1
|
Khoshnamvand H, Vaissi S, Azimi M, Ahmadzadeh F. Phylogenetic climatic niche evolution and diversification of the Neurergus species (Salamandridae) in the Irano-Anatolian biodiversity hotspot. Ecol Evol 2024; 14:e70105. [PMID: 39100205 PMCID: PMC11294440 DOI: 10.1002/ece3.70105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
This study explores how climate variables influenced the evolution and diversification of Neurergus newts within the Irano-Anatolian biodiversity hotspot. We use a dated phylogenetic tree and climatic niche models to analyze their evolutionary history and ecological preferences. Using genetic data from nuclear (KIAA) and mitochondrial (16s and 12s) genes, we estimate divergence times and identify four major Neurergus clades. The initial speciation event occurred approximately 11.3 million years ago, coinciding with the uplift of the Zagros and Anatolian mountains. This geological transformation isolated newt populations, likely triggering the first speciation event. By integrating potential geographic distribution with climate variables, we reconstruct ancestral niche occupancy profiles. This highlights the critical roles of temperature and precipitation in shaping Neurergus habitat preferences and distribution. We observe both phylogenetic niche conservatism and divergence, with niche divergence playing a dominant role in diversification. This research emphasizes the complex interplay of geography, climate, and ecology in speciation and the vulnerability of isolated mountain newt populations to environmental changes.
Collapse
Affiliation(s)
- Hadi Khoshnamvand
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research InstituteShahid Beheshti University, G.C., EvinTehranIran
| | - Somaye Vaissi
- Department of Biology, Faculty of ScienceRazi UniversityKermanshahIran
| | - Maryam Azimi
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research InstituteShahid Beheshti University, G.C., EvinTehranIran
| | - Faraham Ahmadzadeh
- Department of Biodiversity and Ecosystem Management, Environmental Sciences Research InstituteShahid Beheshti University, G.C., EvinTehranIran
| |
Collapse
|
2
|
Gompert Z, Springer A, Brady M, Chaturvedi S, Lucas LK. Genomic time-series data show that gene flow maintains high genetic diversity despite substantial genetic drift in a butterfly species. Mol Ecol 2021; 30:4991-5008. [PMID: 34379852 DOI: 10.1111/mec.16111] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 07/09/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
Effective population size affects the efficacy of selection, rate of evolution by drift, and neutral diversity levels. When species are subdivided into multiple populations connected by gene flow, evolutionary processes can depend on global or local effective population sizes. Theory predicts that high levels of diversity might be maintained by gene flow, even very low levels of gene flow, consistent with species long-term effective population size, but tests of this idea are mostly lacking. Here, we show that Lycaeides buttery populations maintain low contemporary (variance) effective population sizes (e.g., ~200 individuals) and thus evolve rapidly by genetic drift. In contrast, populations harbored high levels of genetic diversity consistent with an effective population size several orders of magnitude larger. We hypothesized that the differences in the magnitude and variability of contemporary versus long-term effective population sizes were caused by gene flow of sufficient magnitude to maintain diversity but only subtly affect evolution on generational time scales. Consistent with this hypothesis, we detected low but non-trivial gene flow among populations. Furthermore, using short-term population-genomic time-series data, we documented patterns consistent with predictions from this hypothesis, including a weak but detectable excess of evolutionary change in the direction of the mean (migrant gene pool) allele frequencies across populations, and consistency in the direction of allele frequency change over time. The documented decoupling of diversity levels and short-term change by drift in Lycaeides has implications for our understanding of contemporary evolution and the maintenance of genetic variation in the wild.
Collapse
Affiliation(s)
- Zachariah Gompert
- Department of Biology, Utah State University, Logan, UT, 84322, USA.,Ecology Center, Utah State University, Logan, UT, 84322, USA
| | - Amy Springer
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Megan Brady
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| | - Samridhi Chaturvedi
- Department of Biology, Utah State University, Logan, UT, 84322, USA.,Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Lauren K Lucas
- Department of Biology, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
3
|
Arghode V, Jandu N, McLean GN. Exploring the connection between organizations and organisms in dealing with change. EUROPEAN JOURNAL OF TRAINING AND DEVELOPMENT 2020. [DOI: 10.1108/ejtd-06-2020-0095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
This paper aims to review organizational studies literature and related fields to explore the parallel between organizations and organisms in dealing with change.
