1
|
Gross IP, Wilson AE, Wolak ME. The fitness consequences of wildlife conservation translocations: a meta-analysis. Biol Rev Camb Philos Soc 2024; 99:348-371. [PMID: 37844577 DOI: 10.1111/brv.13025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 10/01/2023] [Accepted: 10/04/2023] [Indexed: 10/18/2023]
Abstract
Conservation translocation is a common strategy to offset mounting rates of population declines through the transfer of captive- or wild-origin organisms into areas where conspecific populations are imperilled or completely extirpated. Translocations that supplement existing populations are referred to as reinforcements and can be conducted using captive-origin animals [ex situ reinforcement (ESR)] or wild-origin animals without any captive ancestry [in situ reinforcement (ISR)]. These programs have been criticized for low success rates and husbandry practices that produce individuals with genetic and performance deficits, but the post-release performance of captive-origin or wild-origin translocated groups has not been systematically reviewed to quantify success relative to wild-resident control groups. To assess the disparity in post-release performance of translocated organisms relative to wild-resident conspecifics and examine the association of performance disparity with organismal and methodological factors across studies, we conducted a systematic review and meta-analysis of 821 performance comparisons from 171 studies representing nine animal classes (101 species). We found that translocated organisms have 64% decreased odds of out-performing their wild-resident counterparts, supporting claims of systemic issues hampering conservation translocations. To help identify translocation practices that could maximize program success in the future, we further quantified the impact of broad organismal and methodological factors on the disparity between translocated and wild-resident conspecific performance. Pre-release animal enrichment significantly reduced performance disparities, whereas our results suggest no overall effects of taxonomic group, sex, captive generation time, or the type of fitness surrogate measured. This work is the most comprehensive systematic review to date of animal conservation translocations in which wild conspecifics were used as comparators, thereby facilitating an evaluation of the overall impact of this conservation strategy and identifying specific actions to increase success. Our review highlights the need for conservation managers to include both sympatric and allopatric wild-reference groups to ensure the post-release performance of translocated animals can be evaluated. Further, our analyses identify pre-release animal enrichment as a particular strategy for improving the outcomes of animal conservation translocations, and demonstrate how meta-analysis can be used to identify implementation choices that maximize translocated animal contributions to recipient population growth and viability.
Collapse
Affiliation(s)
- Iwo P Gross
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| | - Alan E Wilson
- School of Fisheries, Aquaculture, and Aquatic Sciences, Auburn University, 382 Mell Street, Auburn, AL, 36849, USA
| | - Matthew E Wolak
- Department of Biological Sciences, Auburn University, 120 W. Samford Avenue, Auburn, AL, 36849, USA
| |
Collapse
|
2
|
Shedd KR, Lescak EA, Habicht C, Knudsen EE, Dann TH, Hoyt HA, Prince DJ, Templin WD. Reduced relative fitness in hatchery-origin Pink Salmon in two streams in Prince William Sound, Alaska. Evol Appl 2022; 15:429-446. [PMID: 35386398 PMCID: PMC8965367 DOI: 10.1111/eva.13356] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 01/21/2022] [Accepted: 02/03/2022] [Indexed: 12/02/2022] Open
Abstract
Previous studies generally report that hatchery-origin Pacific Salmon (Oncorhynchus spp.) have lower relative reproductive success (RRS) than their natural-origin counterparts. We estimated the RRS of Pink Salmon (O. gorbuscha) in Prince William Sound (PWS), Alaska using incomplete pedigrees. In contrast to other RRS studies, Pink Salmon have a short freshwater life history, freshwater habitats in PWS are largely unaltered by development, and sampling was conducted without the aid of dams or weirs resulting in incomplete sampling of spawning individuals. Pink Salmon released from large-scale hatchery programs in PWS have interacted with wild populations for more than 15 generations. Hatchery populations were established from PWS populations but have subsequently been managed as separate broodstocks. Gene flow is primarily directional, from hatchery strays to wild populations. We used genetic-based parentage analysis to estimate the RRS of a single generation of stray hatchery-origin Pink Salmon in two streams, and across the odd- and even-year lineages. Despite incomplete sampling, we assigned 1745 offspring to at least one parent. Reproductive success (RS), measured as sampled adult offspring that returned to their natal stream, was significantly lower for hatchery- vs. natural-origin parents in both lineages, with RRS ranging from 0.03 to 0.47 for females and 0.05 to 0.86 for males. Generalized linear modeling for the even-year lineage indicated that RRS was lower for hatchery-origin fish, ranging from 0.42 to 0.60, after accounting for sample date (run timing), sample location within the stream, and fish length. Our results strongly suggest that hatchery-origin strays have lower fitness in the wild. The consequences of reduced RRS on wild productivity depend on whether the mechanisms underlying reduced RRS are environmentally driven, and likely ephemeral, or genetically driven, and likely persistent across generations.
