1
|
Vitasse Y, Pohl N, Walde MG, Nadel H, Gossner MM, Baumgarten F. Feasting on the ordinary or starving for the exceptional in a warming climate: Phenological synchrony between spongy moth ( Lymantria dispar) and budburst of six European tree species. Ecol Evol 2024; 14:e10928. [PMID: 38371870 PMCID: PMC10869895 DOI: 10.1002/ece3.10928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 11/02/2023] [Accepted: 12/05/2023] [Indexed: 02/20/2024] Open
Abstract
Global warming is affecting the phenological cycles of plants and animals, altering the complex synchronization that has co-evolved over thousands of years between interacting species and trophic levels. Here, we examined how warmer winter conditions affect the timing of budburst in six common European trees and the hatching of a generalist leaf-feeding insect, the spongy moth Lymantria dispar, whose fitness depends on the synchrony between egg hatch and leaf emergence of the host tree. We applied four different temperature treatments to L. dispar eggs and twig cuttings, that mimicked warmer winters and reduced chilling temperatures that are necessary for insect diapause and bud dormancy release, using heated open-top chambers (ambient or +3.5°C), and heated greenhouses (maintained at >6°C or >10°C). In addition, we conducted preference and performance tests to determine which tree species the larvae prefer and benefit from the most. Budburst success and twig survival were highest for all tree species at ambient temperature conditions, whereas it declined under elevated winter temperature for Tilia cordata and Acer pseudoplatanus, likely due to a lack of chilling. While L. dispar egg hatch coincided with budburst in most tree species within 10 days under ambient conditions, it coincided with budburst only in Quercus robur, Carpinus betulus, and, to a lesser extent, Ulmus glabra under warmer conditions. With further warming, we, therefore, expect an increasing mismatch in trees with high chilling requirements, such as Fagus sylvatica and A. pseudoplatanus, but still good synchronization with trees having low chilling requirements, such as Q. robur and C. betulus. Surprisingly, first instar larvae preferred and gained weight faster when fed with leaves of F. sylvatica, while Q. robur ranked second. Our results suggest that spongy moth outbreaks are likely to persist in oak and hornbeam forests in western and central Europe.
Collapse
Affiliation(s)
- Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Nora Pohl
- Southern Swedish Forest Research CentreSwedish University of Agricultural SciencesLommaSweden
| | - Manuel G. Walde
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Hannah Nadel
- United States Department of AgricultureAnimal and Plant Health Inspection Service, Forest Pest Methods LaboratoryBuzzards BayMassachusettsUSA
| | - Martin M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
- Department of Environmental Systems ScienceInstitute of Terrestrial Ecosystems, ETH ZürichZürichSwitzerland
| | - Frederik Baumgarten
- Swiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| |
Collapse
|
2
|
Reznik SY, Dolgovskaya MY, Karpun NN, Zakharchenko VY, Saulich AK, Musolin DL. The Invasive Caucasian Populations of the Brown Marmorated Stink Bug Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae) Rapidly Adapt Their Ecophysiological Traits to the Local Environmental Conditions. INSECTS 2023; 14:insects14050424. [PMID: 37233052 DOI: 10.3390/insects14050424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
The ability to rapidly adapt to new environmental conditions is a crucial prerequisite for the wide-scale invasion of pests or intentional introduction of beneficial insects. A photoperiodically induced facultative winter diapause is an important adaptation ensuring synchronization of insect development and reproduction with the local seasonal dynamics of environmental factors. We conducted a laboratory study aimed to compare photoperiodic responses of two invasive Caucasian populations of the brown marmorated stink bug Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae), which recently invaded neighboring regions with subtropical (Sukhum, Abkhazia) and temperate (Abinsk, Russia) climates. Under the temperature of 25 °C and the near-critical photoperiods of L:D = 15:9 h and 15.5:8.5 h, the population from Abinsk showed a slower pre-adult development and a stronger tendency to enter winter adult (reproductive) diapause compared to the population from Sukhum. This finding agreed with the difference between the local dynamics of the autumnal temperature decrease. Similar adaptive interpopulation differences in the patterns of diapause-inducing responses are known in other insect species but our finding is distinguished by a very short adaptation time: H. halys was first recorded in Sukhum in 2015 and in Abinsk in 2018. Thus, the differences between the compared populations might have evolved over a relatively short span of several years.