Design/methodology/approach
The authors reviewed the literature to explore organizational change theories. Additionally, they referred to biological studies to explore the connection between organizations and organisms.
Findings
To cope successfully with change, organizations need to be aware of the critical, vulnerable points that may endanger their survival. These vulnerabilities can arise from external or internal factors or both. Organizational leaders, being aware of these criticalities, can act swiftly to deal with threats while keeping an eye on available opportunities.
Research limitations/implications
Future research could be conducted on understanding the elements of biological transformations through an in-depth study focused on species that have undergone frequent mutations and adaptations. It is hoped that HRD researchers, especially organization development (OD) theorists and practitioners, can build upon the ideas presented in this article.
Practical implications
The review and analysis can open doors for HRD practitioners to seek a better understanding of biological transformations, while enabling them to borrow ideas to be used in leading organizational change and design successful organizational change.
Originality/value
In this paper, the authors selected organizational theories to outline parallels between organizations and organisms to emphasize what organizations can learn from the success of organisms changing over billions of years. Thus, this paper uniquely contributes to HRD literature by encouraging OD researchers to conduct more interdisciplinary research. Most importantly, this paper contributes to understanding the underlying theories in HRD/OD.
Collapse
|
4
|
Muir AP, Dubois SF, Ross RE, Firth LB, Knights AM, Lima FP, Seabra R, Corre E, Le Corguillé G, Nunes FLD. Seascape genomics reveals population isolation in the reef-building honeycomb worm, Sabellaria alveolata (L.). BMC Evol Biol 2020; 20:100. [PMID: 32778052 PMCID: PMC7418442 DOI: 10.1186/s12862-020-01658-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Under the threat of climate change populations can disperse, acclimatise or evolve in order to avoid fitness loss. In light of this, it is important to understand neutral gene flow patterns as a measure of dispersal potential, but also adaptive genetic variation as a measure of evolutionary potential. In order to assess genetic variation and how this relates to environment in the honeycomb worm (Sabellaria alveolata (L.)), a reef-building polychaete that supports high biodiversity, we carried out RAD sequencing using individuals from along its complete latitudinal range. Patterns of neutral population genetic structure were compared to larval dispersal as predicted by ocean circulation modelling, and outlier analyses and genotype-environment association tests were used to attempt to identify loci under selection in relation to local temperature data. RESULTS We genotyped 482 filtered SNPs, from 68 individuals across nine sites, 27 of which were identified as outliers using BAYESCAN and ARLEQUIN. All outlier loci were potentially under balancing selection, despite previous evidence of local adaptation in the system. Limited gene flow was observed among reef-sites (FST = 0.28 ± 0.10), in line with the low dispersal potential identified by the larval dispersal models. The North Atlantic reef emerged as a distinct population and this was linked to high local larval retention and the effect of the North Atlantic Current on dispersal. CONCLUSIONS As an isolated population, with limited potential for natural genetic or demographic augmentation from other reefs, the North Atlantic site warrants conservation attention in order to preserve not only this species, but above all the crucial functional ecological roles that are associated with their bioconstructions. Our study highlights the utility of using seascape genomics to identify populations of conservation concern.
Collapse
Affiliation(s)
- Anna P Muir
- Conservation Biology Research Group, Department of Biological Sciences, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK.
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France.