Collapse
|
3
|
Hargrove JS, McCane J, Roth CJ, High B, Campbell MR. Mating systems and predictors of relative reproductive success in a Cutthroat Trout subspecies of conservation concern. Ecol Evol 2021; 11:11295-11309. [PMID: 34429919 PMCID: PMC8366873 DOI: 10.1002/ece3.7914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
Mating systems and patterns of reproductive success in fishes play an important role in ecology and evolution. While information on the reproductive ecology of many anadromous salmonids (Oncorhynchus spp.) is well detailed, there is less information for nonanadromous species including the Yellowstone Cutthroat Trout (O. clarkii bouvieri), a subspecies of recreational angling importance and conservation concern. Using data from a parentage-based tagging study, we described the genetic mating system of a migratory population of Yellowstone Cutthroat Trout, tested for evidence of sexual selection, and identified predictors of mating and reproductive success. The standardized variance in mating success (i.e., opportunity for sexual selection) was significantly greater for males relative to females, and while the relationship between mating success and reproductive success (i.e., Bateman gradient) was significantly positive for both sexes, a greater proportion of reproductive success was explained by mating success for males (r 2 = 0.80) than females (r 2 = 0.59). Overall, the population displayed a polygynandrous mating system, whereby both sexes experienced variation in mating success due to multiple mating, and sexual selection was variable across sexes. Tests for evidence of sexual selection indicated the interaction between mating success and total length best-predicted relative reproductive success. We failed to detect a signal of inbreeding avoidance among breeding adults, but the group of parents that produced progeny were on average slightly less related than adults that did not produce progeny. Lastly, we estimated the effective number of breeders (N b) and effective population size (N e) and identified while N b was lower than N e, both are sufficiently high to suggest Yellowstone Cutthroat Trout in Burns Creek represent a genetically stable and diverse population.
Collapse
Affiliation(s)
| | - Jesse McCane
- Pacific States Marine Fisheries Commission Eagle ID USA
| | | | - Brett High
- Idaho Department of Fish and Game Idaho Falls ID USA
| | | |
Collapse
|
4
|
Koch IJ, Narum SR. An evaluation of the potential factors affecting lifetime reproductive success in salmonids. Evol Appl 2021; 14:1929-1957. [PMID: 34429740 PMCID: PMC8372082 DOI: 10.1111/eva.13263] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 01/24/2023] Open
Abstract
Lifetime reproductive success (LRS), the number of offspring produced over an organism's lifetime, is a fundamental component of Darwinian fitness. For taxa such as salmonids with multiple species of conservation concern, understanding the factors affecting LRS is critical for the development and implementation of successful conservation management practices. Here, we reviewed the published literature to synthesize factors affecting LRS in salmonids including significant effects of hatchery rearing, life history, and phenotypic variation, and behavioral and spawning interactions. Additionally, we found that LRS is affected by competitive behavior on the spawning grounds, genetic compatibility, local adaptation, and hybridization. Our review of existing literature revealed limitations of LRS studies, and we emphasize the following areas that warrant further attention in future research: (1) expanding the range of studies assessing LRS across different life-history strategies, specifically accounting for distinct reproductive and migratory phenotypes; (2) broadening the variety of species represented in salmonid fitness studies; (3) constructing multigenerational pedigrees to track long-term fitness effects; (4) conducting LRS studies that investigate the effects of aquatic stressors, such as anthropogenic effects, pathogens, environmental factors in both freshwater and marine environments, and assessing overall body condition, and (5) utilizing appropriate statistical approaches to determine the factors that explain the greatest variation in fitness and providing information regarding biological significance, power limitations, and potential sources of error in salmonid parentage studies. Overall, this review emphasizes that studies of LRS have profoundly advanced scientific understanding of salmonid fitness, but substantial challenges need to be overcome to assist with long-term recovery of these keystone species in aquatic ecosystems.
Collapse
Affiliation(s)
- Ilana J. Koch
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| | - Shawn R. Narum
- Columbia River Inter‐Tribal Fish CommissionHagermanIDUSA
| |
Collapse
|
5
|
Spawning-related movements in a salmonid appear timed to reduce exposure to visually oriented predators. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Uusi-Heikkilä S. Implications of size-selective fisheries on sexual selection. Evol Appl 2020; 13:1487-1500. [PMID: 32684971 PMCID: PMC7359828 DOI: 10.1111/eva.12988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/26/2023] Open
Abstract
Fisheries often combine high mortality with intensive size selectivity and can, thus, be expected to reduce body size and size variability in exploited populations. In many fish species, body size is a sexually selected trait and plays an important role in mate choice and mate competition. Large individuals are often preferred as mates due to the high fecundity and resources they can provide to developing offspring. Large fish are also successful in competition for mates. Fisheries‐induced reductions in size and size variability can potentially disrupt mating systems and lower average reproductive success by decreasing opportunities for sexual selection. By reducing population sizes, fisheries can also lead to an increased level of inbreeding. Some fish species avoid reproducing with kin, and a high level of relatedness in a population can further disrupt mating systems. Reduced body size and size variability can force fish to change their mate preferences or reduce their choosiness. If mate preference is genetically determined, the adaptive response to fisheries‐induced changes in size and size variability might not occur rapidly. However, much evidence exists for plastic adjustments of mate choice, suggesting that fish might respond flexibly to changes in their social environment. Here, I first discuss how reduced average body size and size variability in exploited populations might affect mate choice and mate competition. I then consider the effects of sex‐biased fisheries on mating systems. Finally, I contemplate the possible effects of inbreeding on mate choice and reproductive success and discuss how mate choice might evolve in exploited populations. Currently, little is known about the mating systems of nonmodel species and about the interplay between size‐selective fisheries and sexual selection. Future studies should focus on how reduced size and size variability and increased inbreeding affect fish mating systems, how persistent these effects are, and how this might in turn affect population demography.