Collapse
Affiliation(s)
- Sergey Ya Reznik
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint Petersburg, Russia
| | - Margarita Yu Dolgovskaya
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab. 1, 199034 Saint Petersburg, Russia
| | - Natalia N Karpun
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia
- Department of Forest Protection, Wood Science and Game Management, St. Petersburg State Forest Technical University, Institutskiy Per. 5, 194021 Saint Petersburg, Russia
| | - Vilena Ye Zakharchenko
- Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences, Yana Fabritsiusa Str. 2/28, 354002 Sochi, Russia
| | - Aida Kh Saulich
- Department of Entomology, Saint Petersburg State University, Universitetskaya Nab. 7-9, 199034 Saint Petersburg, Russia
| | - Dmitrii L Musolin
- European and Mediterranean Plant Protection Organization, 21 Boulevard Richard Lenoir, 75011 Paris, France
| |
Collapse
|
3
|
Grevstad FS, Wepprich T, Barker B, Coop LB, Shaw R, Bourchier RS. Combining photoperiod and thermal responses to predict phenological mismatch for introduced insects. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2022; 32:e2557. [PMID: 35112752 DOI: 10.1002/eap.2557] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/04/2021] [Accepted: 11/10/2021] [Indexed: 06/14/2023]
Abstract
A wide variety of organisms use the regular seasonal changes in photoperiod as a cue to align their life cycles with favorable conditions. Yet the phenological consequences of photoperiodism for organisms exposed to new climates are often overlooked. We present a conceptual approach and phenology model that maps voltinism (generations per year) and the degree of phenological mismatch that can arise when organisms with a short-day diapause response are introduced to new regions or are otherwise exposed to new climates. Our degree-day-based model combines continent-wide spatialized daily climate data, calculated date-specific and latitude-specific day lengths, and experimentally determined developmental responses to both photoperiod and temperature. Using the case of the knotweed psyllid Aphalara itadori, a new biological control agent being introduced from Japan to North America and Europe to control an invasive weed, we show how incorporating a short-day diapause response will result in geographic patterns of attempted voltinism that are strikingly different from the potential number of generations based on degree-days alone. The difference between the attempted and potential generations represents a quantitative measure of phenological mismatch between diapause timing and the end of the growing season. We conclude that insects moved from lower to higher latitudes (or to cooler climates) will tend to diapause too late, potentially resulting in high mortality from inclement weather, and those moved from higher to lower latitude (to warmer climates) may be prone to diapausing too early, therefore not fully exploiting the growing season and/or suffering from insufficient reserves for the longer duration in diapause. Mapped output reveals a central region with good phenology match that shifts north or south depending on the geographic source of the insect and its corresponding critical photoperiod for diapause. These results have direct relevance for efforts to establish populations of classical biocontrol agents. More generally, our approach and model could be applied to a wide variety of photoperiod- and temperature-sensitive organisms that are exposed to changes in climate, including resident and invasive agricultural pests and species of conservation concern.
Collapse
Affiliation(s)
- Fritzi S Grevstad
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Tyson Wepprich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA
| | - Brittany Barker
- Oregon Integrated Pest Management Center, Oregon State University, Corvallis, Oregon, USA
| | - Leonard B Coop
- Oregon Integrated Pest Management Center, Oregon State University, Corvallis, Oregon, USA
| | | | - Robert S Bourchier
- Lethbridge Research and Development Centre, Agriculture and Agrifood Canada, Lethbridge, Alberta, Canada
| |
Collapse
|
4
|
Andersen JC, Havill NP, Caccone A, Elkinton JS. Four times out of Europe: Serial invasions of the winter moth, Operophtera brumata, to North America. Mol Ecol 2021; 30:3439-3452. [PMID: 34033202 DOI: 10.1111/mec.15983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/30/2022]
Abstract
Reconstructing the geographic origins of non-native species is important for studying the factors that influence invasion success, however; these analyses can be constrained by the amount of diversity present in the native and invaded regions, and by changes in the genetic background of the invading population following bottlenecks and/or hybridization events. Here we explore the geographical origins of the invasive winter moth (Operopthera brumata L.) that has caused widespread defoliation to forests, orchards, and crops in Nova Scotia, British Columbia, Oregon, and the northeastern United States. It is not known whether these represent independent introductions to North America, or a "stepping stone" spread among regions. Using a combination of Bayesian assignment and approximate Bayesian computation methods, we analysed a population genetic data set of 24 microsatellite loci. We estimate that winter moth was introduced to North America on at least four occasions, with the Nova Scotian and British Columbian populations probably being introduced from France and Sweden, respectively; the Oregonian population probably being introduced from either the British Isles or northern Fennoscandia; and the population in the northeastern United States probably being introduced from somewhere in Central Europe. We discuss the impact of genetic bottlenecks on analyses meant to determine region of origin.