| | - Stanislas F Dubois
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| | - Rebecca E Ross
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
- Institute of Marine Research, 1870 Nordnes, 5817, Bergen, Norway
| | - Louise B Firth
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Antony M Knights
- Marine Biology and Ecology Research Centre, School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Fernando P Lima
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Rui Seabra
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Vairão, Portugal
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique de Roscoff, 29680, Roscoff, France
| | - Flavia L D Nunes
- Laboratoire des Sciences de l'Environnement Marin, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Université de Brest (UBO), Université Européenne de Bretagne (UEB), Institut Universitaire Européen de la Mer (IUEM), 29280, Plouzané, France
- Ifremer, DYNECO, Laboratory of Coastal Benthic Ecology, F-29280, Plouzané, France
| |
Collapse
|
5
|
Vizueta J, Macías‐Hernández N, Arnedo MA, Rozas J, Sánchez‐Gracia A. Chance and predictability in evolution: The genomic basis of convergent dietary specializations in an adaptive radiation. Mol Ecol 2019; 28:4028-4045. [DOI: 10.1111/mec.15199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Joel Vizueta
- Departament de Genètica, Microbiologia i Estadística Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Nuria Macías‐Hernández
- Laboratory for Integrative Biodiversity Research Finnish Museum of Natural History University of Helsinki Helsinki Finland
- Island Ecology and Evolution Research Group Instituto de Productos Naturales y Agrobiología (IPNA‐CSIC) Tenerife Spain
| | - Miquel A. Arnedo
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals Facultat de Biologia Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Julio Rozas
- Departament de Genètica, Microbiologia i Estadística Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| | - Alejandro Sánchez‐Gracia
- Departament de Genètica, Microbiologia i Estadística Facultat de Biologia and Institut de Recerca de la Biodiversitat (IRBio) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
6
|
Kondratyeva A, Grandcolas P, Pavoine S. Reconciling the concepts and measures of diversity, rarity and originality in ecology and evolution. Biol Rev Camb Philos Soc 2019; 94:1317-1337. [PMID: 30861626 PMCID: PMC6850657 DOI: 10.1111/brv.12504] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 02/07/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
The concept of biological diversity, or biodiversity, is at the core of evolutionary and ecological studies. Many indices of biodiversity have been developed in the last four decades, with species being one of the central units of these indices. However, evolutionary and ecological studies need a precise description of species' characteristics to best quantify inter-species diversity, as species are not equivalent and exchangeable. One of the first concepts characterizing species in biodiversity studies was abundance-based rarity. Abundance-based rarity was then complemented by trait- and phylo-based rarity, called species' trait-based and phylogenetic originalities, respectively. Originality, which is a property of an individual species, represents a species' contribution to the overall diversity of a reference set of species. Originality can also be defined as the rarity of a species' characteristics such as the state of a functional trait, which is often assumed to be represented by the position of the species on a phylogenetic tree. We review and compare various approaches for measuring originality, rarity and diversity and demonstrate that (i) even if attempts to bridge these concepts do exist, only a few ecological and evolutionary studies have tried to combine them all in the past two decades; (ii) phylo- and trait-based diversity indices can be written as a function of species rarity and originality measures in several ways; and (iii) there is a need for the joint use of these three types of indices to understand community assembly processes and species' roles in ecosystem functioning in order to protect biodiversity efficiently.
Collapse
Affiliation(s)
- Anna Kondratyeva
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 57 Rue Cuvier, CP 135, 75005ParisFrance
- Institut Systématique Evolution Biodiversité (ISYEB), Département Origines et Evolution, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université EPHE, 57 Rue Cuvier, CP 50, 75005ParisFrance
| | - Philippe Grandcolas
- Institut Systématique Evolution Biodiversité (ISYEB), Département Origines et Evolution, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université EPHE, 57 Rue Cuvier, CP 50, 75005ParisFrance
| | - Sandrine Pavoine
- Centre d'Ecologie et des Sciences de la Conservation (CESCO), Département Homme et Environnement, Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, 57 Rue Cuvier, CP 135, 75005ParisFrance
| |
Collapse
|
7
|
Dotsev AV, Deniskova TE, Okhlopkov IM, Mészáros G, Sölkner J, Reyer H, Wimmers K, Brem G, Zinovieva NA. Genome-wide SNP analysis unveils genetic structure and phylogeographic history of snow sheep ( Ovis nivicola) populations inhabiting the Verkhoyansk Mountains and Momsky Ridge (northeastern Siberia). Ecol Evol 2018; 8:8000-8010. [PMID: 30250679 PMCID: PMC6144981 DOI: 10.1002/ece3.4350] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 01/01/2023] Open
Abstract
