1
|
Garrison AJ, Norwood LA, Conner JK. Plasticity-mediated persistence and subsequent local adaptation in a global agricultural weed. Evolution 2024; 78:1804-1817. [PMID: 39001649 DOI: 10.1093/evolut/qpae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 10/30/2024]
Abstract
Phenotypic plasticity can alter traits that are crucial to population establishment in a new environment before adaptation can occur. How often phenotypic plasticity enables subsequent adaptive evolution is unknown, and examples of the phenomenon are limited. We investigated the hypothesis of plasticity-mediated persistence as a means of colonization of agricultural fields in one of the world's worst weeds, Raphanus raphanistrum ssp. raphanistrum. Using non-weedy native populations of the same species and subspecies as a comparison, we tested for plasticity-mediated persistence in a growth chamber reciprocal transplant experiment. We identified traits with genetic differentiation between the weedy and native ecotypes as well as phenotypic plasticity between growth chamber environments. We found that most traits were both plastic and differentiated between ecotypes, with the majority plastic and differentiated in the same direction. This suggests that phenotypic plasticity may have enabled radish populations to colonize and then adapt to novel agricultural environments.
Collapse
Affiliation(s)
- Ava J Garrison
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States
| | - Lauren A Norwood
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States
- Smithsonian Tropical Research Institute, Balboa, Ancón, Republic of Panama
| | - Jeffrey K Conner
- Kellogg Biological Station and Department of Plant Biology, Michigan State University, Hickory Corners, MI, United States
| |
Collapse
|
2
|
Pessoa HP, Dariva FD, Copati MGF, de Paula RG, de Oliveira Dias F, Gomes CN. Uncovering tomato candidate genes associated with drought tolerance using Solanum pennellii introgression lines. PLoS One 2023; 18:e0287178. [PMID: 37319140 PMCID: PMC10270355 DOI: 10.1371/journal.pone.0287178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
Tomato plants are sensitive to drought stress throughout their growth cycle. To be considered drought-tolerant, a cultivar should display tolerance at all developmental stages. This study aimed to evaluate whether Solanum pennellii introgression lines (ILs) previously selected as drought-tolerant during germination/seedling growth maintained this tolerance in the vegetative/reproductive stage. We then investigated these ILs to uncover candidate genes. The plants were subjected to two different environmental conditions: well-watered and drought-stressed (water withheld for ≤ 20 d after flowering). Phenotyping for morphological, physiological, fruit quality, and yield-related traits was performed, and the data was analyzed using a mixed-model approach. Using a multi-trait index that relies on factor analysis and genotype-ideotype distance (FAI-BLUP index), the genotypes were ordered based on how far they were from the drought-tolerant ideotype. Afterward, the tomato IL population map furnished by the SOL Genomics Network was utilized to identify introgressed segments of significance for the identification of candidate genes. Significant genotypic differences were found in the yield, water content, mean weight, length, and width of the fruit, the percentage of fruits displaying blossom-end rot, and titratable acidity. The drought-tolerance ideotype was built considering the maximum values for the fruit water content, number of fruits, mean fruit weight, and yield, minimum values for blossom-end rot, and mean values for titratable acidity. IL 1-4-18, IL 7-4-1, IL 7-1, IL 7-5-5, and IL 1-2 were ranked above M-82 and therefore considered drought-tolerant during the vegetative/reproductive stage. IL 1-4-18 and IL1-2 sustained drought tolerance displayed during germination/seedling growth into the vegetative/reproductive stage. The following candidate genes associated with drought tolerance were identified: AHG2, At1g55840, PRXIIF, SAP5, REF4-RELATED 1, PRXQ, CFS1, LCD, CCD1, and SCS. Because they are already associated with genetic markers, they can be transferred to elite tomato cultivars through marker-assisted technology after validation.