Collapse
Affiliation(s)
- Jeremy C Andersen
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| | - Nathan P Havill
- Northern Research Station, USDA Forest Service, Hamden, CT, USA
| | - Adalgisa Caccone
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, CT, USA
| | - Joseph S Elkinton
- Department of Environmental Conservation, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
5
|
Wepprich T, Grevstad FS. Divergence in Photoperiod Responses of a Classical Biological Control Agent, Galerucella calmariensis (Coleoptera: Chrysomelidae), Across a Climatic and Latitudinal Gradient. ENVIRONMENTAL ENTOMOLOGY 2021; 50:306-316. [PMID: 33346818 DOI: 10.1093/ee/nvaa161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Indexed: 06/12/2023]
Abstract
A key knowledge gap in classical biological control is to what extent insect agents evolve to novel environments. The introduction of biological control agents to new photoperiod regimes and climates may disrupt the coordination of diapause timing that evolved to the growing season length in the native range. We tested whether populations of Galerucella calmariensis L. have evolved in response to the potential mismatch of their diapause timing since their intentional introduction to the United States from Germany in the 1990s. Populations collected from 39.4° to 48.8° latitude in the western United States were reared in growth chambers to isolate the effects of photoperiod on diapause induction and development time. For all populations, shorter day lengths increased the proportion of beetles that entered diapause instead of reproducing. The critical photoperiods, or the day length at which half of a population diapauses, differed significantly among the sampled populations, generally decreasing at lower latitudes. The latitudinal trend reflects changes in growing season length, which determines the number of generations possible, and in local day lengths, at the time when beetles are sensitive to this cue. Development times were similar across populations, with one exception, and did not vary with photoperiod. These results show that there was sufficient genetic variation from the two German source populations to evolve different photoperiod responses across a range of environmental conditions. This study adds to the examples of rapid evolution of seasonal adaptations in introduced insects.
Collapse
Affiliation(s)
- Tyson Wepprich
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| | - Fritzi S Grevstad
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR
| |
Collapse
|
6
|
Heimpel GE, Abram PK, Brodeur J. A phylogenetic perspective on parasitoid host ranges with implications for biological control. CURRENT OPINION IN INSECT SCIENCE 2021; 44:95-100. [PMID: 33901732 DOI: 10.1016/j.cois.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 06/12/2023]
Abstract
Interactions that shape parasitoid host ranges occur within the context of both host and parasitoid phylogenetic history. While host-associated speciation of parasitoids can lead to increased host specificity, it can also lead to a broadening of host range through radiation onto a new group of host species. In both cases, sister-species of parasitoids may have widely divergent host ranges. But how should host range be estimated? Traditional views of host ranges as simple lists of species have given way to analyses that can detect host phylogenetic signal. Host relatedness can also be codified into useful indices that reflect the phylogenetic breadth of host range. All of these considerations have important implications for biological control, particularly in the realm of risk assessment.