Insights into the genetic characteristics of a species provide important information for wildlife conservation programs. Here, we used the OvineSNP50 BeadChip developed for domestic sheep to examine population structure and evaluate genetic diversity of snow sheep (Ovis nivicola) inhabiting Verkhoyansk Range and Momsky Ridge. A total of 1,121 polymorphic SNPs were used to test 80 specimens representing five populations, including four populations of the Verkhoyansk Mountain chain: Kharaulakh Ridge-Tiksi Bay (TIK, n = 22), Orulgan Ridge (ORU, n = 22), the central part of Verkhoyansk Range (VER, n = 15), Suntar-Khayata Ridge (SKH, n = 13), and Momsky Ridge (MOM, n = 8). We showed that the studied populations were genetically structured according to a geographic pattern. Pairwise FST values ranged from 0.044 to 0.205. Admixture analysis identified K = 2 as the most likely number of ancestral populations. A Neighbor-Net tree showed that TIK was an isolated group related to the main network through ORU. TreeMix analysis revealed that TIK and MOM originated from two different ancestral populations and detected gene flow from MOM to ORU. This was supported by the f3 statistic, which showed that ORU is an admixed population with TIK and MOM/SKH heritage. Genetic diversity in the studied groups was increasing southward. Minimum values of observed (Ho) and expected (He) heterozygosity and allelic richness (Ar) were observed in the most northern population-TIK, and maximum values were observed in the most southern population-SKH. Thus, our results revealed clear genetic structure in the studied populations of snow sheep and showed that TIK has a different origin from MOM, SKH, and VER even though they are conventionally considered a single subspecies known as Yakut snow sheep (Ovis nivicola lydekkeri). Most likely, TIK was an isolated group during the Late Pleistocene glaciations of Verkhoyansk Range.
Collapse
Affiliation(s)
- Arsen V. Dotsev
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| | - Tatiana E. Deniskova
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| | | | - Gabor Mészáros
- Division of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Johann Sölkner
- Division of Livestock SciencesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Henry Reyer
- Institute of Genome BiologyLeibniz Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Klaus Wimmers
- Institute of Genome BiologyLeibniz Institute for Farm Animal Biology (FBN)DummerstorfGermany
| | - Gottfried Brem
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
- Institute of Animal Breeding and GeneticsUniversity of Veterinary Medicine (VMU)ViennaAustria
| | - Natalia A. Zinovieva
- L.K. Ernst Federal Science Center for Animal HusbandryMoscow RegionPodolskRussian Federation
| |
Collapse
|
8
|
Mixed-species versus monocultures in plantation forestry: Development, benefits, ecosystem services and perspectives for the future. Glob Ecol Conserv 2018. [DOI: 10.1016/j.gecco.2018.e00419] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
9
|
Tian D, Xiao Y, Tong Y, Fu N, Liu Q, Li C. Diversity and conservation of Chinese wild begonias. PLANT DIVERSITY 2018; 40:75-90. [PMID: 30175289 PMCID: PMC6114263 DOI: 10.1016/j.pld.2018.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/01/2023]
Abstract
Begonia, one of the most diverse plant taxa and the fifth or sixth largest angiosperm genus, consists of over 1800 accepted species. The number of species recognized within this genus has greatly increased over the past 20 years, rising from 80 to 200 species in China alone. Based on recent field surveys, the number of begonia species in China is predicted to be between 250 and 300. Given the large number of begonia species that still remain to be described, further taxonomical work is urgently required. This is especially true for Chinese Begonia, in which there is a huge diversity of habitat, habit, plant size, leaf type, flower and fruit morphology, and most species are narrowly distributed in isolated habitats that are subject to negative disturbances from climate change, as well as agricultural and industrial activities. Although the conservation status for the majority of species has been evaluated using the standards of the International Union for Conservation of Nature, the results don't represent the truth in many species, and also about 11.5% of which are data-absent. In addition, illegal collection and over-harvesting of wild begonias for ornamental or medicinal use has increased due to the rapid development of internet commerce. Far more often than predicted, these species should be categorized as rare and endangered and require immediate protection. Ex situ conservation of Chinese begonias started in 1995 and over 60% of the total species have been so far introduced into cultivation by several major botanical gardens in China. However, only few research institutions, limited funds and human resources have been involved in Begonia conservation; moreover, no project has conducted reintroduction. Therefore, more conservation-based work remains to be done. Improved conservation of Chinese begonias in the future depends on further field survey, an improved understanding of population diversity, and integrative approaches, including in situ and ex situ conservation, seed banking, and plant reintroduction. Species-targeted conservation zones should be established for endangered species excluded from the existing nature reserves. Additionally, laws pertaining to plant protection should be extended to prevent the illegal collection and transaction of wild plants, particularly for those species with unique habitats and small populations.