Collapse
Affiliation(s)
- Herika Paula Pessoa
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | - Carlos Nick Gomes
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
3
|
Moreira JDR, Rosa BL, Lira BS, Lima JE, Correia LNF, Otoni WC, Figueira A, Freschi L, Sakamoto T, Peres LEP, Rossi M, Zsögön A. Auxin-driven ecophysiological diversification of leaves in domesticated tomato. PLANT PHYSIOLOGY 2022; 190:113-126. [PMID: 35639975 PMCID: PMC9434155 DOI: 10.1093/plphys/kiac251] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/22/2022] [Indexed: 05/29/2023]
Abstract
Heterobaric leaves have bundle sheath extensions (BSEs) that compartmentalize the parenchyma, whereas homobaric leaves do not. The presence of BSEs affects leaf hydraulics and photosynthetic rate. The tomato (Solanum lycopersicum) obscuravenosa (obv) mutant lacks BSEs. Here, we identify the obv gene and the causative mutation, a nonsynonymous amino acid change that disrupts a C2H2 zinc finger motif in a putative transcription factor. This mutation exists as a polymorphism in the natural range of wild tomatoes but has increased in frequency in domesticated tomatoes, suggesting that the latter diversified into heterobaric and homobaric leaf types. The obv mutant displays reduced vein density, leaf hydraulic conductance and photosynthetic assimilation rate. We show that these and other pleiotropic effects on plant development, including changes in leaf insertion angle, leaf margin serration, minor vein density, and fruit shape, are controlled by OBV via changes in auxin signaling. Loss of function of the transcriptional regulator AUXIN RESPONSE FACTOR 4 (ARF4) also results in defective BSE development, revealing an additional component of a genetic module controlling aspects of leaf development important for ecological adaptation and subject to breeding selection.
Collapse
Affiliation(s)
- Juliene d R Moreira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno L Rosa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Bruno S Lira
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Joni E Lima
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ludmila N F Correia
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Wagner C Otoni
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, 13400-970 Piracicaba, São Paulo, Brazil
| | - Luciano Freschi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | - Tetsu Sakamoto
- Bioinformatics Multidisciplinary Environment, Instituto Metrópole Digital, Universidade Federal Do Rio Grande Do Norte, 59078-400 Natal, Rio Grande do Norte, Brazil
| | - Lázaro E P Peres
- Laboratory of Hormonal Control of Plant Development, Departamento de Ciências Biológicas (LCB), Escola Superior de Agricultura “Luiz de Queiroz,” Universidade de São Paulo, CP 09, 13418-900 Piracicaba, São Paulo, Brazil
| | - Magdalena Rossi
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, 05508-090 São Paulo, Brazil
| | | |
Collapse
|
4
|
Evaluation of anatomical and physiological traits of Solanum pennellii Cor. associated with plant yield in tomato plants under water-limited conditions. Sci Rep 2020; 10:16052. [PMID: 32994541 PMCID: PMC7524713 DOI: 10.1038/s41598-020-73004-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 09/04/2020] [Indexed: 11/18/2022] Open
Abstract
Although intensively studied, few works had looked into S. pennellii’s ability to cope with water-deficit conditions from a breeding point of view. In this study, we assessed potential traits of S. pennellii, that had previously been linked to high yields in other plant species, under long-term water-limited conditions and made a parallel with plant yield. For this purpose, the drought-resistant tomato genotypes IL 3–5 and IL 10–1, and the drought-sensitive IL 2–5 and IL 7–1 at seed level, together with both parents the S. pennellii accession LA 716 and the cultivar M82 were kept at 50 and 100% ASW throughout the growing season. Our findings confirm the superiority of LA 716 under water-limited conditions compared to the other S. lycopersicum genotypes in terms of plant water status maintenance. Percentual reduction on plant yield was higher in IL 3–5 and IL 10–1 than in M82 plants, indicating no correlation between drought resistance on germination and plant productive stages. A strong positive correlation was found between fruit yield and A, gs, and Ψleaf at 50% ASW, suggesting these traits as important selection criteria. LT and gmin, LA 716’s most promising traits, did not show a linear correlation with fruit yield under low water regimes. This study unravels traits behind tomato performance under water-limited conditions and should work as guidance for breeders aiming at developing drought-resistant tomato cultivars.