Collapse
Affiliation(s)
- George E Heimpel
- Dept. of Entomology, University of Minnesota, 1980 Folwell Ave, St. Paul MN, 55108, USA.
| | - Paul K Abram
- Agriculture and Agri-Food Canada, Agassiz Research and Development Centre, 6947 Hwy #7, Agassiz, BC, Canada
| | - Jacques Brodeur
- Institut de recherche en biologie végétale, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
7
|
Alaniz AJ, Núñez-Hidalgo I, Carvajal MA, Alvarenga TM, Gómez-Cantillana P, Vergara PM. Current and future spatial assessment of biological control as a mechanism to reduce economic losses and carbon emissions: the case of Solanum sisymbriifolium in Africa. PEST MANAGEMENT SCIENCE 2020; 76:2395-2405. [PMID: 32048441 DOI: 10.1002/ps.5776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 01/04/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND Solanum sisymbriifolium is a native plant of South America introduced into Africa, which has detrimental effects on crop yields, and on the environment due to weed control treatment by burning. In South America, S. sisymbriifolium is naturally controlled by the beetle Gratiana spadicea, making this a potential option for its control in Africa. Here, we aim to generate current and future scenarios for the introduction of G. spadicea as a biocontrol agent in Africa, analysing: (i) current and future effective biocontrol areas; (ii) potentially avoided economic losses (AEL), and chemical control costs and savings; and (iii) avoided carbon emissions (ACE) associated with the non-burning of crop fields. We combine species distribution models (SDM) with land cover maps to estimate current and future effective biocontrol considering Representative Concentration Pathways (RCP) 4.5 and 8.5 climate change scenarios. We then estimate AEL and ACE using biocontrol, and chemical control costs and savings. RESULTS The effective biocontrol area reached 392 405 km2 in 18 countries, representing 40% of potentially affected croplands. Climate change induced a decrease in affected croplands and effective biocontrol. The estimated AEL reached US$45 447.2 ± 5617.3 billion distributed across 16 countries, while the estimated chemical control costs and savings reached US$1988.5 billion and 1411.8 billion, respectively. Potential ACE reached 36.3 ± 5.4 Tg. CONCLUSIONS Our study provides evidence for the potential benefits of biological controllers on economic losses and carbon emissions, which can be incorporated into sustainable development in low-income countries.
Collapse
Affiliation(s)
- Alberto J Alaniz
- Centro de Estudios en Ecología Espacial y Medio Ambiente, Ecogeografía, Santiago, Chile
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Ignacio Núñez-Hidalgo
- Centro de Estudios en Ecología Espacial y Medio Ambiente, Ecogeografía, Santiago, Chile
| | - Mario A Carvajal
- Centro de Estudios en Ecología Espacial y Medio Ambiente, Ecogeografía, Santiago, Chile
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Thiago M Alvarenga
- Departamento de Biología Animal, Universidade Estadual de Campinas - Unicamp, Campinas, Brazil
| | - Paulina Gómez-Cantillana
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Pablo M Vergara
- Departamento de Gestión Agraria, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| |
Collapse
|
8
|
Müller-Schärer H, Bouchemousse S, Litto M, McEvoy PB, Roderick GK, Sun Y. How to better predict long-term benefits and risks in weed biocontrol: an evolutionary perspective. CURRENT OPINION IN INSECT SCIENCE 2020; 38:84-91. [PMID: 32240967 DOI: 10.1016/j.cois.2020.02.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 06/11/2023]
Abstract
Classical biological control (also called importation biological control) of weeds has a remarkable track record for efficiency and safety, but further improvement is still needed, particularly to account for potential evolutionary changes after release. Here, we discuss the increasing yet limited evidence of post-introduction evolution and describe approaches to predict evolutionary change. Recent advances include using experimental evolution studies over several generations that combine -omics tools with behavioral bioassays. This novel approach in weed biocontrol is well suited to explore the potential for rapid evolutionary change in real-time and thus can be used to estimate more accurately potential benefits and risks of agents before their importation. We outline this approach with a chrysomelid beetle used to control invasive common ragweed.