Collapse
Affiliation(s)
- Daike Tian
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China
| | - Yan Xiao
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China
| | - Yi Tong
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China
| | - Naifeng Fu
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China
| | - Qingqing Liu
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai 201602, China
| | - Chun Li
- Shanghai Chenshan Plant Science Research Center of Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, Shanghai 201602, China
- Lushan Forestry Bureau, Ya'an 625600, Sichuan, China
| |
Collapse
|
10
|
Kovac M, Hladnik D, Kutnar L. Biodiversity in (the Natura 2000) forest habitats is not static: its conservation calls for an active management approach. J Nat Conserv 2018. [DOI: 10.1016/j.jnc.2017.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Brauer CJ, Hammer MP, Beheregaray LB. Riverscape genomics of a threatened fish across a hydroclimatically heterogeneous river basin. Mol Ecol 2016; 25:5093-5113. [DOI: 10.1111/mec.13830] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 08/15/2016] [Accepted: 08/23/2016] [Indexed: 12/14/2022]
Affiliation(s)
- Chris J. Brauer
- Molecular Ecology Laboratory School of Biological Sciences Flinders University Adelaide SA 5042 Australia
| | - Michael P. Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory Darwin NT 0801 Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory School of Biological Sciences Flinders University Adelaide SA 5042 Australia
| |
Collapse
|
12
|
Muñoz AR, Márquez AL, Real R. An approach to consider behavioral plasticity as a source of uncertainty when forecasting species' response to climate change. Ecol Evol 2015; 5:2359-73. [PMID: 26120426 PMCID: PMC4475369 DOI: 10.1002/ece3.1519] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 04/10/2015] [Accepted: 04/14/2015] [Indexed: 11/25/2022] Open
Abstract
The rapid ecological shifts that are occurring due to climate change present major challenges for managers and policymakers and, therefore, are one of the main concerns for environmental modelers and evolutionary biologists. Species distribution models (SDM) are appropriate tools for assessing the relationship between species distribution and environmental conditions, so being customarily used to forecast the biogeographical response of species to climate change. A serious limitation of species distribution models when forecasting the effects of climate change is that they normally assume that species behavior and climatic tolerances will remain constant through time. In this study, we propose a new methodology, based on fuzzy logic, useful for incorporating the potential capacity of species to adapt to new conditions into species distribution models. Our results demonstrate that it is possible to include different behavioral responses of species when predicting the effects of climate change on species distribution. Favorability models offered in this study show two extremes: one considering that the species will not modify its present behavior, and another assuming that the species will take full advantage of the possibilities offered by an increase in environmental favorability. This methodology may mean a more realistic approach to the assessment of the consequences of global change on species' distribution and conservation. Overlooking the potential of species' phenotypical plasticity may under- or overestimate the predicted response of species to changes in environmental drivers and its effects on species distribution. Using this approach, we could reinforce the science behind conservation planning in the current situation of rapid climate change.