Collapse
Affiliation(s)
- Silva Uusi-Heikkilä
- Department of Biological and Environmental Science University of Jyväskylä Jyväskylä Finland
| |
Collapse
|
7
|
Waters CD, Hard JJ, Fast DE, Knudsen CM, Bosch WJ, Naish KA. Genomic and phenotypic effects of inbreeding across two different hatchery management regimes in Chinook salmon. Mol Ecol 2020; 29:658-672. [PMID: 31957935 DOI: 10.1111/mec.15356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 01/14/2023]
Abstract
Genomic approaches permit direct estimation of inbreeding and its effect on fitness. We used genomic-based estimates of inbreeding to investigate their relationship with eight adult traits in a captive-reared Pacific salmonid that is released into the wild. Estimates were also used to determine whether alternative broodstock management approaches reduced risks of inbreeding. Specifically, 1,100 unlinked restriction-site associated (RAD) loci were used to compare pairwise relatedness, derived from a relationship matrix, and individual inbreeding, estimated by comparing observed and expected homozygosity, across four generations in two hatchery lines of Chinook salmon that were derived from the same source. The lines are managed as "integrated" with the founding wild stock, with ongoing gene flow, and as "segregated" with no gene flow. While relatedness and inbreeding increased in the first generation of both lines, possibly due to population subdivision caused by hatchery initiation, the integrated line had significantly lower levels in some subsequent generations (relatedness: F2 -F4 ; inbreeding F2 ). Generally, inbreeding was similar between the lines despite large differences in effective numbers of breeders. Inbreeding did not affect fecundity, reproductive effort, return timing, fork length, weight, condition factor, and daily growth coefficient. However, it delayed spawn timing by 1.75 days per one standard deviation increase in F (~0.16). The results indicate that integrated management may reduce inbreeding but also suggest that it is relatively low in a small, segregated hatchery population that maximized number of breeders. Our findings demonstrate the utility of genomics to monitor inbreeding under alternative management strategies in captive breeding programs.
Collapse
Affiliation(s)
- Charles D Waters
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| | - Jeffrey J Hard
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | | | | | | | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
8
|
Patterns of reproductive success among reintroduced Atlantic salmon in two Lake Champlain tributaries. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01243-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Ehlo CA, Goldsmith WJ, Kesner BR. Size-Specific Fate and Survival of June Sucker Chasmistes liorus mictus in Utah Lake, Utah. WEST N AM NATURALIST 2019. [DOI: 10.3398/064.079.0111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Chase A. Ehlo
- Marsh & Associates LLC, 5016 South Ash Avenue, Suite 108, Tempe, AZ 85282
| | | | - Brian R. Kesner
- Marsh & Associates LLC, 5016 South Ash Avenue, Suite 108, Tempe, AZ 85282
| |
Collapse
|
10
|
Yeakel JD, Gibert JP, Gross T, Westley PAH, Moore JW. Eco-evolutionary dynamics, density-dependent dispersal and collective behaviour: implications for salmon metapopulation robustness. Philos Trans R Soc Lond B Biol Sci 2019; 373:rstb.2017.0018. [PMID: 29581402 PMCID: PMC5882987 DOI: 10.1098/rstb.2017.0018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2018] [Indexed: 11/12/2022] Open
Abstract
The spatial dispersal of individuals plays an important role in the dynamics of populations, and is central to metapopulation theory. Dispersal provides connections within metapopulations, promoting demographic and evolutionary rescue, but may also introduce maladapted individuals, potentially lowering the fitness of recipient populations through introgression of heritable traits. To explore this dual nature of dispersal, we modify a well-established eco-evolutionary model of two locally adapted populations and their associated mean trait values, to examine recruiting salmon populations that are connected by density-dependent dispersal, consistent with collective migratory behaviour that promotes navigation. When the strength of collective behaviour is weak such that straying is effectively constant, we show that a low level of straying is associated with the highest gains in metapopulation robustness and that high straying serves to erode robustness. Moreover, we find that as the strength of collective behaviour increases, metapopulation robustness is enhanced, but this relationship depends on the rate at which individuals stray. Specifically, strong collective behaviour increases the presence of hidden low-density basins of attraction, which may serve to trap disturbed populations, and this is exacerbated by increased habitat heterogeneity. Taken as a whole, our findings suggest that density-dependent straying and collective migratory behaviour may help metapopulations, such as in salmon, thrive in dynamic landscapes. Given the pervasive eco-evolutionary impacts of dispersal on metapopulations, these findings have important ramifications for the conservation of salmon metapopulations facing both natural and anthropogenic contemporary disturbances.This article is part of the theme issue 'Collective movement ecology'.