Collapse
Affiliation(s)
| | | | - Maria Litto
- Dep. Biology, University of Fribourg, Fribourg, Switzerland
| | - Peter B McEvoy
- Oregon State University, Corvallis, Oregon, United States
| | | | - Yan Sun
- Dep. Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
9
|
Friedline CJ, Faske TM, Lind BM, Hobson EM, Parry D, Dyer RJ, Johnson DM, Thompson LM, Grayson KL, Eckert AJ. Evolutionary genomics of gypsy moth populations sampled along a latitudinal gradient. Mol Ecol 2019; 28:2206-2223. [PMID: 30834645 DOI: 10.1111/mec.15069] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/31/2019] [Accepted: 02/13/2019] [Indexed: 01/05/2023]
Abstract
The European gypsy moth (Lymantria dispar L.) was first introduced to Massachusetts in 1869 and within 150 years has spread throughout eastern North America. This large-scale invasion across a heterogeneous landscape allows examination of the genetic signatures of adaptation potentially associated with rapid geographical spread. We tested the hypothesis that spatially divergent natural selection has driven observed changes in three developmental traits that were measured in a common garden for 165 adult moths sampled from six populations across a latitudinal gradient covering the entirety of the range. We generated genotype data for 91,468 single nucleotide polymorphisms based on double digest restriction-site associated DNA sequencing and used these data to discover genome-wide associations for each trait, as well as to test for signatures of selection on the discovered architectures. Genetic structure across the introduced range of gypsy moth was low in magnitude (FST = 0.069), with signatures of bottlenecks and spatial expansion apparent in the rare portion of the allele frequency spectrum. Results from applications of Bayesian sparse linear mixed models were consistent with the presumed polygenic architectures of each trait. Further analyses indicated spatially divergent natural selection acting on larval development time and pupal mass, with the linkage disequilibrium component of this test acting as the main driver of observed patterns. The populations most important for these signals were two range-edge populations established less than 30 generations ago. We discuss the importance of rapid polygenic adaptation to the ability of non-native species to invade novel environments.
Collapse
Affiliation(s)
| | - Trevor M Faske
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Brandon M Lind
- Integrative Life Sciences Ph.D. Program, Virginia Commonwealth University, Richmond, Virginia
| | - Erin M Hobson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Dylan Parry
- Department of Environmental & Forest Biology, State University of New York, Syracuse, New York
| | - Rodney J Dyer
- Center for Environmental Studies, Virginia Commonwealth University, Richmond, Virginia
| | - Derek M Johnson
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| | - Lily M Thompson
- Department of Biology, University of Richmond, Richmond, Virginia
| | | | - Andrew J Eckert
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
10
|
Chen Y, Shenkar N, Ni P, Lin Y, Li S, Zhan A. Rapid microevolution during recent range expansion to harsh environments. BMC Evol Biol 2018; 18:187. [PMID: 30526493 PMCID: PMC6286502 DOI: 10.1186/s12862-018-1311-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 11/27/2018] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Adaptive evolution is one of the crucial mechanisms for organisms to survive and thrive in new environments. Recent studies suggest that adaptive evolution could rapidly occur in species to respond to novel environments or environmental challenges during range expansion. However, for environmental adaptation, many studies successfully detected phenotypic features associated with local environments, but did not provide ample genetic evidence on microevolutionary dynamics. It is therefore crucial to thoroughly investigate the genetic basis of rapid microevolution in response to environmental changes, in particular on what genes and associated variation are responsible for environmental challenges. Here, we genotyped genome-wide gene-associated microsatellites to detect genetic signatures of rapid microevolution of a marine tunicate invader, Ciona robusta, during recent range expansion to the harsh environment in the Red Sea. RESULTS The Red Sea population was significantly differentiated from the other global populations. The genome-wide scan, as well as multiple analytical methods, successfully identified a set of adaptive genes. Interestingly, the allele frequency largely varied at several adaptive loci in the Red Sea population, and we found significant correlations between allele frequency and local environmental factors at these adaptive loci. Furthermore, a set of genes were annotated to get involved in local temperature and salinity adaptation, and the identified adaptive genes may largely contribute to the invasion success to harsh environments. CONCLUSIONS All the evidence obtained in this study clearly showed that environment-driven selection had left detectable signatures in the genome of Ciona robusta within a few generations. Such a rapid microevolutionary process is largely responsible for the harsh environmental adaptation and therefore contributes to invasion success in different aquatic ecosystems with largely varied environmental factors.
Collapse
Affiliation(s)
- Yiyong Chen
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801, Tel-Aviv, Israel
- The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel Aviv University, Tel-Aviv, Israel
| | - Ping Ni
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Yaping Lin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, Düsternbrooker Weg 20, 24105, Kiel, Germany
| | - Shiguo Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing, 100085, China.
