1
|
Khoury CK, Brush S, Costich DE, Curry HA, de Haan S, Engels JMM, Guarino L, Hoban S, Mercer KL, Miller AJ, Nabhan GP, Perales HR, Richards C, Riggins C, Thormann I. Crop genetic erosion: understanding and responding to loss of crop diversity. THE NEW PHYTOLOGIST 2022; 233:84-118. [PMID: 34515358 DOI: 10.1111/nph.17733] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Crop diversity underpins the productivity, resilience and adaptive capacity of agriculture. Loss of this diversity, termed crop genetic erosion, is therefore concerning. While alarms regarding evident declines in crop diversity have been raised for over a century, the magnitude, trajectory, drivers and significance of these losses remain insufficiently understood. We outline the various definitions, measurements, scales and sources of information on crop genetic erosion. We then provide a synthesis of evidence regarding changes in the diversity of traditional crop landraces on farms, modern crop cultivars in agriculture, crop wild relatives in their natural habitats and crop genetic resources held in conservation repositories. This evidence indicates that marked losses, but also maintenance and increases in diversity, have occurred in all these contexts, the extent depending on species, taxonomic and geographic scale, and region, as well as analytical approach. We discuss steps needed to further advance knowledge around the agricultural and societal significance, as well as conservation implications, of crop genetic erosion. Finally, we propose actions to mitigate, stem and reverse further losses of crop diversity.
Collapse
Affiliation(s)
- Colin K Khoury
- International Center for Tropical Agriculture (CIAT), Km 17, Recta Cali-Palmira, Apartado Aéreo 6713, 763537, Cali, Colombia
- Department of Biology, Saint Louis University, 1 N. Grand Blvd, St Louis, MO, 63103, USA
- San Diego Botanic Garden, 230 Quail Gardens Dr., Encinitas, CA, 92024, USA
| | - Stephen Brush
- University of California Davis, 1 Shields Ave., Davis, CA, 95616, USA
| | - Denise E Costich
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz, Km. 45, El Batán, 56237, Texcoco, México
| | - Helen Anne Curry
- Department of History and Philosophy of Science, University of Cambridge, Free School Lane, Cambridge, CB2 3RH, UK
| | - Stef de Haan
- International Potato Center (CIP), Avenida La Molina 1895, La Molina, Apartado Postal 1558, Lima, Peru
| | | | - Luigi Guarino
- Global Crop Diversity Trust, Platz der Vereinten Nationen 7, 53113, Bonn, Germany
| | - Sean Hoban
- The Morton Arboretum, The Center for Tree Science, 4100 IL-53, Lisle, IL, 60532, USA
| | - Kristin L Mercer
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - Allison J Miller
- Department of Biology, Saint Louis University, 1 N. Grand Blvd, St Louis, MO, 63103, USA
- Donald Danforth Plant Science Center, 975 N Warson Rd, St Louis, MO, 63132, USA
| | - Gary P Nabhan
- Southwest Center and Institute of the Environment, University of Arizona, 1401 E. First St., PO Box 210185, Tucson, AZ, 85721-0185, USA
| | - Hugo R Perales
- Departamento de Agroecología, El Colegio de la Frontera Sur, San Cristóbal, Chiapas, 29290, México
| | - Chris Richards
- National Laboratory for Genetic Resources Preservation, United States Department of Agriculture, Agricultural Research Service, 1111 South Mason Street, Fort Collins, CO, 80521, USA
| | - Chance Riggins
- Department of Crop Sciences, University of Illinois, 331 Edward R. Madigan Lab, 1201 W. Gregory Dr., Urbana, IL, 61801, USA
| | - Imke Thormann
- Federal Office for Agriculture and Food (BLE), Information and Coordination Centre for Biological Diversity (IBV), Deichmanns Aue 29, 53179, Bonn, Germany
| |
Collapse
|
2
|
Dreiseitl A. Specific Resistance of Barley to Powdery Mildew, Its Use and Beyond. A Concise Critical Review. Genes (Basel) 2020; 11:E971. [PMID: 32825722 PMCID: PMC7565388 DOI: 10.3390/genes11090971] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/12/2020] [Accepted: 08/20/2020] [Indexed: 11/18/2022] Open