Collapse
Affiliation(s)
- Justin D Yeakel
- School of Natural Sciences, University of California, Merced, CA 95340, USA .,The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Jean P Gibert
- School of Natural Sciences, University of California, Merced, CA 95340, USA
| | - Thilo Gross
- Department of Engineering Mathematics, University of Bristol, Bristol BS8 1TH, UK
| | - Peter A H Westley
- Department of Fisheries, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Jonathan W Moore
- Earth2Oceans Research Group, Simon Fraser University, Burnaby BC, Canada V5A 1S6
| |
Collapse
|
11
|
Lemopoulos A, Prokkola JM, Uusi‐Heikkilä S, Vasemägi A, Huusko A, Hyvärinen P, Koljonen M, Koskiniemi J, Vainikka A. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness - Implications for brown trout conservation. Ecol Evol 2019; 9:2106-2120. [PMID: 30847096 PMCID: PMC6392366 DOI: 10.1002/ece3.4905] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/30/2018] [Accepted: 12/21/2018] [Indexed: 12/24/2022] Open
Abstract
The conservation and management of endangered species requires information on their genetic diversity, relatedness and population structure. The main genetic markers applied for these questions are microsatellites and single nucleotide polymorphisms (SNPs), the latter of which remain the more resource demanding approach in most cases. Here, we compare the performance of two approaches, SNPs obtained by restriction-site-associated DNA sequencing (RADseq) and 16 DNA microsatellite loci, for estimating genetic diversity, relatedness and genetic differentiation of three, small, geographically close wild brown trout (Salmo trutta) populations and a regionally used hatchery strain. The genetic differentiation, quantified as F ST, was similar when measured using 16 microsatellites and 4,876 SNPs. Based on both marker types, each brown trout population represented a distinct gene pool with a low level of interbreeding. Analysis of SNPs identified half- and full-siblings with a higher probability than the analysis based on microsatellites, and SNPs outperformed microsatellites in estimating individual-level multilocus heterozygosity. Overall, the results indicated that moderately polymorphic microsatellites and SNPs from RADseq agreed on estimates of population genetic structure in moderately diverged, small populations, but RADseq outperformed microsatellites for applications that required individual-level genotype information, such as quantifying relatedness and individual-level heterozygosity. The results can be applied to other small populations with low or moderate levels of genetic diversity.
Collapse
Affiliation(s)
- Alexandre Lemopoulos
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Department of BiologyUniversity of TurkuTurkuFinland
| | - Jenni M. Prokkola
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
- Institute of Integrative BiologyUniversity of LiverpoolLiverpoolUK
| | - Silva Uusi‐Heikkilä
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Biological and Environmental ScienceUniversity of JyväskyläJyväskyläFinland
| | - Anti Vasemägi
- Department of BiologyUniversity of TurkuTurkuFinland
- Department of Aquatic Resources, Institute of Freshwater ResearchSwedish University of Agricultural SciencesDrottningholmSweden
- Estonian University of Life SciencesInstitute of Veterinary Medicine and Animal SciencesTartuEstonia
| | - Ari Huusko
- Natural Resources Institute Finland (Luke), Kainuu Fisheries Research StationPaltamoFinland
| | - Pekka Hyvärinen
- Natural Resources Institute Finland (Luke), Kainuu Fisheries Research StationPaltamoFinland
| | | | - Jarmo Koskiniemi
- Department of Agricultural SciencesUniversity of HelsinkiHelsinkiFinland
| | - Anssi Vainikka
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandJoensuuFinland
| |
Collapse
|
12
|
Veale AJ, Russello MA. Sockeye salmon repatriation leads to population re-establishment and rapid introgression with native kokanee. Evol Appl 2016; 9:1301-1311. [PMID: 27877207 PMCID: PMC5108220 DOI: 10.1111/eva.12430] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 08/26/2016] [Indexed: 01/09/2023] Open
Abstract
Re‐establishing salmonid populations to areas historically occupied has the substantial potential for conservation gains; however, such interventions also risk negatively impacting native resident stocks. Here, we assessed the success of the hatchery‐assisted reintroduction of anadromous sockeye salmon (Oncorhynchus nerka) into Skaha Lake, British Columbia, Canada, and evaluated the genetic consequences for native kokanee, a freshwater‐obligate ecotype, using single nucleotide polymorphism genotypic data collected from the reference samples of spawning Okanagan River sockeye and Skaha Lake kokanee presockeye reintroduction, along with annual trawl survey and angler‐caught samples obtained over an eight‐year period. Significant differentiation was detected between sockeye and kokanee reference samples, with >99% stock assignment. Low proportions of sockeye and hybrids were detected within 2008 and 2010 age‐0 trawl samples; however, by 2012, 28% were sockeye, rising to 41% in 2014. The number of hybrids detected rose proportionally with the increase in sockeye and exhibited an intermediate phenotype. Our results indicate that the reintroduction of anadromous sockeye to Skaha Lake is succeeding, with large numbers returning to spawn. However, hybridization with native kokanee is of concern due to the potential for demographic or genetic swamping, with ongoing genetic monitoring necessary to assess the long‐term effects of introgression and to support interactive fisheries management.