Collapse
|
5
|
Tranchida-Lombardo V, Aiese Cigliano R, Anzar I, Landi S, Palombieri S, Colantuono C, Bostan H, Termolino P, Aversano R, Batelli G, Cammareri M, Carputo D, Chiusano ML, Conicella C, Consiglio F, D'Agostino N, De Palma M, Di Matteo A, Grandillo S, Sanseverino W, Tucci M, Grillo S. Whole-genome re-sequencing of two Italian tomato landraces reveals sequence variations in genes associated with stress tolerance, fruit quality and long shelf-life traits. DNA Res 2018; 25:149-160. [PMID: 29149280 PMCID: PMC5909465 DOI: 10.1093/dnares/dsx045] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Tomato is a high value crop and the primary model for fleshy fruit development and ripening. Breeding priorities include increased fruit quality, shelf life and tolerance to stresses. To contribute towards this goal, we re-sequenced the genomes of Corbarino (COR) and Lucariello (LUC) landraces, which both possess the traits of plant adaptation to water deficit, prolonged fruit shelf-life and good fruit quality. Through the newly developed pipeline Reconstructor, we generated the genome sequences of COR and LUC using datasets of 65.8 M and 56.4 M of 30-150 bp paired-end reads, respectively. New contigs including reads that could not be mapped to the tomato reference genome were assembled, and a total of 43, 054 and 44, 579 gene loci were annotated in COR and LUC. Both genomes showed novel regions with similarity to Solanum pimpinellifolium and Solanum pennellii. In addition to small deletions and insertions, 2, 000 and 1, 700 single nucleotide polymorphisms (SNPs) could exert potentially disruptive effects on 1, 371 and 1, 201 genes in COR and LUC, respectively. A detailed survey of the SNPs occurring in fruit quality, shelf life and stress tolerance related-genes identified several candidates of potential relevance. Variations in ethylene response components may concur in determining peculiar phenotypes of COR and LUC.
Collapse
Affiliation(s)
- Valentina Tranchida-Lombardo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | | | - Irantzu Anzar
- Sequentia Biotech Calle Comte D'Urgel 240, 08036 Barcelona, Spain
| | - Simone Landi
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Samuela Palombieri
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Chiara Colantuono
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Hamed Bostan
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Pasquale Termolino
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Riccardo Aversano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Giorgia Batelli
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Maria Cammareri
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Domenico Carputo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Maria Luisa Chiusano
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Clara Conicella
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Federica Consiglio
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Nunzio D'Agostino
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, Centro Di Ricerca Orticultura e Florovivaismo (CREA-OF), Via Cavalleggeri, 25, 84098 Pontecagnano Faiano SA, Italy
| | - Monica De Palma
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Antonio Di Matteo
- Department of Agricultural Sciences, University of Naples Federico II, Via Universita' 100, 80055 Portici, Italy
| | - Silvana Grandillo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | | | - Marina Tucci
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| | - Stefania Grillo
- National Research Council of Italy Institute of Biosciences and Bioresources (CNR-IBBR), Via Università 133, 80055 Portici, Italy
| |
Collapse
|
6
|
Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J. Why does the magnitude of genotype-by-environment interaction vary? Ecol Evol 2018; 8:6342-6353. [PMID: 29988442 PMCID: PMC6024136 DOI: 10.1002/ece3.4128] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/27/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022] Open
Abstract
Genotype-by-environment interaction (G × E), that is, genetic variation in phenotypic plasticity, is a central concept in ecology and evolutionary biology. G×E has wide-ranging implications for trait development and for understanding how organisms will respond to environmental change. Although G × E has been extensively documented, its presence and magnitude vary dramatically across populations and traits. Despite this, we still know little about why G × E is so evident in some traits and populations, but minimal or absent in others. To encourage synthetic research in this area, we review diverse hypotheses for the underlying biological causes of variation in G × E. We extract common themes from these hypotheses to develop a more synthetic understanding of variation in G × E and suggest some important next steps.
Collapse
Affiliation(s)
| | - Alison M. Bell
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| | - Jonathan Flint
- University of California Los AngelesLos AngelesCalifornia
| | | | | | - Jason Keagy
- University of Illinois at Urbana‐ChampaignUrbanaIllinois
| |
Collapse
|
7
|
Haak DC, Fukao T, Grene R, Hua Z, Ivanov R, Perrella G, Li S. Multilevel Regulation of Abiotic Stress Responses in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1564. [PMID: 29033955 PMCID: PMC5627039 DOI: 10.3389/fpls.2017.01564] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/28/2017] [Indexed: 05/18/2023]
Abstract
The sessile lifestyle of plants requires them to cope with stresses in situ. Plants overcome abiotic stresses by altering structure/morphology, and in some extreme conditions, by compressing the life cycle to survive the stresses in the form of seeds. Genetic and molecular studies have uncovered complex regulatory processes that coordinate stress adaptation and tolerance in plants, which are integrated at various levels. Investigating natural variation in stress responses has provided important insights into the evolutionary processes that shape the integrated regulation of adaptation and tolerance. This review primarily focuses on the current understanding of how transcriptional, post-transcriptional, post-translational, and epigenetic processes along with genetic variation orchestrate stress responses in plants. We also discuss the current and future development of computational tools to identify biologically meaningful factors from high dimensional, genome-scale data and construct the signaling networks consisting of these components.
