. [PMID: 28459074 PMCID: PMC5385252 DOI: 10.1155/2017/3613505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/31/2017] [Accepted: 02/26/2017] [Indexed: 11/17/2022] Open
Abstract
The prototype J-LEAPS T cell vaccine for HER-2/neu breast cancer (J-HER) consists of the murine HER-2/neu66-74 H-2d CD8 T cell epitope covalently attached through a triglycine linker to the J-immune cell binding ligand (ICBL) (human β2 microglobulin38-50 peptide). The J-ICBL was chosen for its potential to promote Th1/Tc1 responses. In this proof-of-concept study, the ability of J-HER to prevent or treat cancer was tested in the TUBO cell-challenged BALB/c mouse model for HER-2/neu-expressing tumors. The J-HER vaccine was administered as an emulsion in Montanide ISA-51 without the need for a more potent adjuvant. When administered as a prophylactic vaccination before tumor challenge, J-HER protected against tumor development for at least 48 days. Despite eliciting protection, antibody production in J-HER-immunized, TUBO-challenged mice was less than that in unimmunized mice. More importantly, therapeutic administration of J-HER one week after challenge with TUBO breast cancer cells limited the spread of the tumors and the morbidity and the mortality in the challenged mice. The ability to elicit responses that prevent spread of the TUBO tumor by J-HER suggests its utility as a neoimmunoadjuvant therapy to surgery. Individual or mixtures of J-LEAPS vaccines can be readily prepared to include different CD8 T cell epitopes to optimize tumor therapy and customize treatment for individuals with different HLA types.
Collapse
|
6
|
Rosenthal KS, Kuntz A, Sikon J. Why Don't We Have a Vaccine Against……….? Part 2. Bacteria. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2016. [DOI: 10.1097/ipc.0000000000000352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
|
8
|
Rosenthal KS, Mikecz K, Steiner HL, Glant TT, Finnegan A, Carambula RE, Zimmerman DH. Rheumatoid arthritis vaccine therapies: perspectives and lessons from therapeutic ligand epitope antigen presentation system vaccines for models of rheumatoid arthritis. Expert Rev Vaccines 2015; 14:891-908. [PMID: 25787143 DOI: 10.1586/14760584.2015.1026330] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The current status of therapeutic vaccines for autoimmune diseases is reviewed with rheumatoid arthritis as the focus. Therapeutic vaccines for autoimmune diseases must regulate or subdue responses to common self-antigens. Ideally, such a vaccine would initiate an antigen-specific modulation of the T-cell immune response that drives the inflammatory disease. Appropriate animal models and types of T helper cells and signature cytokine responses that drive autoimmune disease are also discussed. Interpretation of these animal models must be done cautiously because the means of initiation, autoantigens, and even the signature cytokine and T helper cell (Th1 or Th17) responses that are involved in the disease may differ significantly from those in humans. We describe ligand epitope antigen presentation system vaccine modulation of T-cell autoimmune responses as a strategy for the design of therapeutic vaccines for rheumatoid arthritis, which may also be effective in other autoimmune conditions.
Collapse
|
9
|
Boonnak K, Vogel L, Orandle M, Zimmerman D, Talor E, Subbarao K. Antigen-activated dendritic cells ameliorate influenza A infections. J Clin Invest 2013; 123:2850-61. [PMID: 23934125 DOI: 10.1172/jci67550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 04/11/2013] [Indexed: 02/06/2023] Open
Abstract
Influenza A viruses cause significant morbidity and mortality worldwide. There is a need for alternative or adjunct therapies, as resistance to currently used antiviral drugs is emerging rapidly. We tested ligand epitope antigen presentation system (LEAPS) technology as a new immune-based treatment for influenza virus infection in a mouse model. Influenza-J-LEAPS peptides were synthesized by conjugating the binding ligand derived from the β2-microglobulin chain of the human MHC class I molecule (J-LEAPS) with 15 to 30 amino acid-long peptides derived from influenza virus NP, M, or HA proteins. DCs were stimulated with influenza-J-LEAPS peptides (influenza-J-LEAPS) and injected intravenously into infected mice. Antigen-specific LEAPS-stimulated DCs were effective in reducing influenza virus replication in the lungs and enhancing survival of infected animals. Additionally, they augmented influenza-specific T cell responses in the lungs and reduced the severity of disease by limiting excessive cytokine responses, which are known to contribute to morbidity and mortality following influenza virus infection. Our data demonstrate that influenza-J-LEAPS-pulsed DCs reduce virus replication in the lungs, enhance survival, and modulate the protective immune responses that eliminate the virus while preventing excessive cytokines that could injure the host. This approach shows promise as an adjunct to antiviral treatment of influenza virus infections.