Collapse
Affiliation(s)
- Andrew J Veale
- Department of Biology The University of British Columbia Kelowna BC Canada; Present address: Department of Zoology University of Otago 340 Great King Street Dunedin New Zealand
| | - Michael A Russello
- Department of Biology The University of British Columbia Kelowna BC Canada
| |
Collapse
|
13
|
Sard NM, Johnson MA, Jacobson DP, Hogansen MJ, O'Malley KG, Banks MA. Genetic monitoring guides adaptive management of a migratory fish reintroduction program. Anim Conserv 2016. [DOI: 10.1111/acv.12278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- N. M. Sard
- Department of Fisheries and Wildlife Coastal Oregon Marine Experiment Station Hatfield Marine Science Center Oregon State University Newport OR USA
| | - M. A. Johnson
- Upper Willamette Research, Monitoring and Evaluation Corvallis Research Laboratory Oregon Department of Fish and Wildlife Corvallis OR USA
| | - D. P. Jacobson
- Department of Fisheries and Wildlife Coastal Oregon Marine Experiment Station Hatfield Marine Science Center Oregon State University Newport OR USA
| | - M. J. Hogansen
- Upper Willamette Research, Monitoring and Evaluation Corvallis Research Laboratory Oregon Department of Fish and Wildlife Corvallis OR USA
| | - K. G. O'Malley
- Department of Fisheries and Wildlife Coastal Oregon Marine Experiment Station Hatfield Marine Science Center Oregon State University Newport OR USA
| | - M. A. Banks
- Department of Fisheries and Wildlife Coastal Oregon Marine Experiment Station Hatfield Marine Science Center Oregon State University Newport OR USA
| |
Collapse
|
14
|
Waters CD, Hard JJ, Brieuc MSO, Fast DE, Warheit KI, Waples RS, Knudsen CM, Bosch WJ, Naish KA. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding. Evol Appl 2015; 8:956-71. [PMID: 26640521 PMCID: PMC4662342 DOI: 10.1111/eva.12331] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 09/02/2015] [Indexed: 12/28/2022] Open
Abstract
Captive breeding has the potential to rebuild depressed populations. However, associated genetic changes may decrease restoration success and negatively affect the adaptive potential of the entire population. Thus, approaches that minimize genetic risks should be tested in a comparative framework over multiple generations. Genetic diversity in two captive-reared lines of a species of conservation interest, Chinook salmon (Oncorhynchus tshawytscha), was surveyed across three generations using genome-wide approaches. Genetic divergence from the source population was minimal in an integrated line, which implemented managed gene flow by using only naturally-born adults as captive broodstock, but significant in a segregated line, which bred only captive-origin individuals. Estimates of effective number of breeders revealed that the rapid divergence observed in the latter was largely attributable to genetic drift. Three independent tests for signatures of adaptive divergence also identified temporal change within the segregated line, possibly indicating domestication selection. The results empirically demonstrate that using managed gene flow for propagating a captive-reared population reduces genetic divergence over the short term compared to one that relies solely on captive-origin parents. These findings complement existing studies of captive breeding, which typically focus on a single management strategy and examine the fitness of one or two generations.
Collapse
Affiliation(s)
- Charles D Waters
- School of Aquatic and Fishery Sciences, University of WashingtonSeattle, WA, USA
| | - Jeffrey J Hard
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattle, WA, USA
| | - Marine S O Brieuc
- School of Aquatic and Fishery Sciences, University of WashingtonSeattle, WA, USA
| | | | | | - Robin S Waples
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric AdministrationSeattle, WA, USA
| | | | | | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of WashingtonSeattle, WA, USA
| |
Collapse
|
15
|
Kovach RP, Muhlfeld CC, Boyer MC, Lowe WH, Allendorf FW, Luikart G. Dispersal and selection mediate hybridization between a native and invasive species. Proc Biol Sci 2015; 282:20142454. [PMID: 25473019 DOI: 10.1098/rspb.2014.2454] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hybridization between native and non-native species has serious biological consequences, but our understanding of how dispersal and selection interact to influence invasive hybridization is limited. Here, we document the spread of genetic introgression between a native (Oncorhynchus clarkii) and invasive (Oncorhynchus mykiss) trout, and identify the mechanisms influencing genetic admixture. In two populations inhabiting contrasting environments, non-native admixture increased rapidly from 1984 to 2007 and was driven by surprisingly consistent processes. Individual admixture was related to two phenotypic traits associated with fitness: size at spawning and age of juvenile emigration. Fish with higher non-native admixture were larger and tended to emigrate at a younger age--relationships that are expected to confer fitness advantages to hybrid individuals. However, strong selection against non-native admixture was evident across streams and cohorts (mean selection coefficient against genotypes with non-native alleles (s) = 0.60; s.e. = 0.10). Nevertheless, hybridization was promoted in both streams by the continuous immigration of individuals with high levels of non-native admixture from other hybrid source populations. Thus, antagonistic relationships between dispersal and selection are mediating invasive hybridization between these fish, emphasizing that data on dispersal and natural selection are needed to fully understand the dynamics of introgression between native and non-native species.
Collapse
Affiliation(s)
- Ryan P Kovach
- US Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park, West Glacier, MT 59936, USA Flathead Lake Biological Station, Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Polson, MT 59860, USA
| | - Clint C Muhlfeld
- US Geological Survey, Northern Rocky Mountain Science Center, Glacier National Park, West Glacier, MT 59936, USA
| | | | - Winsor H Lowe
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Fred W Allendorf
- Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Gordon Luikart
- Flathead Lake Biological Station, Fish and Wildlife Genomics Group, Division of Biological Sciences, University of Montana, Polson, MT 59860, USA
| |
Collapse
|
16
|
Transcriptomic responses of Atlantic salmon (Salmo salar) to environmental enrichment during juvenile rearing. PLoS One 2015; 10:e0118378. [PMID: 25742646 PMCID: PMC4350989 DOI: 10.1371/journal.pone.0118378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 01/15/2015] [Indexed: 12/30/2022] Open
Abstract
Captive rearing programs (hatcheries) are often used in conservation and management efforts for at-risk salmonid fish populations. However, hatcheries typically rear juveniles in environments that contrast starkly with natural conditions, which may lead to phenotypic and/or genetic changes that adversely affect the performance of juveniles upon their release to the wild. Environmental enrichment has been proposed as a mechanism to improve the efficacy of population restoration efforts from captive-rearing programs; in this study, we examine the influence of environmental enrichment during embryo and yolk-sac larval rearing on the transcriptome of Atlantic salmon (Salmo salar). Full siblings were reared in either a hatchery environment devoid of structure or an environment enriched with gravel substrate. At the end of endogenous feeding by juveniles, we examined patterns of gene transcript abundance in head tissues using the cGRASP-designed Agilent 4×44K microarray. Significance analysis of microarrays (SAM) indicated that 808 genes were differentially transcribed between the rearing environments and a total of 184 gene ontological (GO) terms were over- or under-represented in this gene list, several associated with mitosis/cell cycle and muscle and heart development. There were also pronounced differences among families in the degree of transcriptional response to rearing environment enrichment, suggesting that gene-by-environment effects, possibly related to parental origin, could influence the efficacy of enrichment interventions.