Collapse
Affiliation(s)
- David C. Haak
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Takeshi Fukao
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| | - Ruth Grene
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, BlacksburgVA, United States
| | - Zhihua Hua
- Department of Environmental and Plant Biology, Interdisciplinary Program in Molecular and Cellular Biology, Ohio University, AthensOH, United States
| | - Rumen Ivanov
- Institut für Botanik, Heinrich-Heine-Universität DüsseldorfDüsseldorf, Germany
| | - Giorgio Perrella
- Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of GlasgowGlasgow, United Kingdom
| | - Song Li
- Department of Crop and Soil Environmental Sciences, Virginia Tech, BlacksburgVA, United States
| |
Collapse
|
8
|
Muir CD, Conesa MÀ, Roldán EJ, Molins A, Galmés J. Weak coordination between leaf structure and function among closely related tomato species. THE NEW PHYTOLOGIST 2017; 213:1642-1653. [PMID: 28164333 DOI: 10.1111/nph.14285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 09/16/2016] [Indexed: 05/13/2023]
Abstract
Theory predicts that natural selection should favor coordination between leaf physiology, biochemistry and anatomical structure along a functional trait spectrum from fast, resource-acquisitive syndromes to slow, resource-conservative syndromes. However, the coordination hypothesis has rarely been tested at a phylogenetic scale most relevant for understanding rapid adaptation in the recent past or for the prediction of evolutionary trajectories in response to climate change. We used a common garden to examine genetically based coordination between leaf traits across 19 wild and cultivated tomato taxa. We found weak integration between leaf structure (e.g. leaf mass per area) and physiological function (photosynthetic rate, biochemical capacity and CO2 diffusion), even though all were arrayed in the predicted direction along a 'fast-slow' spectrum. This suggests considerable scope for unique trait combinations to evolve in response to new environments or in crop breeding. In particular, we found that partially independent variation in stomatal and mesophyll conductance may allow a plant to improve water-use efficiency without necessarily sacrificing maximum photosynthetic rates. Our study does not imply that functional trait spectra, such as the leaf economics spectrum, are unimportant, but that many important axes of variation within a taxonomic group may be unique and not generalizable to other taxa.
Collapse
Affiliation(s)
- Christopher D Muir
- Department of Biology, Indiana University, Bloomington, IN, 47405, USA
- Biodiversity Research Centre and Botany Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Miquel À Conesa
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| | - Emilio J Roldán
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| | - Arántzazu Molins
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| | - Jeroni Galmés
- Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia, Universitat de les Illes Balears, Ctra. Valldemossa km 7.5 E-07122, Palma de Mallorca, Spain
| |
Collapse
|
9
|
Affiliation(s)
| | - James D Bever
- Department of Biology, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
10
|
Merging Ecology and Genomics to Dissect Diversity in Wild Tomatoes and Their Relatives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 781:273-98. [DOI: 10.1007/978-94-007-7347-9_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Goldschmidt EE. The Evolution of Fruit Tree Productivity: A Review. ECONOMIC BOTANY 2013; 67:51-62. [PMID: 23538880 PMCID: PMC3606516 DOI: 10.1007/s12231-012-9219-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 12/20/2012] [Indexed: 05/08/2023]
Abstract
The Evolution of Fruit Tree Productivity: A Review. Domestication of fruit trees has received far less attention than that of annual crop plants. In particular, very little is known about the evolution of fruit tree productivity. In the wild, most tree species reach reproductive maturity after a long period of juvenility and even then, sexual reproduction appears sporadically, often in a mode of masting. Environmental constraints limit trees' reproductive activity in their natural, wild habitats, resulting in poor, irregular productivity. Early fructification and regular, high rates of productivity have been selected by people, unconsciously and consciously. The reviewed evidence indicates an evolutionary continuum of productivity patterns among trees of wild habitats, intermediary domesticates, and the most advanced domesticates. Alternate bearing appears to represent an intermediate step in the fruit tree evolutionary pathway. The existence of a molecular, genetic mechanism that controls trees' sexual reproduction and fruiting pattern is suggested.
