1
|
Duthie AB, Mangan R, McKeon CR, Tinsley MC, Bussière LF. resevol: An R package for spatially explicit models of pesticide resistance given evolving pest genomes. PLoS Comput Biol 2023; 19:e1011691. [PMID: 38048359 PMCID: PMC10721171 DOI: 10.1371/journal.pcbi.1011691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 12/14/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023] Open
Abstract
The evolution of pesticide resistance is a widespread problem with potentially severe consequences for global food security. We introduce the resevol R package, which simulates individual-based models of pests with evolving genomes that produce complex, polygenic, and covarying traits affecting pest life history and pesticide resistance. Simulations are modelled on a spatially-explicit and highly customisable landscape in which crop and pesticide application and rotation can vary, making the package a highly flexible tool for both general and tactical models of pest management and resistance evolution. We present the key features of the resevol package and demonstrate its use for a simple example simulating pests with two covarying traits. The resevol R package is open source under GNU Public License. All source code and documentation are available on GitHub.
Collapse
Affiliation(s)
- A. Bradley Duthie
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Rosie Mangan
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - C. Rose McKeon
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Matthew C. Tinsley
- Biological and Environmental Sciences, University of Stirling, Stirling, United Kingdom
| | - Luc F. Bussière
- Biological and Environmental Sciences and Gothenburg Global Biodiversity Centre, The University of Gothenburg, Gothenburg, Sweden
- Gothenburgh Global Biodiversity Centre, Gothenburg, Sweden
| |
Collapse
|
2
|
Rigon CAG, Cutti L, Turra GM, Ferreira EZ, Menegaz C, Schaidhauer W, Dayan FE, Gaines TA, Merotto A. Recurrent Selection of Echinochloa crus-galli with a Herbicide Mixture Reduces Progeny Sensitivity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6871-6881. [PMID: 37104538 DOI: 10.1021/acs.jafc.3c00920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Herbicide mixtures are used to increase the spectrum of weed control and to manage weeds with target-site resistance to some herbicides. However, the effect of mixtures on the evolution of herbicide resistance caused by enhanced metabolism is unknown. This study evaluated the effect of a fenoxaprop-p-ethyl and imazethapyr mixture on the evolution of herbicide resistance in Echinochloa crus-galli using recurrent selection at sublethal doses. The progeny from second generations selected with the mixture had lower control than parental plants or the unselected progeny. GR50 increased 1.6- and 2.6-fold after two selection cycles with the mixture in susceptible (POP1-S) and imazethapyr-resistant (POP2-IR) biotypes, respectively. There was evidence that recurrent selection with this sublethal mixture had the potential to evolve cross-resistance to diclofop, cyhalofop, sethoxydim, and quinclorac. Mixture selection did not cause increased relative expression for a set of analyzed genes (CYP71AK2, CYP72A122, CYP72A258, CYP81A12, CYP81A14, CYP81A21, CYP81A22, and GST1). Fenoxaprop, rather than imazethapyr, is the main contributor to the decreased control in the progenies after recurrent selection with the mixture in low doses. This is the first study reporting the effect of a herbicide mixture at low doses on herbicide resistance evolution. The lack of control using the mixture may result in decreased herbicide sensitivity of the weed progenies. Using mixtures may select important detoxifying genes that have the potential to metabolize herbicides in patterns that cannot currently be predicted. The use of fully recommended herbicide rates in herbicide mixtures is recommended to reduce the risk of this type of resistance evolution.
Collapse
Affiliation(s)
- Carlos A G Rigon
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Luan Cutti
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Guilherme M Turra
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Enrico Z Ferreira
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Christian Menegaz
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Walker Schaidhauer
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| | - Franck E Dayan
- Department of Agricultural Biology, Colorado State University, 300 W. Pitkin St., Fort Collins, Colorado 80523, United States
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 300 W. Pitkin St., Fort Collins, Colorado 80523, United States
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre 91540-000, Brazil
| |
Collapse
|
3
|
Gupta S, Harkess A, Soble A, Van Etten M, Leebens-Mack J, Baucom RS. Interchromosomal linkage disequilibrium and linked fitness cost loci associated with selection for herbicide resistance. THE NEW PHYTOLOGIST 2023; 238:1263-1277. [PMID: 36721257 DOI: 10.1111/nph.18782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of weeds to herbicide is both a significant problem in agriculture and a model of rapid adaptation. However, significant gaps remain in our knowledge of resistance controlled by many loci and the evolutionary factors that influence the maintenance of resistance. Here, using herbicide-resistant populations of the common morning glory (Ipomoea purpurea), we perform a multilevel analysis of the genome and transcriptome to uncover putative loci involved in nontarget-site herbicide resistance (NTSR) and to examine evolutionary forces underlying the maintenance of resistance in natural populations. We found loci involved in herbicide detoxification and stress sensing to be under selection and confirmed that detoxification is responsible for glyphosate (RoundUp) resistance using a functional assay. We identified interchromosomal linkage disequilibrium (ILD) among loci under selection reflecting either historical processes or additive effects leading to the resistance phenotype. We further identified potential fitness cost loci that were strongly linked to resistance alleles, indicating the role of genetic hitchhiking in maintaining the cost. Overall, our work suggests that NTSR glyphosate resistance in I. purpurea is conferred by multiple genes which are potentially maintained through generations via ILD, and that the fitness cost associated with resistance in this species is likely a by-product of genetic hitchhiking.
Collapse
Affiliation(s)
- Sonal Gupta
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, 10003, USA
| | - Alex Harkess
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, 36849, USA
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Anah Soble
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| | - Megan Van Etten
- Biology Department, Pennsylvania State University, Dunmore, PA, 18512, USA
| | - James Leebens-Mack
- Department of Plant Biology, University of Georgia, Athens, GA, 30602, USA
| | - Regina S Baucom
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
4
|
Diversity of Herbicide-Resistance Mechanisms of Avena fatua L. to Acetyl-CoA Carboxylase-Inhibiting Herbicides in the Bajio, Mexico. PLANTS 2022; 11:plants11131644. [PMID: 35807596 PMCID: PMC9269088 DOI: 10.3390/plants11131644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022]
Abstract
Herbicide resistance is an evolutionary process that affects entire agricultural regions’ yield and productivity. The high number of farms and the diversity of weed management can generate hot selection spots throughout the regions. Resistant biotypes can present a diversity of mechanisms of resistance and resistance factors depending on selective conditions inside the farm; this situation is similar to predictions by the geographic mosaic theory of coevolution. In Mexico, the agricultural region of the Bajio has been affected by herbicide resistance for 25 years. To date, Avena fatua L. is one of the most abundant and problematic weed species. The objective of this study was to determine the mechanism of resistance of biotypes with failures in weed control in 70 wheat and barley crop fields in the Bajio, Mexico. The results showed that 70% of farms have biotypes with target site resistance (TSR). The most common mutations were Trp–1999–Cys, Asp–2078–Gly, Ile–2041–Asn, and some of such mutations confer cross-resistance to ACCase-inhibiting herbicides. Metabolomic fingerprinting showed four different metabolic expression patterns. The results confirmed that in the Bajio, there exist multiple selection sites for both resistance mechanisms, which proves that this area can be considered as a geographic mosaic of resistance.