Abstract
Powdery mildew caused by the airborne ascomycete fungus Blumeria graminis f. sp. hordei (Bgh) is one of most common diseases of barley (Hordeum vulgare). This, as with many other plant pathogens, can be efficiently controlled by inexpensive and environmentally-friendly genetic resistance. General requirements for resistance to the pathogens are effectiveness and durability. Resistance of barley to Bgh has been studied intensively, and this review describes recent research and summarizes the specific resistance genes found in barley varieties since the last conspectus. Bgh is extraordinarily adaptable, and some commonly recommended strategies for using genetic resistance, including pyramiding of specific genes, may not be effective because they can only contribute to a limited extent to obtain sufficient resistance durability of widely-grown cultivars. In spring barley, breeding the nonspecific mlo gene is a valuable source of durable resistance. Pyramiding of nonspecific quantitative resistance genes or using introgressions derived from bulbous barley (Hordeum bulbosum) are promising ways for breeding future winter barley cultivars. The utilization of a wide spectrum of nonhost resistances can also be adopted once practical methods have been developed.
Collapse
Affiliation(s)
- Antonín Dreiseitl
- Department of Integrated Plant Protection, Agrotest Fyto Ltd., Havlíčkova 2787, CZ-767 01 Kroměříž, Czech Republic
| |
Collapse
|
3
|
Bellis ES, Kelly EA, Lorts CM, Gao H, DeLeo VL, Rouhan G, Budden A, Bhaskara GB, Hu Z, Muscarella R, Timko MP, Nebie B, Runo SM, Chilcoat ND, Juenger TE, Morris GP, dePamphilis CW, Lasky JR. Genomics of sorghum local adaptation to a parasitic plant. Proc Natl Acad Sci U S A 2020; 117:4243-4251. [PMID: 32047036 PMCID: PMC7049153 DOI: 10.1073/pnas.1908707117] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Host-parasite coevolution can maintain high levels of genetic diversity in traits involved in species interactions. In many systems, host traits exploited by parasites are constrained by use in other functions, leading to complex selective pressures across space and time. Here, we study genome-wide variation in the staple crop Sorghum bicolor (L.) Moench and its association with the parasitic weed Striga hermonthica (Delile) Benth., a major constraint to food security in Africa. We hypothesize that geographic selection mosaics across gradients of parasite occurrence maintain genetic diversity in sorghum landrace resistance. Suggesting a role in local adaptation to parasite pressure, multiple independent loss-of-function alleles at sorghum LOW GERMINATION STIMULANT 1 (LGS1) are broadly distributed among African landraces and geographically associated with S. hermonthica occurrence. However, low frequency of these alleles within S. hermonthica-prone regions and their absence elsewhere implicate potential trade-offs restricting their fixation. LGS1 is thought to cause resistance by changing stereochemistry of strigolactones, hormones that control plant architecture and below-ground signaling to mycorrhizae and are required to stimulate parasite germination. Consistent with trade-offs, we find signatures of balancing selection surrounding LGS1 and other candidates from analysis of genome-wide associations with parasite distribution. Experiments with CRISPR-Cas9-edited sorghum further indicate that the benefit of LGS1-mediated resistance strongly depends on parasite genotype and abiotic environment and comes at the cost of reduced photosystem gene expression. Our study demonstrates long-term maintenance of diversity in host resistance genes across smallholder agroecosystems, providing a valuable comparison to both industrial farming systems and natural communities.