Collapse
Affiliation(s)
- Eliezer E. Goldschmidt
- Institute of Plant Sciences and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
12
|
Kazmi RH, Khan N, Willems LAJ, VAN Heusden AW, Ligterink W, Hilhorst HWM. Complex genetics controls natural variation among seed quality phenotypes in a recombinant inbred population of an interspecific cross between Solanum lycopersicum × Solanum pimpinellifolium. PLANT, CELL & ENVIRONMENT 2012; 35:929-51. [PMID: 22074055 DOI: 10.1111/j.1365-3040.2011.02463.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Seed quality in tomato is associated with many complex physiological and genetic traits. While plant processes are frequently controlled by the action of small- to large-effect genes that follow classic Mendelian inheritance, our study suggests that seed quality is primarily quantitative and genetically complex. Using a recombinant inbred line population of Solanum lycopersicum × Solanum pimpinellifolium, we identified quantitative trait loci (QTLs) influencing seed quality phenotypes under non-stress, as well as salt, osmotic, cold, high-temperature and oxidative stress conditions. In total, 42 seed quality traits were analysed and 120 QTLs were identified for germination traits under different conditions. Significant phenotypic correlations were observed between germination traits under optimal conditions, as well as under different stress conditions. In conclusion, one or more QTLs were identified for each trait with some of these QTLs co-locating. Co-location of QTLs for different traits can be an indication that a locus has pleiotropic effects on multiple traits due to a common mechanistic basis. However, several QTLs also dissected seed quality in its separate components, suggesting different physiological mechanisms and signalling pathways for different seed quality attributes.
Collapse
Affiliation(s)
- Rashid H Kazmi
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg 1, NL-6708 PB Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
13
|
Bernatchez L, Tseng M. Evolutionary applications summer 2011. Evol Appl 2011; 4:617-20. [PMID: 25568009 PMCID: PMC3352538 DOI: 10.1111/j.1752-4571.2011.00205.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Affiliation(s)
- Louis Bernatchez
- Département de biologie, Université Laval Québec, QC, Canada e-mail:
| | - Michelle Tseng
- Department of Zoology, University of British Columbia Vancouver, BC, Canada e-mail:
| |
Collapse
|
14
|
Almeida J, Quadrana L, Asís R, Setta N, de Godoy F, Bermúdez L, Otaiza SN, Corrêa da Silva JV, Fernie AR, Carrari F, Rossi M. Genetic dissection of vitamin E biosynthesis in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3781-98. [PMID: 21527625 PMCID: PMC3134339 DOI: 10.1093/jxb/err055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 02/07/2011] [Accepted: 02/08/2011] [Indexed: 05/20/2023]
Abstract
Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for α-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (α, β, γ, and δ) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.
Collapse
Affiliation(s)
- Juliana Almeida
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Leandro Quadrana
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - Ramón Asís
- CIBICI, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Córdoba, Argentina
| | - Nathalia Setta
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Fabiana de Godoy
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Luisa Bermúdez
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
| | - Santiago N. Otaiza
- CIBICI, Facultad de Ciencias Químicas Universidad Nacional de Córdoba, CC 5000, Córdoba, Argentina
| | | | - Alisdair R. Fernie
- Max Planck Institute for Molecular Plant Physiology, Wissenschaftspark Golm, Am Mühlenberg 1, Potsdam-Golm, D-14476, Germany
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaría (IB-INTA), and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), PO Box 25, B1712WAA Castelar, Argentina (partner group of the Max Planck Institute for Molecular Plant Physiology, Potsdam-Golm, Germany)
| | - Magdalena Rossi
- Departamento de Botânica-IB-USP, 277, 05508-900, São Paulo, SP, Brazil
- To whom correspondence should be addressed. E-mail: ; E-mail:
| |
Collapse
|
15
|
Flood PJ, Harbinson J, Aarts MGM. Natural genetic variation in plant photosynthesis. TRENDS IN PLANT SCIENCE 2011; 16:327-35. [PMID: 21435936 DOI: 10.1016/j.tplants.2011.02.005] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 02/02/2011] [Accepted: 02/10/2011] [Indexed: 05/18/2023]
Abstract
Natural genetic variation in plant photosynthesis is a largely unexplored and as a result an underused genetic resource for crop improvement. Numerous studies show genetic variation in photosynthetic traits in both crop and wild species, and there is an increasingly detailed knowledge base concerning the interaction of photosynthetic phenotypes with their environment. The genetic factors that cause this variation remain largely unknown. Investigations into natural genetic variation in photosynthesis will provide insights into the genetic regulation of this complex trait. Such insights can be used to understand evolutionary processes that affect primary production, allow greater understanding of the genetic regulation of photosynthesis and ultimately increase the productivity of our crops.
Collapse
Affiliation(s)
- Pádraic J Flood
- Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | | | | |
Collapse
|