Collapse
|
17
|
O'Malley KG, Perales B, Whitcomb AC. Influence of immune-relevant genotype on the reproductive success of a salmonid alternative mating strategy. JOURNAL OF FISH BIOLOGY 2015; 86:871-881. [PMID: 25643937 DOI: 10.1111/jfb.12597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/09/2014] [Indexed: 06/04/2023]
Abstract
Major histocompatibility complex (MHC) and immune-relevant gene markers were used to evaluate differences in reproductive success (RS) among naturally spawning coho salmon Oncorhynchus kisutch mate pairs involving an alternative male reproductive phenotype, known as jacks. These mate pairs included both hatchery-reared and wild origin fish such that three classes were evaluated in two consecutive years (2005 and 2006) using a previously constructed multigenerational genetic pedigree: wild × wild (W × W), hatchery × hatchery (H × H) and wild × hatchery (W × H). Oncorhynchus kisutch jack mate pairs mated randomly based on immune-relevant genotype in both years; a result consistent with the opportunistic mating strategy of jacks. An association between greater number of alleles shared at three immune-relevant gene markers and increased RS was found for: W × H mate pairs in 2005 (BHMS429), W × H pairs in 2006 (SsalR016TKU) and W × W pairs in 2006 (OMM3085). No correlation between immune gene diversity and RS was found for H × H pairs in either year. The results suggest that the influence of immune-relevant genotype on mating success may be different for jacks when compared with previous studies of large adult male O. kisutch.
Collapse
Affiliation(s)
- K G O'Malley
- Coastal Oregon Marine Experiment Station, Hatfield Marine Science Center, Department of Fisheries and Wildlife, Oregon State University, 2030 SE Marine Science Drive, Newport, OR 97365, U.S.A
| | | | | |
Collapse
|
18
|
Leggatt RA, Hollo T, Vandersteen WE, McFarlane K, Goh B, Prevost J, Devlin RH. Rearing in seawater mesocosms improves the spawning performance of growth hormone transgenic and wild-type coho salmon. PLoS One 2014; 9:e105377. [PMID: 25133780 PMCID: PMC4136866 DOI: 10.1371/journal.pone.0105377] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/22/2014] [Indexed: 11/18/2022] Open
Abstract
Growth hormone (GH) transgenes can significantly accelerate growth rates in fish and cause associated alterations to their physiology and behaviour. Concern exists regarding potential environmental risks of GH transgenic fish, should they enter natural ecosystems. In particular, whether they can reproduce and generate viable offspring under natural conditions is poorly understood. In previous studies, GH transgenic salmon grown under contained culture conditions had lower spawning behaviour and reproductive success relative to wild-type fish reared in nature. However, wild-type salmon cultured in equal conditions also had limited reproductive success. As such, whether decreased reproductive success of GH transgenic salmon is due to the action of the transgene or to secondary effects of culture (or a combination) has not been fully ascertained. Hence, salmon were reared in large (350,000 L), semi-natural, seawater tanks (termed mesocosms) designed to minimize effects of standard laboratory culture conditions, and the reproductive success of wild-type and GH transgenic coho salmon from mesocosms were compared with that of wild-type fish from nature. Mesocosm rearing partially restored spawning behaviour and success of wild-type fish relative to culture rearing, but remained lower overall than those reared in nature. GH transgenic salmon reared in the mesocosm had similar spawning behaviour and success as wild-type fish reared in the mesocosm when in full competition and without competition, but had lower success in male-only competition experiments. There was evidence of genotype×environmental interactions on spawning success, so that spawning success of transgenic fish, should they escape to natural systems in early life, cannot be predicted with low uncertainty. Under the present conditions, we found no evidence to support enhanced mating capabilities of GH transgenic coho salmon compared to wild-type salmon. However, it is clear that GH transgenic salmon are capable of successful spawning, and can reproduce with wild-type fish from natural systems.