Collapse
Affiliation(s)
- Antonio-Román Muñoz
- Biogeography, Diversity and Conservation Research Team, Department of Animal Biology, Faculty of Sciences, University of MalagaE-29071, Malaga, Spain
- Department of Didactic of Science, Faculty of Science Education, University of MalagaE-29071, Malaga, Spain
| | - Ana Luz Márquez
- Biogeography, Diversity and Conservation Research Team, Department of Animal Biology, Faculty of Sciences, University of MalagaE-29071, Malaga, Spain
| | - Raimundo Real
- Biogeography, Diversity and Conservation Research Team, Department of Animal Biology, Faculty of Sciences, University of MalagaE-29071, Malaga, Spain
| |
Collapse
|
13
|
Swaegers J, Mergeay J, Therry L, Bonte D, Larmuseau MHD, Stoks R. Unravelling the effects of contemporary and historical range expansion on the distribution of genetic diversity in the damselfly Coenagrion scitulum. J Evol Biol 2014; 27:748-59. [DOI: 10.1111/jeb.12347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/23/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Affiliation(s)
- J. Swaegers
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| | - J. Mergeay
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
- Research Institute for Nature and Forest; Geraardsbergen Belgium
| | - L. Therry
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| | - D. Bonte
- Terrestrial Ecology Unit; Ghent University; Ghent Belgium
| | - M. H. D. Larmuseau
- Laboratory of Biodiversity and Evolutionary Genomics; University of Leuven; Leuven Belgium
- Laboratory of Forensic Genetics and Molecular Archaeology; University of Leuven; Leuven Belgium
| | - R. Stoks
- Laboratory of Aquatic Ecology, Evolution and Conservation; University of Leuven; Leuven Belgium
| |
Collapse
|
14
|
Faith DP. Biodiversity and evolutionary history: useful extensions of the PD phylogenetic diversity assessment framework. Ann N Y Acad Sci 2013; 1289:69-89. [PMID: 23773093 DOI: 10.1111/nyas.12186] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Evolutionary biology is a core discipline in biodiversity science. Evolutionary history or phylogeny provides one natural measure of biodiversity through the popular phylogenetic diversity (PD) measure. The evolutionary model underlying PD means that it can be interpreted as quantifying the relative feature diversity of sets of species. Quantifying feature diversity measures possible future uses and benefits or option values. Interpretation of PD as counting-up features is the basis for an emerging broad family of PD calculations, of use to both biodiversity researchers and decision makers. Many of these calculations extend conventional species-level indices to the features level. Useful PD calculations include PD complementarity and endemism, Hill and Valley numbers incorporating abundance, and PD dissimilarities. A flexible analysis framework is provided by expected PD calculations, applied to either probabilities of extinction or presence-absence. Practical extensions include phylogenetic risk analysis and measures of distinctiveness and endemism. These support the integration of phylogenetic diversity into biodiversity conservation and monitoring programs.
Collapse
|
15
|
Jones RC, Steane DA, Lavery M, Vaillancourt RE, Potts BM. Multiple evolutionary processes drive the patterns of genetic differentiation in a forest tree species complex. Ecol Evol 2012; 3:1-17. [PMID: 23403692 PMCID: PMC3568837 DOI: 10.1002/ece3.421] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 09/26/2012] [Accepted: 10/03/2012] [Indexed: 12/02/2022] Open
Abstract
Forest trees frequently form species complexes, complicating taxonomic classification and gene pool management. This is certainly the case in Eucalyptus, and well exemplified by the Eucalyptus globulus complex. This ecologically and economically significant complex comprises four taxa (sspp. bicostata, globulus, maidenii, pseudoglobulus) that are geographically and morphologically distinct, but linked by extensive "intergrade" populations. To resolve their genetic affinities, nine microsatellites were used to genotype 1200 trees from throughout the natural range of the complex in Australia, representing 33 morphological core and intergrade populations. There was significant spatial genetic structure (F(ST) = 0.10), but variation was continuous. High genetic diversity in southern ssp. maidenii indicates that this region is the center of origin. Genetic diversity decreases and population differentiation increases with distance from this area, suggesting that drift is a major evolutionary process. Many of the intergrade populations, along with other populations morphologically classified as ssp. pseudoglobulus or ssp. globulus, belong to a "cryptic genetic entity" that is genetically and geographically intermediate between core ssp. bicostata, ssp. maidenii, and ssp. globulus. Geography, rather than morphology, therefore, is the best predictor of overall genetic affinities within the complex and should be used to classify germplasm into management units for conservation and breeding purposes.
Collapse
Affiliation(s)
- Rebecca C Jones
- School of Plant Science, University of Tasmania Private Bag 55, Hobart, Tasmania, 7001, Australia ; CRC for Forestry Private Bag 12, Hobart, Tasmania, 7001, Australia
| | | | | | | | | |
Collapse
|