Collapse
|
5
|
Wang H, Liu T, Zhao W, Liu X, Sun M, Su P, Wen J. Reduced Invasiveness of Common Ragweed ( Ambrosia artemisiifolia) Using Low-Dose Herbicide Treatments for High-Efficiency and Eco-Friendly Control. FRONTIERS IN PLANT SCIENCE 2022; 13:861806. [PMID: 35646043 PMCID: PMC9133841 DOI: 10.3389/fpls.2022.861806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
Common ragweed (Ambrosia artemisiifolia) is an invasive annual weed that invades heavily disturbed habitats and natural habitats less disturbed by human activities with native plant species in need of protection. Achieving effective control of A. artemisiifolia for the protection of native organisms and the local ecological environment is an ongoing challenge. Based on the growth and development characteristics of A. artemisiifolia, we examined the effectiveness of herbicides in controlling this species and the optimal time for application in the field with the aim of reducing herbicide dosage. Additionally, we analyzed whether the efficiency of low-dose applications for controlling this species might improve with increasing native plant species richness. Our findings indicate that aminopyralid (33 g ai ha-1) was the most suitable herbicide for chemical control of A. artemisiifolia, with optimum application time being during vegetative growth (BBCH 32-35). Application of aminopyralid was found to kill approximately 52% of A. artemisiifolia plants, and more than 75% of the surviving plants did not bloom, thereby reducing seed yield of the population by more than 90%. Compared with the application of high-dose herbicide, the phytotoxicity of aminopyralid to native plants at the applied dose was substantially reduced. After 2 years of application, the relative coverage of A. artemisiifolia significantly decreased, with few plants remaining, whereas the relative coverage of native plants more than doubled, representing an eco-friendly control. Further, there was an increase in the A. artemisiifolia control rate in the plant community with higher native plant species richness at the same herbicide rates and a reduction in seed yield of A. artemisiifolia. Our findings help toward developing control measures to reduce the invasiveness of A. artemisiifolia with low-dose herbicides meanwhile protecting native plants, and then using the species richness of native plant communities to indirectly promote the effectiveness of low-dose herbicide application.
Collapse
Affiliation(s)
- Hanyue Wang
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Tong Liu
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Wenxuan Zhao
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Xuelian Liu
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Mingming Sun
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Pei Su
- Xinjiang Production and Construction Corps Key Laboratory of Oasis Town and Mountain-Basin System Ecology, College of Life Sciences, Shihezi University, Shihezi, China
| | - Jun Wen
- Office of Locust and Rodent Control Headquarters of Ili Kazak Autonomous Prefecture, Yining, China
| |
Collapse
|
6
|
Meyer L, Pernin F, Michel S, Bailly G, Chauvel B, Le Corre V, Délye C. Lab meets field: Accelerated selection and field monitoring concur that non-target-site-based resistance evolves first in the dicotyledonous, allergenic weed Ambrosia artemisiifolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 317:111202. [PMID: 35193749 DOI: 10.1016/j.plantsci.2022.111202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
Assessing weed capacity to evolve herbicide resistance before resistance occurs in the field is of major interest for chemical weed control. We used herbicide selection followed by controlled crosses to provoke accelerated evolution of resistance to imazamox (imidazolinones) and tribenuron (sulfonyurea), two acetolactate-synthase (ALS) inhibitors targeting Ambrosia artemisiifolia. In natural populations with no herbicide application records, some plants were initially resistant to metsulfuron (sulfonylurea), a cereal herbicide. Non-target-site-based resistance (NTSR) to metsulfuron was substantially increased from these plants within two generations. NTSR to imazamox and/or tribenuron emerged in metsulfuron-selected G1 progenies and was strongly reinforced in G2 progenies selected by imazamox or tribenuron. NTSR to the herbicides assayed was endowed by partly overlapping and partly specific pathways. Herbicide sensitivity bioassays conducted over 62 ALS-inhibitor-sprayed fields identified emerging resistance to imazamox and/or tribenuron in 14 A. artemisiifolia populations. Only NTSR was detected in 13 of these populations. In the last population, NTSR was present together with a mutant, herbicide-resistant ALS allele bearing an Ala-205-Thr substitution. NTSR was thus by far the predominant type of resistance to ALS inhibitors in France. This confirmed accelerated selection results and demonstrated the relevance of this approach to anticipate resistance evolution in a dicotyledonous weed.
Collapse
Affiliation(s)
- Lucie Meyer
- INRAE, Agroécologie, F-21000, Dijon, France; BASF France Agro Division, Agroecology and Stewardship Department, F-69130, Écully, France
| | | | | | - Géraldine Bailly
- BASF France Agro Division, Agroecology and Stewardship Department, F-69130, Écully, France
| | | | | | | |
Collapse
|
7
|
Zhao N, Yan Y, Liu W, Wang J. Cytochrome P450 CYP709C56 metabolizing mesosulfuron-methyl confers herbicide resistance in Alopecurus aequalis. Cell Mol Life Sci 2022; 79:205. [PMID: 35334005 PMCID: PMC11072224 DOI: 10.1007/s00018-022-04171-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/15/2022]
Abstract
Multiple herbicide resistance in diverse weed species endowed by enhanced herbicide detoxification or degradation is rapidly growing into a great threat to herbicide sustainability and global food safety. Although metabolic resistance is frequently documented in the economically damaging arable weed species shortawn foxtail (Alopecurus aequalis Sobol.), relevant molecular knowledge has been lacking. Previously, we identified a field population of A. aequalis (R) that had evolved metabolic resistance to the commonly used acetolactate synthase (ALS)-inhibiting herbicide mesosulfuron-methyl. RNA sequencing was used to discover potential herbicide metabolism-related genes, and four cytochrome P450s (CYP709C56, CYP71R18, CYP94C117, and CYP94E14) were identified with higher expressions in the R vs. susceptible (S) plants. Here the full-length P450 complementary DNA transcripts were each cloned with identical sequences between the S and R plants. Transgenic Arabidopsis overexpressing CYP709C56 became resistant to the sulfonylurea herbicide mesosulfuron-methyl and the triazolo-pyrimidine herbicide pyroxsulam. This resistance profile generally but does not completely in accordance with what is evident in the R A. aequalis. Transgenic lines exhibited enhanced capacity for detoxifying mesosulfuron-methyl into O-demethylated metabolite, which is in line with the detection of O-demethylated herbicide metabolite in vitro in transformed yeast. Structural modeling predicted that mesosulfuron-methyl binds to CYP709C56 involving amino acid residues Thr-328, Thr-500, Asn-129, Gln-392, Phe-238, and Phe-242 for achieving O-demethylation. Constitutive expression of CYP709C56 was highly correlated with the metabolic mesosulfuron-methyl resistance in A. aequalis. These results indicate that CYP709C56 degrades mesosulfuron-methyl and its up-regulated expression in A. aequalis confers resistance to mesosulfuron-methyl.