Collapse
Affiliation(s)
- Rosalind A. Leggatt
- Fisheries and Oceans Canada, West Vancouver Laboratories, West Vancouver, BC, Canada
| | - Tanya Hollo
- Fisheries and Oceans Canada, West Vancouver Laboratories, West Vancouver, BC, Canada
| | - Wendy E. Vandersteen
- Fisheries and Oceans Canada, West Vancouver Laboratories, West Vancouver, BC, Canada
| | - Kassandra McFarlane
- Fisheries and Oceans Canada, West Vancouver Laboratories, West Vancouver, BC, Canada
| | - Benjamin Goh
- Fisheries and Oceans Canada, West Vancouver Laboratories, West Vancouver, BC, Canada
| | - Joelle Prevost
- Fisheries and Oceans Canada, West Vancouver Laboratories, West Vancouver, BC, Canada
| | - Robert H. Devlin
- Fisheries and Oceans Canada, West Vancouver Laboratories, West Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
19
|
Christie MR, Ford MJ, Blouin MS. On the reproductive success of early-generation hatchery fish in the wild. Evol Appl 2014; 7:883-96. [PMID: 25469167 PMCID: PMC4211718 DOI: 10.1111/eva.12183] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Large numbers of hatchery salmon spawn in wild populations each year. Hatchery fish with multiple generations of hatchery ancestry often have heritably lower reproductive success than wild fish and may reduce the fitness of an entire population. Whether this reduced fitness also occurs for hatchery fish created with local- and predominantly wild-origin parents remains controversial. Here, we review recent studies on the reproductive success of such ‘early-generation’ hatchery fish that spawn in the wild. Combining 51 estimates from six studies on four salmon species, we found that (i) early-generation hatchery fish averaged only half the reproductive success of their wild-origin counterparts when spawning in the wild, (ii) the reduction in reproductive success was more severe for males than for females, and (iii) all species showed reduced fitness due to hatchery rearing. We review commonalities among studies that point to possible mechanisms (e.g., environmental versus genetic effects). Furthermore, we illustrate that sample sizes typical of these studies result in low statistical power to detect fitness differences unless the differences are substantial. This review demonstrates that reduced fitness of early-generation hatchery fish may be a general phenomenon. Future research should focus on determining the causes of those fitness reductions and whether they lead to long-term reductions in the fitness of wild populations.
Collapse
Affiliation(s)
- Mark R Christie
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA ; Department of Biological Sciences and Department of Forestry and Natural Resources, Purdue University West Lafayette, IN, USA
| | - Michael J Ford
- Conservation Biology Division, National Marine Fisheries Service, Northwest Fisheries Science Center Seattle, WA, USA
| | - Michael S Blouin
- Department of Integrative Biology, Oregon State University Corvallis, OR, USA
| |
Collapse
|
20
|
Price MHH, Connors BM. Evaluating relationships between wild Skeena river sockeye salmon productivity and the abundance of spawning channel enhanced sockeye smolts. PLoS One 2014; 9:e95718. [PMID: 24760007 PMCID: PMC3997422 DOI: 10.1371/journal.pone.0095718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/29/2014] [Indexed: 12/05/2022] Open
Abstract
The enhancement of salmon populations has long been used to increase the abundance of salmon returning to spawn and/or to be captured in fisheries. However, in some instances enhancement can have adverse impacts on adjacent non-enhanced populations. In Canada's Skeena watershed, smolt-to-adult survival of Babine Lake sockeye from 1962–2002 was inversely related to the abundance of sockeye smolts leaving Babine Lake. This relationship has led to the concern that Babine Lake smolt production, which is primarily enhanced by spawning channels, may depress wild Skeena (Babine and non-Babine) sockeye populations as a result of increased competition between wild and enhanced sockeye smolts as they leave their natal lakes and co-migrate to sea. To test this hypothesis we used data on Skeena sockeye populations and oceanographic conditions to statistically examine the relationship between Skeena sockeye productivity (adult salmon produced per spawner) and an index of Babine Lake enhanced smolt abundance while accounting for the potential influence of early marine conditions. While we had relatively high power to detect large effects, we did not find support for the hypothesis that the productivity of wild Skeena sockeye is inversely related to the abundance of enhanced sockeye smolts leaving Babine Lake in a given year. Importantly, life-time productivity of Skeena sockeye is only partially explained by marine survival, and likely is an unreliable measure of the influence of smolt abundance. Limitations to our analyses, which include: (1) the reliance upon adult salmon produced per spawner (rather than per smolt) as an index of marine survival, and (2) incomplete age structure for most of the populations considered, highlight uncertainties that should be addressed if understanding relationships between wild and enhanced sockeye is a priority in the Skeena.
Collapse
Affiliation(s)
| | - Brendan M. Connors
- ESSA Technologies Ltd., Vancouver, British Columbia, Canada
- School of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia, Canada
| |
Collapse
|
21
|
Aykanat T, Johnston SE, Cotter D, Cross TF, Poole R, Prodőhl PA, Reed T, Rogan G, McGinnity P, Primmer CR. Molecular pedigree reconstruction and estimation of evolutionary parameters in a wild Atlantic salmon river system with incomplete sampling: a power analysis. BMC Evol Biol 2014; 14:68. [PMID: 24684698 PMCID: PMC4021076 DOI: 10.1186/1471-2148-14-68] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 03/24/2014] [Indexed: 12/04/2022] Open
Abstract
Background Pedigree reconstruction using genetic analysis provides a useful means to estimate fundamental population biology parameters relating to population demography, trait heritability and individual fitness when combined with other sources of data. However, there remain limitations to pedigree reconstruction in wild populations, particularly in systems where parent-offspring relationships cannot be directly observed, there is incomplete sampling of individuals, or molecular parentage inference relies on low quality DNA from archived material. While much can still be inferred from incomplete or sparse pedigrees, it is crucial to evaluate the quality and power of available genetic information a priori to testing specific biological hypotheses. Here, we used microsatellite markers to reconstruct a multi-generation pedigree of wild Atlantic salmon (Salmo salar L.) using archived scale samples collected with a total trapping system within a river over a 10 year period. Using a simulation-based approach, we determined the optimal microsatellite marker number for accurate parentage assignment, and evaluated the power of the resulting partial pedigree to investigate important evolutionary and quantitative genetic characteristics of salmon in the system. Results We show that at least 20 microsatellites (ave. 12 alleles/locus) are required to maximise parentage assignment and to improve the power to estimate reproductive success and heritability in this study system. We also show that 1.5 fold differences can be detected between groups simulated to have differing reproductive success, and that it is possible to detect moderate heritability values for continuous traits (h2 ~ 0.40) with more than 80% power when using 28 moderately to highly polymorphic markers. Conclusion The methodologies and work flow described provide a robust approach for evaluating archived samples for pedigree-based research, even where only a proportion of the total population is sampled. The results demonstrate the feasibility of pedigree-based studies to address challenging ecological and evolutionary questions in free-living populations, where genealogies can be traced only using molecular tools, and that significant increases in pedigree assignment power can be achieved by using higher numbers of markers.