- University of Chinese Academy of Sciences, 19A Yuquan Road, Shijingshan District, Beijing, 100049, China.
| |
Collapse
|
11
|
Boulton RA, Heimpel GE. Mind the Gap: the evolution of oviposition site and specialization in the parasitoid superfamily Chalcidoidea. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Rebecca A Boulton
- College of Life and Environmental Science, Penryn Campus, University of Exeter, Exeter, UK
| | - George E Heimpel
- Department of Entomology, University of Minnesota, St Paul, MN, USA
| |
Collapse
|
12
|
Grevstad FS, Coop LB. The consequences of photoperiodism for organisms in new climates. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2015; 25:1506-1517. [PMID: 26552260 DOI: 10.1890/14-2071.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A change in climate is known to affect seasonal timing (phenology) of the life stages of poikilothermic organisms whose development depends on temperature. Less understood is the potential for even greater disruption to the life cycle when a phenology shift exposes photoperiod-sensitive life stages to new day lengths. We present a conceptual framework and model to investigate the ways that photoperiod-cued diapause can interact with a change in climate or latitude to influence voltinism in poikilothermic organisms. Our degree-day phenology model combines detailed spatial climate data, latitude- and date-specific photoperiods, and development and photoperiod response parameters. As an example, we model the biological control beetle Galerucella calmariensis and map the number of generations expected following its introduction into diverse climates throughout the continental United States. Incorporation of photoperiodism results in a complex geography of voltinism that differs markedly from predictions of traditional phenology models. Facultative multivoltine species will be prone to univoltism when transported to either warmer or southern climates due to exposure of the sensitive stage to shorter day lengths. When moved to more northern locations, they may attempt too many generations for the season duration thereby exposing vulnerable life stages to harsh weather in the fall. We further show that even small changes in temperature can result in large and unexpected shifts in voltinism. Analogous effects may be expected for organisms from wide variety of taxa that use photoperiod as a seasonal cue during some stage of their life cycle. Our approach is useful for understanding the performance and impacts of introduced pests and beneficial organisms as well as for predicting responses of resident species to climate change and climate variability.
Collapse
|
13
|
Seastedt TR. Biological control of invasive plant species: a reassessment for the Anthropocene. THE NEW PHYTOLOGIST 2015; 205:490-502. [PMID: 25303317 DOI: 10.1111/nph.13065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 08/17/2014] [Indexed: 05/12/2023]
Abstract
The science of finding, testing and releasing herbivores and pathogens to control invasive plant species has achieved a level of maturity and success that argues for continued and expanded use of this program. The practice, however, remains unpopular with some conservationists, invasion biologists, and stakeholders. The ecological and economic benefits of controlling densities of problematic plant species using biological control agents can be quantified, but the risks and net benefits of biological control programs are often derived from social or cultural rather than scientific criteria. Management of invasive plants is a 'wicked problem', and local outcomes to wicked problems have both positive and negative consequences differentially affecting various groups of stakeholders. The program has inherent uncertainties; inserting species into communities that are experiencing directional or even transformational changes can produce multiple outcomes due to context-specific factors that are further confounded by environmental change drivers. Despite these uncertainties, biological control could play a larger role in mitigation and adaptation strategies used to maintain biological diversity as well as contribute to human well-being by protecting food and fiber resources.
Collapse
Affiliation(s)
- Timothy R Seastedt
- Department of Ecology and Evolutionary Biology, Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO, 80309-0450, USA
| |
Collapse
|
14
|
Hoddle MS, Warner K, Steggall J, Jetter KM. Classical Biological Control of Invasive Legacy Crop Pests: New Technologies Offer Opportunities to Revisit Old Pest Problems in Perennial Tree Crops. INSECTS 2014; 6:13-37. [PMID: 26463063 PMCID: PMC4553525 DOI: 10.3390/insects6010013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 12/13/2014] [Indexed: 11/24/2022]
Abstract
Advances in scientific disciplines that support classical biological control have provided "new tools" that could have important applications for biocontrol programs for some long-established invasive arthropod pests. We suggest that these previously unavailable tools should be used in biological control programs targeting "legacy pests", even if they have been targets of previously unsuccessful biocontrol projects. Examples of "new tools" include molecular analyses to verify species identities and likely geographic area of origin, climate matching and ecological niche modeling, preservation of natural enemy genetic diversity in quarantine, the use of theory from invasion biology to maximize establishment likelihoods for natural enemies, and improved understanding of the interactions between natural enemy and target pest microbiomes. This review suggests that opportunities exist for revisiting old pest problems and funding research programs using "new tools" for developing biological control programs for "legacy pests" could provide permanent suppression of some seemingly intractable pest problems. As a case study, we use citricola scale, Coccus pseudomagnoliarum, an invasive legacy pest of California citrus, to demonstrate the potential of new tools to support a new classical biological control program targeting this insect.