Collapse
Affiliation(s)
- Ning Zhao
- Anhui Province Key Laboratory of Integrated Pest Management On Crops, School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Yanyan Yan
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China
| | - Weitang Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jinxin Wang
- College of Plant Protection, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
8
|
Kreiner JM, Sandler G, Stern AJ, Tranel PJ, Weigel D, Stinchcombe J, Wright SI. Repeated origins, widespread gene flow, and allelic interactions of target-site herbicide resistance mutations. eLife 2022; 11:70242. [PMID: 35037853 PMCID: PMC8798060 DOI: 10.7554/elife.70242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/16/2022] [Indexed: 11/13/2022] Open
Abstract
Causal mutations and their frequency in agricultural fields are well-characterized for herbicide resistance. However, we still lack understanding of their evolutionary history: the extent of parallelism in the origins of target-site resistance (TSR), how long these mutations persist, how quickly they spread, and allelic interactions that mediate their selective advantage. We addressed these questions with genomic data from 19 agricultural populations of common waterhemp (Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past century, with a contemporary effective population size estimate of 8 x 107. We found variation at seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which were common. These three common resistance variants show extreme parallelism in their mutational origins, with gene flow having shaped their distribution across the landscape. Allele age estimates supported a strong role of adaptation from de novo mutations, with a median age of 30 suggesting that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages varied in both their age and evidence for selection over two different timescales, implying considerable heterogeneity in the forces that govern their persistence. Two such forces are intra- and inter-locus allelic interactions; we report a signal of extended haplotype competition between two common TSR alleles, and extreme linkage with genome-wide alleles with known functions in resistance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a metapopulation, with important implications for the management of herbicide resistance.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - George Sandler
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Aaron J Stern
- Graduate Group in Computational Biology, University of California, Berkeley, Berkeley, United States
| | - Patrick J Tranel
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, United States
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - John Stinchcombe
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| | - Stephen Isaac Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
9
|
Gonsiorkiewicz Rigon CA, Cutti L, Angonese PS, Sulzbach E, Markus C, Gaines TA, Merotto A. The safener isoxadifen does not increase herbicide resistance evolution in recurrent selection with fenoxaprop. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111097. [PMID: 34763850 DOI: 10.1016/j.plantsci.2021.111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Safeners are chemical compounds used to improve selectivity and safety of herbicides in crops by activating genes that enhance herbicide metabolic detoxification. The genes activated by safeners in crops are similar to the genes causing herbicide resistance through increased metabolism in weeds. This work investigated the effect of the safener isoxadifen-ethyl (IS) in combination with fenoxaprop-p-ethyl (FE) on the evolution of herbicide resistance in Echinochloa crus-galli under recurrent selection. Reduced susceptibility was observed in the progeny after recurrent selection with both FE alone and with FE + IS for two generations (G2) compared to the parental population (G0). The resistance index found in G2 after FE + IS selection was similar as when FE was used alone, demonstrating that the safener did not increase the rate or magnitude of herbicide resistance evolution. G2 progeny selected with FE alone and the combination of FE + IS had increased survival to herbicides from other mechanisms of action relative to the parental G0 population. One biotype of G2 progeny had increased constitutive expression of glutathione-S-transferase (GST1) after recurrent selection with FE + IS. G2 progeny had increased expression of two P450 genes (CYP71AK2 and CYP72A122) following treatment with FE, while G2 progeny had increased expression of five P450 genes (CYP71AK2, CYP72A258, CYP81A12, CYP81A14 and CYP81A21) after treatment with FE + IS. Repeated selection with low doses of FE with or without the safener IS decreased E. crus-galli control and showed potential for cross-resistance evolution. Addition of safener did not further decrease herbicide sensitivity in second generation progeny; however, the recurrent use of safener in combination with FE resulted in safener-induced increased expression of several CYP genes. This is the first report using safener as an additional factor to study herbicide resistance evolution in weeds under experimental recurrent selection.
Collapse
Affiliation(s)
| | - Luan Cutti
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| | - Paula Sinigaglia Angonese
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| | - Estéfani Sulzbach
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| | - Catarine Markus
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil
| | - Todd A Gaines
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, 80523, USA.
| | - Aldo Merotto
- Department of Crop Science, Federal University of Rio Grande do Sul, Av. Bento Goncalves, Porto Alegre, 91540-000, Brazil.
| |
Collapse
|
10
|
Are Efficient-Dose Mixtures a Solution to Reduce Fungicide Load and Delay Evolution of Resistance? An Experimental Evolutionary Approach. Microorganisms 2021; 9:microorganisms9112324. [PMID: 34835451 PMCID: PMC8622124 DOI: 10.3390/microorganisms9112324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/28/2021] [Accepted: 10/31/2021] [Indexed: 11/17/2022] Open
Abstract
Pesticide resistance poses a critical threat to agriculture, human health and biodiversity. Mixtures of fungicides are recommended and widely used in resistance management strategies. However, the components of the efficiency of such mixtures remain unclear. We performed an experimental evolutionary study on the fungal pathogen Z. tritici to determine how mixtures managed resistance. We compared the effect of the continuous use of single active ingredients to that of mixtures, at the minimal dose providing full control of the disease, which we refer to as the "efficient" dose. We found that the performance of efficient-dose mixtures against an initially susceptible population depended strongly on the components of the mixture. Such mixtures were either as durable as the best mixture component used alone, or worse than all components used alone. Moreover, efficient dose mixture regimes probably select for generalist resistance profiles as a result of the combination of selection pressures exerted by the various components and their lower doses. Our results indicate that mixtures should not be considered a universal strategy. Experimental evaluations of specificities for the pathogens targeted, their interactions with fungicides and the interactions between fungicides are crucial for the design of sustainable resistance management strategies.