Collapse
Affiliation(s)
- Tutku Aykanat
- Division of Genetics and Physiology, Department of Biology, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Evans ML, Wilke NF, O'Reilly PT, Fleming IA. Transgenerational Effects of Parental Rearing Environment Influence the Survivorship of Captive-Born Offspring in the Wild. Conserv Lett 2014. [DOI: 10.1111/conl.12092] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Melissa L. Evans
- Department of Ocean Sciences; Ocean Sciences Centre; Memorial University of Newfoundland; St. John's, Newfoundland A1C 5S7 Canada
- Coastal Oregon Marine Experiment Station; Hatfield Marine Science Center; Oregon State University; 2030 SE Marine Science Dr. Newport Oregon, 97365 USA
| | - Nathan F. Wilke
- Department of Ocean Sciences; Ocean Sciences Centre; Memorial University of Newfoundland; St. John's, Newfoundland A1C 5S7 Canada
| | - Patrick T. O'Reilly
- Bedford Institute of Oceanography; Department of Fisheries and Oceans; 1 Challenger Dr. Dartmouth, Nova Scotia B2Y 4A2 Canada
| | - Ian A. Fleming
- Department of Ocean Sciences; Ocean Sciences Centre; Memorial University of Newfoundland; St. John's, Newfoundland A1C 5S7 Canada
| |
Collapse
|
23
|
Milot E, Perrier C, Papillon L, Dodson JJ, Bernatchez L. Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol Appl 2012; 6:472-85. [PMID: 23745139 PMCID: PMC3673475 DOI: 10.1111/eva.12028] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 10/08/2012] [Indexed: 11/30/2022] Open
Abstract
Salmonids rank among the most socioeconomically valuable fishes and the most targeted species by stocking with hatchery-reared individuals. Here, we used molecular parentage analysis to assess the reproductive success of wild- and hatchery-born Atlantic salmon over three consecutive years in a small river in Québec. Yearly restocking in this river follows a single generation of captive breeding. Among the adults returning to the river to spawn, between 11% and 41% each year were born in hatchery. Their relative reproductive success (RRS) was nearly half that of wild-born fish (0.55). RRS varied with life stage, being 0.71 for fish released at the fry stage and 0.42 for fish released as smolt. The lower reproductive success of salmon released as smolt was partly mediated by the modification of the proportion of single-sea-winter/multi-sea-winter fish. Overall, our results suggest that modifications in survival and growth rates alter the life-history strategies of these fish at the cost of their reproductive success. Our results underline the potential fitness decrease, warn on long-term evolutionary consequences for the population of repeated stocking and support the adoption of more natural rearing conditions for captive juveniles and their release at a younger stage, such as unfed fry.
Collapse
Affiliation(s)
- Emmanuel Milot
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec City, QC, Canada
| | | | | | | | | |
Collapse
|
24
|
Hess MA, Rabe CD, Vogel JL, Stephenson JJ, Nelson DD, Narum SR. Supportive breeding boosts natural population abundance with minimal negative impacts on fitness of a wild population of Chinook salmon. Mol Ecol 2012; 21:5236-50. [PMID: 23025818 PMCID: PMC3490153 DOI: 10.1111/mec.12046] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 08/17/2012] [Accepted: 08/23/2012] [Indexed: 11/29/2022]
Abstract
While supportive breeding programmes strive to minimize negative genetic impacts to populations, case studies have found evidence for reduced fitness of artificially produced individuals when they reproduce in the wild. Pedigrees of two complete generations were tracked with molecular markers to investigate differences in reproductive success (RS) of wild and hatchery-reared Chinook salmon spawning in the natural environment to address questions regarding the demographic and genetic impacts of supplementation to a natural population. Results show a demographic boost to the population from supplementation. On average, fish taken into the hatchery produced 4.7 times more adult offspring, and 1.3 times more adult grand-offspring than naturally reproducing fish. Of the wild and hatchery fish that successfully reproduced, we found no significant differences in RS between any comparisons, but hatchery-reared males typically had lower RS values than wild males. Mean relative reproductive success (RRS) for hatchery F(1) females and males was 1.11 (P = 0.84) and 0.89 (P = 0.56), respectively. RRS of hatchery-reared fish (H) that mated in the wild with either hatchery or wild-origin (W) fish was generally equivalent to W × W matings. Mean RRS of H × W and H × H matings was 1.07 (P = 0.92) and 0.94 (P = 0.95), respectively. We conclude that fish chosen for hatchery rearing did not have a detectable negative impact on the fitness of wild fish by mating with them for a single generation. Results suggest that supplementation following similar management practices (e.g. 100% local, wild-origin brood stock) can successfully boost population size with minimal impacts on the fitness of salmon in the wild.
Collapse
Affiliation(s)
- Maureen A Hess
- Columbia River Inter-Tribal Fish Commission, Hagerman Fish Culture Experiment Station, Hagerman, ID 83332, USA.
| | | | | | | | | | | |
Collapse
|