Collapse
Affiliation(s)
- Emily S Bellis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802;
- Arkansas Biosciences Institute, Arkansas State University, State University, AR 72467
- Department of Computer Science, Arkansas State University, State University, AR 72467
| | - Elizabeth A Kelly
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Claire M Lorts
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Huirong Gao
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Victoria L DeLeo
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
- Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, PA 16802
| | - Germinal Rouhan
- Institut Systématique Evolution Biodiversité, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, École Pratique des Hautes Études, CP39, 75005 Paris, France
| | - Andrew Budden
- Identification & Naming, Royal Botanic Gardens, Kew, TW9 3AB Richmond, United Kingdom
| | - Govinal B Bhaskara
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Zhenbin Hu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Robert Muscarella
- Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, SE-75236 Uppsala, Sweden
| | - Michael P Timko
- Department of Biology, University of Virginia, Charlottesville, VA 22904
| | - Baloua Nebie
- West and Central Africa Regional Program, International Crops Research Institute for the Semi-Arid Tropics, BP 320 Bamako, Mali
| | - Steven M Runo
- Department of Biochemistry and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - N Doane Chilcoat
- Applied Science and Technology, Corteva Agriscience, Johnston, IA 50131
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712
| | - Geoffrey P Morris
- Department of Agronomy, Kansas State University, Manhattan, KS 66506
| | - Claude W dePamphilis
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| | - Jesse R Lasky
- Department of Biology, The Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
4
|
Hendry AP, Schoen DJ, Wolak ME, Reid JM. The Contemporary Evolution of Fitness. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2018. [DOI: 10.1146/annurev-ecolsys-110617-062358] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The rate of evolution of population mean fitness informs how selection acting in contemporary populations can counteract environmental change and genetic degradation (mutation, gene flow, drift, recombination). This rate influences population increases (e.g., range expansion), population stability (e.g., cryptic eco-evolutionary dynamics), and population recovery (i.e., evolutionary rescue). We review approaches for estimating such rates, especially in wild populations. We then review empirical estimates derived from two approaches: mutation accumulation (MA) and additive genetic variance in fitness (IAw). MA studies inform how selection counters genetic degradation arising from deleterious mutations, typically generating estimates of <1% per generation. IAw studies provide an integrated prediction of proportional change per generation, nearly always generating estimates of <20% and, more typically, <10%. Overall, considerable, but not unlimited, evolutionary potential exists in populations facing detrimental environmental or genetic change. However, further studies with diverse methods and species are required for more robust and general insights.
Collapse
Affiliation(s)
- Andrew P. Hendry
- Redpath Museum, McGill University, Montréal, Québec H3A 0C4, Canada
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Daniel J. Schoen
- Department of Biology, McGill University, Montréal, Québec H3A 1B1, Canada
| | - Matthew E. Wolak
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| | - Jane M. Reid
- School of Biological Sciences, University of Aberdeen, Aberdeen AB24 2TZ, United Kingdom
| |
Collapse
|
5
|
Bellon MR, Dulloo E, Sardos J, Thormann I, Burdon JJ. In situ conservation-harnessing natural and human-derived evolutionary forces to ensure future crop adaptation. Evol Appl 2017; 10:965-977. [PMID: 29151853 PMCID: PMC5680627 DOI: 10.1111/eva.12521] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 12/16/2022] Open
Abstract
Ensuring the availability of the broadest possible germplasm base for agriculture in the face of increasingly uncertain and variable patterns of biotic and abiotic change is fundamental for the world's future food supply. While ex situ conservation plays a major role in the conservation and availability of crop germplasm, it may be insufficient to ensure this. In situ conservation aims to maintain target species and the collective genotypes they represent under evolution. A major rationale for this view is based on the likelihood that continued exposure to changing selective forces will generate and favor new genetic variation and an increased likelihood that rare alleles that may be of value to future agriculture are maintained. However, the evidence that underpins this key rationale remains fragmented and has not been examined systematically, thereby decreasing the perceived value and support for in situ conservation for agriculture and food systems and limiting the conservation options available. This study reviews evidence regarding the likelihood and rate of evolutionary change in both biotic and abiotic traits for crops and their wild relatives, placing these processes in a realistic context in which smallholder farming operates and crop wild relatives continue to exist. It identifies areas of research that would contribute to a deeper understanding of these processes as the basis for making them more useful for future crop adaptation.