Collapse
|
11
|
Recurrent Selection with Sub-Lethal Doses of Mesotrione Reduces Sensitivity in Amaranthus palmeri. PLANTS 2021; 10:plants10071293. [PMID: 34202011 PMCID: PMC8308957 DOI: 10.3390/plants10071293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/28/2022]
Abstract
Amaranthus palmeri, ranked as the most prolific and troublesome weed in North America, has evolved resistance to several herbicide sites of action. Repeated use of any one herbicide, especially at lower than recommended doses, can lead to evolution of weed resistance, and, therefore, a better understanding of the process of resistance evolution is essential for the management of A. palmeri and other difficult-to-control weed species. Amaranthus palmeri rapidly developed resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitors such as mesotrione. The objective of this study was to test the potential for low-dose applications of mesotrione to select for reduced susceptibility over multiple generations in an A. palmeri population collected from an agricultural field in 2001. F0 plants from the population were initially treated with sub-lethal mesotrione rates and evaluated for survival three weeks after treatment. All F0 plants were controlled at the 1× rate (x = 105 g ai ha−1). However, 2.5% of the F0 plants survived the 0.5× treatment. The recurrent selection process using plants surviving various mesotrione rates was continued until the F4 generation was reached. Based on the GR50 values, the sensitivity index was determined to be 1.7 for the F4 generation. Compared to F0, HPPD gene expression level in the F3 population increased. Results indicate that after several rounds of recurrent selection, the successive generations of A. palmeri became less responsive to mesotrione, which may explain the reduced sensitivity of this weed to HPPD-inhibiting herbicides. The results have significance in light of the recently released soybean and soon to be released cotton varieties with resistance to HPPD inhibitors.
Collapse
|
12
|
Kadlček L, Nováková E, Šafránková I, Pokorný R, Horký P, Jiroušek M, Winkler J. The Spectrum of Weed Species and Fungal Pathogens in Stands of Alternative Fodder Crop Lolium Multiflorum Var. Westerwoldicum Growing up in a Drought-Prone Area in the Czech Republic. ACTA UNIVERSITATIS AGRICULTURAE ET SILVICULTURAE MENDELIANAE BRUNENSIS 2021. [DOI: 10.11118/actaun.2021.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
13
|
Wu C, LeClere S, Liu K, Paciorek M, Perez‐Jones A, Westra P, Sammons RD. A dicamba resistance-endowing IAA16 mutation leads to significant vegetative growth defects and impaired competitiveness in kochia (Bassia scoparia) †. PEST MANAGEMENT SCIENCE 2021; 77:795-804. [PMID: 32909332 PMCID: PMC7821297 DOI: 10.1002/ps.6080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/29/2020] [Accepted: 09/10/2020] [Indexed: 05/03/2023]
Abstract
BACKGROUND Precise quantification of the fitness cost of synthetic auxin resistance has been impeded by lack of knowledge about the genetic basis of resistance in weeds. Recent elucidation of a resistance-endowing IAA16 mutation (G73N) in the key weed species kochia (Bassia scoparia), allows detailed characterization of the contribution of resistance alleles to weed fitness, both in the presence and absence of herbicides. Different G73N genotypes from a segregating resistant parental line (9425) were characterized for cross-resistance to dicamba, 2,4-d and fluroxypyr, and changes on stem/leaf morphology and plant architecture. Plant competitiveness and dominance of the fitness effects was quantified through measuring biomass and seed production of three F2 lines in two runs of glasshouse replacement series studies. RESULTS G73N confers robust resistance to dicamba but only moderate to weak resistance to 2,4-D and fluroxypyr. G73N mutant plants displayed significant vegetative growth defects: (i) they were 30-50% shorter, with a more tumbling style plant architecture, and (ii) they had thicker and more ovate (versus lanceolate and linear) leaf blades with lower photosynthesis efficiency, and 40-60% smaller stems with less-developed vascular bundle systems. F2 mutant plants had impaired plant competitiveness, which can lead to 80-90% less biomass and seed production in the replacement series study. The pleiotropic effects of G73N were mostly semidominant (0.5) and fluctuated with the environments and traits measured. CONCLUSION G73N is associated with significant vegetative growth defects and reduced competitiveness in synthetic auxin-resistant kochia. Management practices should target resistant kochia's high vulnerability to competition in order to effectively contain the spread of resistance.
Collapse
Affiliation(s)
| | | | - Kang Liu
- Bayer CropScienceChesterfieldMOUSA
| | | | | | - Phil Westra
- Department of Agricultural BiologyColorado State UniversityWentzvilleMOUSA
| | | |
Collapse
|
14
|
Dimaano NG, Iwakami S. Cytochrome P450-mediated herbicide metabolism in plants: current understanding and prospects. PEST MANAGEMENT SCIENCE 2021; 77:22-32. [PMID: 32776423 DOI: 10.1002/ps.6040] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/01/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Cytochrome P450s (P450s) have been at the center of herbicide metabolism research as a result of their ability to endow selectivity in crops and resistance in weeds. In the last 20 years, ≈30 P450s from diverse plant species have been revealed to possess herbicide-metabolizing function, some of which were demonstrated to play a key role in plant herbicide sensitivity. Recent research even demonstrated that some P450s from crops and weeds metabolize numerous herbicides from various chemical backbones, which highlights the importance of P450s in the current agricultural systems. However, due to the enormous number of plant P450s and the complexity of their function, expression and regulation, it remains a challenge to fully explore the potential of P450-mediated herbicide metabolism in crop improvement and herbicide resistance mitigation. Differences in the substrate specificity of each herbicide-metabolizing P450 are now evident. Comparisons of the substrate specificity and protein structures of P450s will be beneficial for the discovery of selective herbicides and may lead to the development of crops with higher herbicide tolerance by transgenics or genome-editing technologies. Furthermore, the knowledge will help design sound management strategies for weed resistance including the prediction of cross-resistance patterns. Overcoming the ambiguity of P450 function in plant xenobiotic pathways will unlock the full potential of this enzyme family in advancing global agriculture and food security. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Niña Gracel Dimaano
- College of Agriculture and Food Science, University of the Philippines Los Baños, Los Baños, Philippines
| | - Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
15
|
Leon RG, Dunne JC, Gould F. The role of population and quantitative genetics and modern sequencing technologies to understand evolved herbicide resistance and weed fitness. PEST MANAGEMENT SCIENCE 2021; 77:12-21. [PMID: 32633005 PMCID: PMC7754128 DOI: 10.1002/ps.5988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/26/2020] [Accepted: 07/06/2020] [Indexed: 05/11/2023]
Abstract