Collapse
Affiliation(s)
- Mark S Hoddle
- Department of Entomology, University of California, Riverside, CA 92521, USA.
| | - Keith Warner
- Center for Science, Technology, and Society, Santa Clara University, CA 95053, USA.
| | - John Steggall
- California Department of Food and Agriculture, Sacramento, CA 95814, USA.
| | - Karen M Jetter
- UC Agricultural Issues Center, University of California, Davis, CA 95616, USA.
| |
Collapse
|
15
|
Lu X, Siemann E, He M, Wei H, Shao X, Ding J. Climate warming increases biological control agent impact on a non-target species. Ecol Lett 2014; 18:48-56. [PMID: 25376303 PMCID: PMC4311439 DOI: 10.1111/ele.12391] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/16/2014] [Accepted: 09/30/2014] [Indexed: 11/29/2022]
Abstract
Climate change may shift interactions of invasive plants, herbivorous insects and native plants, potentially affecting biological control efficacy and non-target effects on native species. Here, we show how climate warming affects impacts of a multivoltine introduced biocontrol beetle on the non-target native plant Alternanthera sessilis in China. In field surveys across a latitudinal gradient covering their full distributions, we found beetle damage on A. sessilis increased with rising temperature and plant life history changed from perennial to annual. Experiments showed that elevated temperature changed plant life history and increased insect overwintering, damage and impacts on seedling recruitment. These results suggest that warming can shift phenologies, increase non-target effect magnitude and increase non-target effect occurrence by beetle range expansion to additional areas where A. sessilis occurs. This study highlights the importance of understanding how climate change affects species interactions for future biological control of invasive species and conservation of native species.
Collapse
Affiliation(s)
- Xinmin Lu
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Institute/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China; Department of Ecology and Evolutionary Biology, Rice University, Houston, TX, 77005, USA; Hubei Key Laboratory of Wetland Evolution& Ecological Restoration, Wuhan Botanical Institute/Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | | | | | | | | | | |
Collapse
|
16
|
Hough-Goldstein J, Stout AR, Schoenstein JA. Fitness and field performance of a mass-reared biological control agent, Rhinoncomimus latipes (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:923-931. [PMID: 25182614 DOI: 10.1603/en14019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), a biological control agent of mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, has been mass reared with no infusion of new genetic material for 8-9 yr (at least 24-36 generations), while insects from the same genetic stock have been subject to field conditions in North America for that same period of time. Our main objective was to compare the laboratory population with the field population (and in 1 yr with a Chinese field population) to determine whether genetic changes had occurred, especially ones that may reduce the effectiveness of the laboratory population when released in the field. The laboratory insects laid more eggs and had reduced survival compared with field weevils in several comparisons, and had reduced responsiveness to cues that induce reproductive diapause. Exposure to older plants had the greatest effect on induction of reproductive diapause in both laboratory and field weevils, with effects of daylength and temperature less pronounced. At least a portion of the laboratory weevil population overwintered successfully. Results suggest that it is not necessary to add wild-type genetic material to the rearing colony at this time.