Collapse
Affiliation(s)
- Mauricio R. Bellon
- Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO)México CityMéxico
| | | | | | | | - Jeremy J. Burdon
- Commonwealth Scientific and Industrial Research Organisation Agriculture & Food (CSIRO)CanberraACTAustralia
| |
Collapse
|
6
|
Nevill PG, Tomlinson S, Elliott CP, Espeland EK, Dixon KW, Merritt DJ. Seed production areas for the global restoration challenge. Ecol Evol 2016; 6:7490-7497. [PMID: 28725415 PMCID: PMC5513262 DOI: 10.1002/ece3.2455] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Wild‐collected seed can no longer meet global demand in restoration. Dedicated Seed Production Areas (SPA) for restoration are needed and these require application of ecological, economic, and population‐genetic science. SPA design and construction must embrace the ecological sustainability principles of restoration.
![]()
Collapse
Affiliation(s)
- Paul G Nevill
- Kings Park and Botanic Garden Kings Park WA Australia.,School of Plant Biology University of Western Australia Nedlands WA Australia.,Present address: Department of Environment and Agriculture ARC Centre for Mine Restoration Curtin University Bentley 6102 WA Australia
| | | | - Carole P Elliott
- Kings Park and Botanic Garden Kings Park WA Australia.,School of Veterinary and Life Sciences Environment and Conservation Sciences Murdoch University Murdoch WA Australia
| | | | - Kingsley W Dixon
- Kings Park and Botanic Garden Kings Park WA Australia.,School of Plant Biology University of Western Australia Nedlands WA Australia.,Present address: Department of Environment and Agriculture ARC Centre for Mine Restoration Curtin University Bentley 6102 WA Australia
| | - David J Merritt
- Kings Park and Botanic Garden Kings Park WA Australia.,School of Plant Biology University of Western Australia Nedlands WA Australia
| |
Collapse
|
7
|
Espeland EK, Emery NC, Mercer KL, Woolbright SA, Kettenring KM, Gepts P, Etterson JR. Evolution of plant materials for ecological restoration: insights from the applied and basic literature. J Appl Ecol 2016. [DOI: 10.1111/1365-2664.12739] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Erin K. Espeland
- USDA-ARS Pest Management Research Unit; 1500 N. Central Avenue Sidney MT 59270 USA
| | - Nancy C. Emery
- Department of Ecology and Evolutionary Biology; RAMY 0334, University of Colorado; Boulder CO 80309 USA
| | - Kristin L. Mercer
- Department of Horticulture and Crop Science; 2021 Coffey Road, Ohio State University; Columbus OH 43210 USA
| | - Scott A. Woolbright
- Department of Biological Sciences; University of Arkansas at Little Rock 2801 S. University Avenue; Little Rock AR 72204 USA
| | - Karin M. Kettenring
- Ecology Center and Department of Watershed Sciences; 5210 Old Main Hill, Utah State University; Logan UT 84322 USA
| | - Paul Gepts
- Department of Plant Sciences/MS1; University of California; 1 Shields Avenue, Davis CA 95616 USA
| | - Julie R. Etterson
- Department of Biology; University of Minnesota Duluth; 1049 University Drive Duluth MN 55812 USA
| |
Collapse
|
8
|
Monteiro F, Vidigal P, Barros AB, Monteiro A, Oliveira HR, Viegas W. Genetic Distinctiveness of Rye In situ Accessions from Portugal Unveils a New Hotspot of Unexplored Genetic Resources. FRONTIERS IN PLANT SCIENCE 2016; 7:1334. [PMID: 27630658 PMCID: PMC5006150 DOI: 10.3389/fpls.2016.01334] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 08/18/2016] [Indexed: 05/21/2023]
Abstract
Rye (Secale cereale L.) is a cereal crop of major importance in many parts of Europe and rye breeders are presently very concerned with the restrict pool of rye genetic resources available. Such narrowing of rye genetic diversity results from the presence of "Petkus" pool in most modern rye varieties as well as "Petkus" × "Carsten" heterotic pool in hybrid rye breeding programs. Previous studies on rye's genetic diversity revealed moreover a common genetic background on landraces (ex situ) and cultivars, regardless of breeding level or geographical origin. Thus evaluation of in situ populations is of utmost importance to unveil "on farm" diversity, which is largely undervalued. Here, we perform the first comprehensive assessment of rye's genetic diversity and population structuring using cultivars, ex situ landraces along a comprehensive sampling of in situ accessions from Portugal, through a molecular-directed analysis using SSRs markers. Rye genetic diversity and population structure analysis does not present any geographical trend but disclosed marked differences between genetic backgrounds of in situ accessions and those of cultivars/ex situ collections. Such genetic distinctiveness of in situ accessions highlights their unexplored potential as new genetic resources, which can be used to boost rye breeding strategies and the production of new varieties. Overall, our study successfully demonstrates the high prospective impact of comparing genetic diversity and structure of cultivars, ex situ, and in situ samples in ascertaining the status of plant genetic resources (PGR).