Evolution of resistance to multiple herbicides with different sites of action and of nontarget site resistance (NTSR) often involves multiple genes. Thus, single-gene analyses, typical in studies of target site resistance, are not sufficient for understanding the genetic architecture and dynamics of NTSR and multiple resistance. The genetics of weed adaptation to varied agricultural environments is also generally expected to be polygenic. Recent advances in whole-genome sequencing as well as bioinformatic and statistical tools have made it possible to use population and quantitative genetics methods to expand our understanding of how resistance and other traits important for weed adaptation are genetically controlled at the individual and population levels, and to predict responses to selection pressure by herbicides and other environmental factors. The use of tools such as quantitative trait loci mapping, genome-wide association studies, and genomic prediction will allow pest management scientists to better explain how pests adapt to control tools and how specific genotypes thrive and spread across agroecosystems and other human-disturbed systems. The challenge will be to use this knowledge in developing integrated weed management systems that inhibit broad resistance to current and future weed-control methods. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ramon G Leon
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Jeffrey C Dunne
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNCUSA
| | - Fred Gould
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNCUSA
- Genetic Engineering and Society CenterNorth Carolina State UniversityRaleighNCUSA
| |
Collapse
|
16
|
Vázquez-García JG, Alcántara-de la Cruz R, Palma-Bautista C, Rojano-Delgado AM, Cruz-Hipólito HE, Torra J, Barro F, De Prado R. Accumulation of Target Gene Mutations Confers Multiple Resistance to ALS, ACCase, and EPSPS Inhibitors in Lolium Species in Chile. FRONTIERS IN PLANT SCIENCE 2020; 11:553948. [PMID: 33193482 PMCID: PMC7655540 DOI: 10.3389/fpls.2020.553948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Different Lolium species, common weeds in cereal fields and fruit orchards in Chile, were reported showing isolated resistance to the acetyl CoA carboxylase (ACCase), acetolactate synthase (ALS) and 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) inhibiting herbicides in the late 1990s. The first case of multiple resistance to these herbicides was Lolium multiflorum found in spring barley in 2007. We hypothesized that other Lolium species may have evolved multiple resistance. In this study, we characterized the multiple resistance to glyphosate, diclofop-methyl and iodosulfuron-methyl-sodium in Lolium rigidum, Lolium perenne and Lolium multiflorum resistant (R) populations from Chile collected in cereal fields. Lolium spp. populations were confirmed by AFLP analysis to be L. rigidum, L. perenne and L. multiflorum. Dose-response assays confirmed multiple resistance to glyphosate, diclofop-methyl and iodosulfuron methyl-sodium in the three species. Enzyme activity assays (ACCase, ALS and EPSPS) suggested that the multiple resistance of the three Lolium spp. was caused by target site mechanisms, except the resistance to iodosulfuron in the R L. perenne population. The target site genes sequencing revealed that the R L. multiflorum population presented the Pro-106-Ser/Ala (EPSPS), Ile-2041-Asn++Asp-2078-Gly (ACCase), and Trp-574-Leu (ALS) mutations; and the R L. rigidum population had the Pro-106-Ser (EPSPS), Ile-1781-Leu+Asp-2078-Gly (ACCase) and Pro-197-Ser/Gln+Trp-574-Leu (ALS) mutations. Alternatively, the R L. perenne population showed only the Asp-2078-Gly (ACCase) mutation, while glyphosate resistance could be due to EPSPS gene amplification (no mutations but high basal enzyme activity), whereas iodosulfuron resistance presumably could involve non-target site resistance (NTSR) mechanisms. These results support that the accumulation of target site mutations confers multiple resistance to the ACCase, ALS and EPSPS inhibitors in L. multiflorum and L. rigidum from Chile, while in L. perenne, both target and NTSR could be present. Multiple resistance to three herbicide groups in three different species of the genus Lolium in South America represents a significant management challenge.
Collapse
Affiliation(s)
- José G. Vázquez-García
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| | | | | | | | - Hugo E. Cruz-Hipólito
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| | - Joel Torra
- Department d’Hortofruticultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain
| | - Francisco Barro
- Department of Plant Breeding, Institute for Sustainable Agriculture, CSIC (IAS-CSIC), Córdoba, Spain
| | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
17
|
Karlsson Green K, Stenberg JA, Lankinen Å. Making sense of Integrated Pest Management (IPM) in the light of evolution. Evol Appl 2020; 13:1791-1805. [PMID: 32908586 PMCID: PMC7463341 DOI: 10.1111/eva.13067] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/21/2022] Open
Abstract
Integrated Pest Management (IPM) is a holistic approach to combat pests (including herbivores, pathogens, and weeds) using a combination of preventive and curative actions, and only applying synthetic pesticides when there is an urgent need. Just as the recent recognition that an evolutionary perspective is useful in medicine to understand and predict interactions between hosts, diseases, and medical treatments, we argue that it is crucial to integrate an evolutionary framework in IPM to develop efficient and reliable crop protection strategies that do not lead to resistance development in herbivores, pathogens, and weeds. Such a framework would not only delay resistance evolution in pests, but also optimize each element of the management and increase the synergies between them. Here, we outline key areas within IPM that would especially benefit from a thorough evolutionary understanding. In addition, we discuss the difficulties and advantages of enhancing communication among research communities rooted in different biological disciplines and between researchers and society. Furthermore, we present suggestions that could advance implementation of evolutionary principles in IPM and thus contribute to the development of sustainable agriculture that is resilient to current and emerging pests.
Collapse
Affiliation(s)
- Kristina Karlsson Green
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Johan A. Stenberg
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| | - Åsa Lankinen
- Department of Plant Protection BiologySwedish University of Agricultural SciencesAlnarpSweden
| |
Collapse
|
18
|
Vieira BC, Luck JD, Amundsen KL, Werle R, Gaines TA, Kruger GR. Herbicide drift exposure leads to reduced herbicide sensitivity in Amaranthus spp. Sci Rep 2020; 10:2146. [PMID: 32034222 PMCID: PMC7005892 DOI: 10.1038/s41598-020-59126-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/22/2020] [Indexed: 12/22/2022] Open
Abstract
While the introduction of herbicide tolerant crops provided growers new options to manage weeds, the widespread adoption of these herbicides increased the risk for herbicide spray drift to surrounding vegetation. The impact of herbicide drift in sensitive crops is extensively investigated, whereas scarce information is available on the consequences of herbicide drift in non-target plants. Weeds are often abundant in field margins and ditches surrounding agricultural landscapes. Repeated herbicide drift exposure to weeds could be detrimental to long-term management as numerous weeds evolved herbicide resistance following recurrent-selection with low herbicide rates. The objective of this study was to evaluate if glyphosate, 2,4-D, and dicamba spray drift could select Amaranthus spp. biotypes with reduced herbicide sensitivity. Palmer amaranth and waterhemp populations were recurrently exposed to herbicide drift in a wind tunnel study over two generations. Seeds from survival plants were used for the subsequent rounds of herbicide drift exposure. Progenies were subjected to herbicide dose-response studies following drift selection. Herbicide drift exposure rapidly selected for Amaranthus spp. biotypes with reduced herbicide sensitivity over two generations. Weed management programs should consider strategies to mitigate near-field spray drift and suppress the establishment of resistance-prone weeds on field borders and ditches in agricultural landscapes.