Collapse
Affiliation(s)
- J Hough-Goldstein
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716-130, USA
| | | | | |
Collapse
|
17
|
Szűcs M, Schaffner U, Price WJ, Schwarzländer M. Post-introduction evolution in the biological control agent Longitarsus jacobaeae (Coleoptera: Chrysomelidae). Evol Appl 2013; 5:858-68. [PMID: 23346230 PMCID: PMC3552403 DOI: 10.1111/j.1752-4571.2012.00264.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 03/20/2012] [Indexed: 11/30/2022] Open
Abstract
Rapid evolution has rarely been assessed in biological control systems despite the similarity with biological invasions, which are widely used as model systems. We assessed post-introduction climatic adaptation in a population of Longitarsus jacobaeae, a biological control agent of Jacobaea vulgaris, which originated from a low-elevation site in Italy and was introduced in the USA to a high-elevation site (Mt. Hood, Oregon) in the early 1980s. Life-history characteristics of beetle populations from Mt. Hood, from two low-elevation sites in Oregon (Italian origin) and from a high-elevation site from Switzerland were compared in common gardens. The performance of low- and high-elevation populations at a low- and a high-elevation site was evaluated using reciprocal transplants. The results revealed significant changes in aestival diapause and shifts in phenology in the Mt. Hood population, compared with the low-elevation populations. We found increased performance of the Mt. Hood population in its home environment compared with the low-elevation populations that it originated from. The results indicate that the beetles at Mt. Hood have adapted to the cooler conditions by life-history changes that conform to predictions based on theory and the phenology of the cold-adapted Swiss beetles.
Collapse
Affiliation(s)
- Marianna Szűcs
- Department of Plant, Soil, and Entomological Sciences, University of Idaho Moscow, ID, USA ; Department of Bioagricultural Sciences and Pest Management, Colorado State University Fort Collins, CO, USA
| | | | | | | |
Collapse
|
18
|
Affiliation(s)
- George K Roderick
- Environmental Science, Policy and Management, University of CaliforniaBerkeley, CA, USA e-mail:
| | - Ruth Hufbauer
- Bioagricultural Sciences and Pest Management and Graduate Degree Program in Ecology, Colorado State UniversityFort Collins, CO, USA e-mail:
| | - Maria Navajas
- Institut National de la Recherche Agronomique, UMR CBGP (INRA/IRD/Cirad/Montpellier SupAgro), Campus International de BaillarguetCS 30016, 34988, Montferrier-Sur-Lez, France e-mail:
| |
Collapse
|
19
|
Fauvergue X, Vercken E, Malausa T, Hufbauer RA. The biology of small, introduced populations, with special reference to biological control. Evol Appl 2012; 5:424-43. [PMID: 22949919 PMCID: PMC3407862 DOI: 10.1111/j.1752-4571.2012.00272.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 05/01/2012] [Indexed: 12/01/2022] Open
Abstract
Populations are introduced into novel environments in different contexts, one being the biological control of pests. Despite intense efforts, less than half introduced biological control agents establish. Among the possible approaches to improve biological control, one is to better understand the processes that underpin introductions and contribute to ecological and evolutionary success. In this perspective, we first review the demographic and genetic processes at play in small populations, be they stochastic or deterministic. We discuss the theoretical outcomes of these different processes with respect to individual fitness, population growth rate, and establishment probability. Predicted outcomes differ subtly in some cases, but enough so that the evaluating results of introductions have the potential to reveal which processes play important roles in introduced populations. Second, we attempt to link the theory we have discussed with empirical data from biological control introductions. A main result is that there are few available data, but we nonetheless report on an increasing number of well-designed, theory-driven, experimental approaches. Combining demography and genetics from both theoretical and empirical perspectives highlights novel and exciting avenues for research on the biology of small, introduced populations, and great potential for improving both our understanding and practice of biological control.
Collapse
Affiliation(s)
- Xavier Fauvergue
- Biology of Introduced Populations Laboratory, Institute Sophia Agrobiotech INRA - CNRS - UNSSophia-Antipolis Cedex, France
| | - Elodie Vercken
- Biology of Introduced Populations Laboratory, Institute Sophia Agrobiotech INRA - CNRS - UNSSophia-Antipolis Cedex, France
| | - Thibaut Malausa
- Biology of Introduced Populations Laboratory, Institute Sophia Agrobiotech INRA - CNRS - UNSSophia-Antipolis Cedex, France
| | - Ruth A Hufbauer
- Department of Bioagricultural Science and Pest Management, Colorado State UniversityFort Collins, CO, USA
| |
Collapse
|