Collapse
Affiliation(s)
- Kobporn Boonnak
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892-3203, USA
| | | | | | | | | | | |
Collapse
|
10
|
Cintolo JA, Datta J, Mathew SJ, Czerniecki BJ. Dendritic cell-based vaccines: barriers and opportunities. Future Oncol 2013; 8:1273-99. [PMID: 23130928 DOI: 10.2217/fon.12.125] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) have several characteristics that make them an ideal vehicle for tumor vaccines, and with the first US FDA-approved DC-based vaccine in use for the treatment of prostate cancer, this technology has become a promising new therapeutic option. However, DC-based vaccines face several barriers that have limited their effectiveness in clinical trials. A major barrier includes the activation state of the DC. Both DC lineage and maturation signals must be selected to optimize the antitumor response and overcome immunosuppressive effects of the tumor microenvironment. Another barrier to successful vaccination is the selection of target antigens that will activate both CD8(+) and CD4(+) T cells in a potent, immune-specific manner. Finally, tumor progression and immune dysfunction limit vaccine efficacy in advanced stages, which may make DC-based vaccines more efficacious in treating early-stage disease. This review underscores the scientific basis and advances in the development of DC-based vaccines, focuses on current barriers to success and highlights new research opportunities to address these obstacles.
Collapse
Affiliation(s)
- Jessica A Cintolo
- Department of Surgery & Harrison Department of Surgical Research, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
11
|
Zimmerman DH, Steiner H, Carmabula R, Talor E, Rosenthal KS. LEAPS therapeutic vaccines as antigen specific suppressors of inflammation in infectious and autoimmune diseases. JOURNAL OF VACCINES & VACCINATION 2012; 3:149. [PMID: 23400692 PMCID: PMC3567852 DOI: 10.4172/2157-7560.1000149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The L.E.A.P.S.(™) (Ligand Epitope Antigen Presentation System) technology platform has been used to develop immunoprotective and immunomodulating small peptide vaccines for infectious and autoimmune diseases. Several products are currently in various stages of development, at the pre-clinical stage (in animal challenge efficacy studies). Vaccine peptides can elicit protection of animals from lethal viral (herpes simplex virus [HSV-1] and influenza A) infection or can block the progression of autoimmune diseases (e.g. rheumatoid arthritis as in the collagen induced arthritis (CIA] or experimental autoimmune myocarditis (EAM) models). L.E.A.P.S. technology is a novel T-cell immunization technology that enables the design and synthesis of non-recombinant, proprietary peptide immunogens. Combination of a small peptide that activates the immune system with another small peptide from a disease-related protein, thus a conjugate containing both an Immune Cell Binding Ligand (ICBL) and a disease specific epitope, which allows the L.E.A.P.S. vaccines to activate precursors to differentiate and become more mature cells that can initiate and direct appropriate T cell responses. As such, readily synthesized, defined immunogens can be prepared to different diseases and are likely to elicit protection or therapy as applicable in humans as they are in mice. L.E.A.P.S. vaccines have promise for the treatment of rheumatoid arthritis and other inflammatory diseases and for infections, such as influenza and HSV1. The protective responses are characterized as Th1 immune and immunomodulatory responses with increased IL-12p70 and IFN-γ (Th1 cytokines) but reduced inflammatory cytokines TNF-α, IL-1 and IL-17 (Th2 and Th17 cytokines) and concomitant changes in antibody subtypes. LEAPS immunogens have been used directly in vivo or as ex vivo activators of DC which are then administered to the host.
Collapse
|