Collapse
Affiliation(s)
- Bruno C Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA.
| | - Joe D Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Keenan L Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Todd A Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, USA
| | - Greg R Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, USA
| |
Collapse
|
19
|
Driver KE, Brunharo CACG, Al-Khatib K. Mechanism of clomazone resistance in Leptochloa fusca spp. fasicularis to clomazone. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 162:1-5. [PMID: 31836044 DOI: 10.1016/j.pestbp.2019.09.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/29/2019] [Accepted: 09/02/2019] [Indexed: 06/10/2023]
Abstract
Bearded sprangletop (Leptochloa fusca spp. fasicularis) is a problematic weed in California rice (Oryza sativa) production. Historically, bearded sprangletop is controlled with clomazone in California rice fields. The continuous use of clomazone and lack of crop rotation in rice fields resulted in resistance to clomazone in several bearded sprangletop. The objective of this research was to determine the clomazone mechanism of resistance of two bearded sprangletop populations in California rice by investigating clomazone absorption, translocation, and metabolism under controlled environmental conditions in two resistant (CRBS1 and CRBS2) and one susceptible (S) populations. Absorption and translocation of 14C-clomazone were similar in R and S. Clomazone metabolism, as determined by inhibition of cytochrome P450 enzymes with malathion and determining clomazone metabolites profile, was different between S and R 3 days after treatment. Bearded sprangletop pretreated with malathion was 2-fold more sensitive to clomazone than when treated with clomazone alone, suggesting that cytochrome P450-mediated clomazone metabolism might be involved in the mechanism of resistance. An HPLC-MS/MS analysis revealed differences in clomazone metabolism between R and S biotypes. Hydroxymethylclomazone was the most abundant metabolite found in R plants with three and five-fold more abundant in CRBS1 and CRBS2, respectively, when compared to S plants. 5-ketoclomazone, the known toxic metabolite of clomazone, accumulated 2-fold more in S plants than in R plants at 72 h after treatment. This research shows that clomazone is metabolized differently between R and S populations of bearded sprangletop and that P450 monooxidation is likely involved in the mechanism of resistance.
Collapse
Affiliation(s)
- Katie E Driver
- Graduate Student Researcher, University of California, Davis, Davis, CA, USA
| | | | | |
Collapse
|
20
|
Cost-effective detection of genome-wide signatures for 2,4-D herbicide resistance adaptation in red clover. Sci Rep 2019; 9:20037. [PMID: 31882573 PMCID: PMC6934753 DOI: 10.1038/s41598-019-55676-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/26/2019] [Indexed: 12/04/2022] Open
Abstract
Herbicide resistance is a recurrent evolutionary event that has been reported across many species and for all major herbicide modes of action. The synthetic auxinic herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) has been widely used since the 1940s, however the genetic variation underlying naturally evolving resistance remains largely unknown. In this study, we used populations of the forage legume crop red clover (Trifolium pratense L.) that were recurrently selected for 2,4-D resistance to detect genome-wide signatures of adaptation. Four susceptible and six derived resistant populations were sequenced using a less costly approach by combining targeted sequencing (Capture-Seq) with pooled individuals (Pool-Seq). Genomic signatures of selection were identified using: (i) pairwise allele frequency differences; (ii) genome scan for overly differentiated loci; and (iii) genome‐wide association. Fifty significant SNPs were consistently detected, most located in a single chromosome, which can be useful for marker assisted selection. Additionally, we searched for candidate genes at these genomic regions to gain insights into potential molecular mechanisms underlying 2,4-D resistance. Among the predicted functions of candidate genes, we found some related to the auxin metabolism, response to oxidative stress, and detoxification, which are also promising for further functional validation studies.
Collapse
|
21
|
Omics Potential in Herbicide-Resistant Weed Management. PLANTS 2019; 8:plants8120607. [PMID: 31847327 PMCID: PMC6963460 DOI: 10.3390/plants8120607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/11/2019] [Accepted: 12/12/2019] [Indexed: 12/20/2022]
Abstract
The rapid development of omics technologies has drastically altered the way biologists conduct research. Basic plant biology and genomics have incorporated these technologies, while some challenges remain for use in applied biology. Weed science, on the whole, is still learning how to integrate omics technologies into the discipline; however, omics techniques are more frequently being implemented in new and creative ways to address basic questions in weed biology as well as the more practical questions of improving weed management. This has been especially true in the subdiscipline of herbicide resistance where important questions are the evolution and genetic basis of herbicide resistance. This review examines the advantages, challenges, potential solutions, and outlook for omics technologies in the discipline of weed science, with examples of how omics technologies will impact herbicide resistance studies and ultimately improve management of herbicide-resistant populations.
Collapse
|
22
|
Vieira BC, Luck JD, Amundsen KL, Gaines TA, Werle R, Kruger GR. Response of Amaranthus spp. following exposure to sublethal herbicide rates via spray particle drift. PLoS One 2019; 14:e0220014. [PMID: 31318947 PMCID: PMC6638980 DOI: 10.1371/journal.pone.0220014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/05/2019] [Indexed: 01/29/2023] Open
Abstract
The adverse consequences of herbicide drift towards sensitive crops have been extensively reported in the literature. However, little to no information is available on the consequences of herbicide drift onto weed species inhabiting boundaries of agricultural fields. Exposure to herbicide drift could be detrimental to long-term weed management as several weed species have evolved herbicide-resistance after recurrent selection with sublethal herbicide rates This study investigated the deposition of glyphosate, 2,4-D, and dicamba spray particle drift from applications with two different nozzles in a low speed wind tunnel, and their impact on growth and development of Amaranthus spp. Herbicide drift resulted in biomass reduction or complete plant mortality. Inflection points (distance to 50% biomass reduction) for Amaranthus tuberculatus were 7.7, 4.0, and 4.1 m downwind distance for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 2.8, 2.5, and 1.9 m for applications with the air-inclusion nozzle. Inflection points for Amaranthus palmeri biomass reduction were 16.3, 10.9, and 11.5 m for glyphosate, 2,4-D, and dicamba applications with the flat-fan nozzle, respectively, whereas these values corresponded to 7.6, 5.4, and 5.4 m for applications with the air-inclusion nozzle. Plants were more sensitive to glyphosate at higher exposure rates than other herbicides, whereas plants were more sensitive to 2,4-D and dicamba at lower exposure rates compared to glyphosate. Applications with the flat-fan nozzle resulted in 32.3 and 11.5% drift of the applied rate at 1.0 and 3.0 m downwind, respectively, whereas the air-inclusion nozzle decreased the dose exposure in the same distances (11.4 and 2.7%, respectively). Herbicide drift towards field boundaries was influenced by nozzle design and exposed weeds to herbicide rates previously reported to select for herbicide-resistant biotypes.