Collapse
Affiliation(s)
- Filipa Monteiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
- *Correspondence: Filipa Monteiro
| | - Patrícia Vidigal
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - André B. Barros
- Colégio F3 Food, Farming and Forestry, Universidade de LisboaLisboa, Portugal
| | - Ana Monteiro
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| | - Hugo R. Oliveira
- Plant Biology/Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoPorto, Portugal
- Faculty of Life Sciences, Manchester Institute of Biotechnology, University of ManchesterManchester, UK
| | - Wanda Viegas
- Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
9
|
Conserving plants in gene banks and nature: investigating complementarity with Trifolium thompsonii Morton. PLoS One 2014; 9:e105145. [PMID: 25121602 PMCID: PMC4133347 DOI: 10.1371/journal.pone.0105145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 07/21/2014] [Indexed: 11/19/2022] Open
Abstract
A standard conservation strategy for plant genetic resources integrates in situ (on-farm or wild) and ex situ (gene or field bank) approaches. Gene bank managers collect ex situ accessions that represent a comprehensive snap shot of the genetic diversity of in situ populations at a given time and place. Although simple in theory, achieving complementary in situ and ex situ holdings is challenging. Using Trifolium thompsonii as a model insect-pollinated herbaceous perennial species, we used AFLP markers to compare genetic diversity and structure of ex situ accessions collected at two time periods (1995, 2004) from four locations, with their corresponding in situ populations sampled in 2009. Our goal was to assess the complementarity of the two approaches. We examined how gene flow, selection and genetic drift contributed to population change. Across locations, we found no difference in diversity between ex situ and in situ samples. One population showed a decline in genetic diversity over the 15 years studied. Population genetic differentiation among the four locations was significant, but weak. Association tests suggested infrequent, long distance gene flow. Selection and drift occurred, but differences due to spatial effects were three times as strong as differences attributed to temporal effects, and suggested recollection efforts could occur at intervals greater than fifteen years. An effective collecting strategy for insect pollinated herbaceous perennial species was to sample >150 plants, equalize maternal contribution, and sample along random transects with sufficient space between plants to minimize intrafamilial sampling. Quantifying genetic change between ex situ and in situ accessions allows genetic resource managers to validate ex situ collecting and maintenance protocols, develop appropriate recollection intervals, and provide an early detection mechanism for identifying problematic conditions that can be addressed to prevent further decline in vulnerable in situ populations.