Collapse
Affiliation(s)
- Bruno C. Vieira
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| | - Joe D. Luck
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Keenan L. Amundsen
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States of America
| | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States of America
| | - Rodrigo Werle
- Department of Agronomy, University of Wisconsin–Madison, Madison, WI, United States of America
| | - Greg R. Kruger
- West Central Research and Extension Center, University of Nebraska-Lincoln, North Platte, NE, United States of America
| |
Collapse
|
23
|
Baucom RS. Evolutionary and ecological insights from herbicide-resistant weeds: what have we learned about plant adaptation, and what is left to uncover? THE NEW PHYTOLOGIST 2019; 223:68-82. [PMID: 30710343 DOI: 10.1111/nph.15723] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
The evolution of herbicide resistance in crop weeds presents one of the greatest challenges to agriculture and the production of food. Herbicide resistance has been studied for more than 60 yr, in the large part by researchers seeking to design effective weed control programs. As an outcome of this work, various unique questions in plant adaptation have been addressed. Here, I collate recent research on the herbicide-resistant problem in light of key questions and themes in evolution and ecology. I highlight discoveries made on herbicide-resistant weeds in three broad areas - the genetic basis of adaptation, evolutionary constraints, experimental evolution - and similarly discuss questions left to be answered. I then develop how one would use herbicide-resistance evolution as a model for studying eco-evolutionary dynamics within a community context. My overall goals are to highlight important findings in the weed science literature that are relevant to themes in plant adaptation and to stimulate the use of herbicide-resistant plants as models for addressing key questions within ecology and evolution.
Collapse
Affiliation(s)
- Regina S Baucom
- Ecology and Evolutionary Biology Department, University of Michigan, 4034 Biological Sciences Building, Ann Arbor, MI, 48109, USA
| |
Collapse
|
24
|
Chen J, Lu H, Han H, Yu Q, Sayer C, Powles S. Genetic inheritance of dinitroaniline resistance in an annual ryegrass population. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 283:189-194. [PMID: 31128688 DOI: 10.1016/j.plantsci.2019.02.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/07/2019] [Accepted: 02/27/2019] [Indexed: 05/24/2023]
Abstract
The increasing number of weedy species resistant to dinitroaniline herbicides warrants studies on the evolutionary factors contributing to resistance evolution, including genetic inheritance of resistance traits. In this study, we investigated the genetic control of trifluralin resistance in a well-characterised Lolium rigidum Gaud. population from Western Australia. This population was purified to contain plants homozygous for the Val-202-Phe α-tubulin mutation, and used as the resistant (R) parents and crossed with susceptible (S) parents to produce eight reciprocal F1 families. Trifluralin dose response curves of the eight F1 families indicate that trifluralin resistance in this population is inherited as an incomplete recessive nuclear trait. The F1 plants were crossed within each families to establish eight pseudo-F2 (ψ-F2) families. Segregation ratio of resistance and susceptibility in ψ-F2 families were determined using the discriminating trifluralin rates of 120 and 480 g a.i. ha-1. At 480 g a.i. ha-1 trifluralin, the segregation ratio in almost all ψ-F2 families (except one) was fit to 1:3 (resistance: susceptibility) one recessive gene control model. However, at 120 g a.i. ha-1 trifluralin, the segregation ratios in half of the families did not fit this model, indicating involvement of one or more genes in resistance at the lower rate. These results showed complexity of genetic inheritance of trifluralin resistance in this L. rigidum population possessing the Val-202-Phe α-tubulin mutation.
Collapse
Affiliation(s)
- Jinyi Chen
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Huan Lu
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia.
| | | | - Stephen Powles
- Australian Herbicide Resistance Initiative (AHRI)-School of Agriculture and Environment, University of Western Australia (UWA), Perth, Australia
| |
Collapse
|
25
|
Iwakami S, Kamidate Y, Yamaguchi T, Ishizaka M, Endo M, Suda H, Nagai K, Sunohara Y, Toki S, Uchino A, Tominaga T, Matsumoto H. CYP81A P450s are involved in concomitant cross-resistance to acetolactate synthase and acetyl-CoA carboxylase herbicides in Echinochloa phyllopogon. THE NEW PHYTOLOGIST 2019; 221:2112-2122. [PMID: 30347444 DOI: 10.1111/nph.15552] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/14/2018] [Indexed: 05/13/2023]
Abstract
Californian populations of Echinochloa phyllopogon have evolved multiple-herbicide resistance (MHR), posing a threat to rice production in California. Previously, we identified two CYP81A cytochrome P450 genes whose overexpression is associated with resistance to acetolactate synthase (ALS) inhibitors from two chemical groups. Resistance mechanisms to other herbicides remain unknown. We analyzed the sensitivity of an MHR line to acetyl-CoA carboxylase (ACCase) inhibitors from three chemical groups, followed by an analysis of herbicide metabolism and segregation of resistance of the progenies in sensitive (S) and MHR lines. ACCase herbicide metabolizing function was investigated in the two previously identified P450s. MHR plants exhibited resistance to all the ACCase inhibitors by enhanced herbicide metabolism. Resistance to the ACCase inhibitors segregated in a 3 : 1 ratio in the F2 generation and completely co-segregated with ALS inhibitor resistance in F6 lines. Expression of the respective P450 genes conferred resistance to the three herbicides in rice, which is in line with the detection of hydroxylated herbicide metabolites in vivo in transformed yeast. CYP81As are super P450s that metabolize multiple herbicides from five chemical classes, and concurrent overexpression of the P450s induces metabolism-based resistance to the three ACCase inhibitors in MHR E. phyllopogon, as it does to ALS inhibitors.
Collapse
Affiliation(s)
- Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoshitaka Kamidate
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Takuya Yamaguchi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Masumi Ishizaka
- Advanced Analysis Center, National Agriculture and Food Research Organization, Tsukuba, 305-8602, Japan
| | - Masaki Endo
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634, Japan
| | - Hiroe Suda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Kiichi Nagai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Yukari Sunohara
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, 305-8634, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, 244-0813, Japan
| | - Akira Uchino
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization, Tsu, 514-2392, Japan
| | - Tohru Tominaga
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Matsumoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, 305-8572, Japan
| |
Collapse
|
26
|
Lu H, Yu Q, Han H, Owen MJ, Powles SB. Metribuzin Resistance in a Wild Radish ( Raphanus raphanistrum) Population via Both psbA Gene Mutation and Enhanced Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:1353-1359. [PMID: 30640451 DOI: 10.1021/acs.jafc.8b05974] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
There have been many studies on target-site resistance (TSR) to PSII-inhibiting herbicides, but only a few on the non-target-site resistance (NTSR). Here, we reported both TSR and NTSR to metribuzin in a wild radish population. Dose-response studies revealed a higher level of resistance to metribuzin in the resistant (R) compared to the susceptible (S) population. Sequencing of the target psbA gene revealed the known Ser-264-Gly mutation in R plants. In addition, a higher level of [14C]-metribuzin metabolism and, consequently, a lower level of [14C] translocation were also detected in the R plants. These results demonstrated that both psbA gene mutation and enhanced metabolism contribute to metribuzin resistance in this wild radish population. Furthermore, this resistant population showed resistance to ALS-inhibiting herbicides due to multiple ALS gene mutations. This is the first report in wild radish of metabolic herbicide resistance, in addition to the target-site psbA gene mutation.