Collapse
|
10
|
Current issues in cereal crop biodiversity. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 147:1-35. [PMID: 24352706 DOI: 10.1007/10_2013_263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The exploration, conservation, and use of agricultural biodiversity are essential components of efficient transdisciplinary research for a sustainable agriculture and food sector. Most recent advances on plant biotechnology and crop genomics must be complemented with a holistic management of plant genetic resources. Plant breeding programs aimed at improving agricultural productivity and food security can benefit from the systematic exploitation and conservation of genetic diversity to meet the demands of a growing population facing climate change. The genetic diversity of staple small grains, including rice, maize, wheat, millets, and more recently quinoa, have been surveyed to encourage utilization and prioritization of areas for germplasm conservation. Geographic information system technologies and spatial analysis are now being used as powerful tools to elucidate genetic and ecological patterns in the distribution of cultivated and wild species to establish coherent programs for the management of plant genetic resources for food and agriculture.
Collapse
|
11
|
Kulpa SM, Leger EA. Strong natural selection during plant restoration favors an unexpected suite of plant traits. Evol Appl 2013; 6:510-23. [PMID: 23745142 PMCID: PMC3673478 DOI: 10.1111/eva.12038] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Accepted: 11/05/2012] [Indexed: 01/17/2023] Open
Abstract
RESTORATION IS AN OPPORTUNITY TO STUDY NATURAL SELECTION: One can measure the distribution of traits in source propagules used to found populations, compare this with the distribution of traits in successful recruits, and determine the strength and direction of selection on potentially adaptive traits. We investigated whether natural selection influenced seedling establishment during postfire restoration in the Great Basin, an area where large-scale restoration occurs with a few widely available cultivars planted over a large range of environmental conditions. We collected seeds from established plants of the perennial grass Elymus elymoides ssp. californicus (squirreltail) at two restoration sites and compared the distribution of phenotypic traits of surviving plants with the original pool of restoration seeds. Seeds were planted in common gardens for two generations. Plants grown from seeds that established in the field were a nonrandom subset of the original seeds, with directional selection consistently favoring a correlated suite of traits in both field sites: small plant and seed size, and earlier flowering phenology. These results demonstrate that natural selection can affect restoration establishment in strong and predictable ways and that adaptive traits in these sites were opposite of the current criteria used for selection of restoration material in this system.
Collapse
Affiliation(s)
- Sarah M Kulpa
- Department of Natural Resources and Environmental Science, University of Nevada Reno, NV, USA
| | | |
Collapse
|
12
|
Meyer RS, DuVal AE, Jensen HR. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. THE NEW PHYTOLOGIST 2012; 196:29-48. [PMID: 22889076 DOI: 10.1111/j.1469-8137.2012.04253.x] [Citation(s) in RCA: 390] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Domesticated food crops are derived from a phylogenetically diverse assemblage of wild ancestors through artificial selection for different traits. Our understanding of domestication, however, is based upon a subset of well-studied 'model' crops, many of them from the Poaceae family. Here, we investigate domestication traits and theories using a broader range of crops. We reviewed domestication information (e.g. center of domestication, plant traits, wild ancestors, domestication dates, domestication traits, early and current uses) for 203 major and minor food crops. Compiled data were used to test classic and contemporary theories in crop domestication. Many typical features of domestication associated with model crops, including changes in ploidy level, loss of shattering, multiple origins, and domestication outside the native range, are less common within this broader dataset. In addition, there are strong spatial and temporal trends in our dataset. The overall time required to domesticate a species has decreased since the earliest domestication events. The frequencies of some domestication syndrome traits (e.g. nonshattering) have decreased over time, while others (e.g. changes to secondary metabolites) have increased. We discuss the influences of the ecological, evolutionary, cultural and technological factors that make domestication a dynamic and ongoing process.
Collapse
Affiliation(s)
- Rachel S Meyer
- The New York Botanical Garden, Science Division, Bronx, NY 10458, USA
- The Graduate Center, City University of New York, Biology Program, 365 Fifth Ave, New York, NY 10016, USA
| | - Ashley E DuVal
- Yale University, School of Forestry and Environmental Studies, 195 Prospect Street, New Haven, CT 06511, USA
| | - Helen R Jensen
- McGill University, Department of Biology, 1205 Dr Penfield Avenue, Montreal, QC, Canada H3A 1B1
| |
Collapse
|