Collapse
Affiliation(s)
- Huan Lu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment , University of Western Australia , Perth WA 6009 , Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment , University of Western Australia , Perth WA 6009 , Australia
| | - Heping Han
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment , University of Western Australia , Perth WA 6009 , Australia
| | - Mechelle J Owen
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment , University of Western Australia , Perth WA 6009 , Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment , University of Western Australia , Perth WA 6009 , Australia
| |
Collapse
|
27
|
Kohlhase DR, Edwards JW, Owen MDK. Inheritance of 4-hydroxyphenylpyruvate dioxygenase inhibitor herbicide resistance in an Amaranthus tuberculatus population from Iowa, USA. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 274:360-368. [PMID: 30080624 DOI: 10.1016/j.plantsci.2018.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 06/04/2018] [Accepted: 06/08/2018] [Indexed: 05/24/2023]
Abstract
Waterhemp (Amaranthus tuberculatus (Moq.) J.D. Sauer) is a weed prevalent in the Midwest United States and can cause yield losses up to 74% in maize (Zea mays L.) and 56% in soybean (Glycine max (L.) Merr.). An important adaptive trait commonly found in waterhemp is the ability to evolve herbicide resistance and waterhemp populations have evolved resistance to six herbicide sites of action. In 2011, two waterhemp populations were discovered resistant to p-hydroxyphenylpyruvate-dioxygenase (HPPD, EC 1.13.11.27) inhibitor herbicides. We reciprocally crossed a known HPPD-resistant waterhemp population with a known HPPD-susceptible waterhemp population and then intermated the F1 families to established a pseudo-F2 generation. We challenged the parent, F1 and pseudo-F2 generations against four HPPD-inhibiting herbicide rates (mesotrione). Our results suggest the HPPD-resistance trait is polygenic. Furthermore, the number of genes involved with the herbicide resistance increase at higher herbicide rates. These data indicated at least one dominant allele at each major locus is required to confer HPPD herbicide resistance in waterhemp. Using different waterhemp populations and methodologies, this study confirms the reported "complex" HPPD resistance inheritance while providing new information in the response of HPPD-resistant waterhemp to HPPD herbicides.
Collapse
Affiliation(s)
| | - Jode W Edwards
- U.S. Department of Agriculture (USDA)-Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, USA.
| | | |
Collapse
|
28
|
Dyer WE. Stress-induced evolution of herbicide resistance and related pleiotropic effects. PEST MANAGEMENT SCIENCE 2018; 74:1759-1768. [PMID: 29688592 DOI: 10.1002/ps.5043] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 04/13/2018] [Accepted: 04/14/2018] [Indexed: 05/11/2023]
Abstract
Herbicide-resistant weeds, especially those with resistance to multiple herbicides, represent a growing worldwide threat to agriculture and food security. Natural selection for resistant genotypes may act on standing genetic variation, or on a genetic and physiological background that is fundamentally altered because of stress responses to sublethal herbicide exposure. Stress-induced changes include DNA mutations, epigenetic alterations, transcriptional remodeling, and protein modifications, all of which can lead to herbicide resistance and a wide range of pleiotropic effects. Resistance selected in this manner is termed systemic acquired herbicide resistance, and the associated pleiotropic effects are manifested as a suite of constitutive transcriptional and post-translational changes related to biotic and abiotic stress adaptation, representing the evolutionary signature of selection. This phenotype is being investigated in two multiple herbicide-resistant populations of the hexaploid, self-pollinating weedy monocot Avena fatua that display such changes as well as constitutive reductions in certain heat shock proteins and their transcripts, which are well known as global regulators of diverse stress adaptation pathways. Herbicide-resistant populations of most weedy plant species exhibit pleiotropic effects, and their association with resistance genes presents a fertile area of investigation. This review proposes that more detailed studies of resistant A. fatua and other species through the lens of plant evolution under stress will inform improved resistant weed prevention and management strategies. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- William Edward Dyer
- Department of Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, USA
| |
Collapse
|
29
|
Kreiner JM, Stinchcombe JR, Wright SI. Population Genomics of Herbicide Resistance: Adaptation via Evolutionary Rescue. ANNUAL REVIEW OF PLANT BIOLOGY 2018; 69:611-635. [PMID: 29140727 DOI: 10.1146/annurev-arplant-042817-040038] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The evolution of herbicide resistance in weed populations is a highly replicated example of adaptation surmounting the race against extinction, but the factors determining its rate and nature remain poorly understood. Here, we explore theory and empirical evidence for the importance of population genetic parameters-including effective population size, dominance, mutational target size, and gene flow-in influencing the probability and mode of herbicide resistance adaptation and its variation across species. We compiled data on the number of resistance mutations across populations for 79 herbicide-resistant species. Our findings are consistent with theoretical predictions that self-fertilization reduces resistance adaptation from standing variation within populations, but increases independent adaptation across populations. Furthermore, we provide evidence for a ploidy-mating system interaction that may reflect trade-offs in polyploids between increased effective population size and greater masking of beneficial mutations. We highlight the power of population genomic approaches to provide insights into the evolutionary dynamics of herbicide resistance with important implications for understanding the limits of adaptation.
Collapse
Affiliation(s)
- Julia M Kreiner
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada; , ,
| | | | - Stephen I Wright
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada; , ,
| |
Collapse
|
30
|
Oliveira MC, Gaines TA, Jhala AJ, Knezevic SZ. Inheritance of Mesotrione Resistance in an Amaranthus tuberculatus (var. rudis) Population from Nebraska, USA. FRONTIERS IN PLANT SCIENCE 2018; 9:60. [PMID: 29456544 PMCID: PMC5801304 DOI: 10.3389/fpls.2018.00060] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/11/2018] [Indexed: 05/19/2023]
Abstract
A population of Amaranthus tuberculatus (var. rudis) evolved resistance to 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor herbicides (mesotrione, tembotrione, and topramezone) in Nebraska. The level of resistance was the highest to mesotrione, and the mechanism of resistance in this population is metabolism-based likely via cytochrome P450 enzymes. The increasing number of weeds resistant to herbicides warrants studies on the ecology and evolutionary factors contributing for resistance evolution, including inheritance of resistance traits. In this study, we investigated the genetic control of mesotrione resistance in an A. tuberculatus population from Nebraska, USA. Results showed that reciprocal crosses in the F1 families exhibited nuclear inheritance, which allows pollen movement carrying herbicide resistance alleles. The mode of inheritance varied from incomplete recessive to incomplete dominance depending upon the F1 family. Observed segregation patterns for the majority of the F2 and back-cross susceptible (BC/S) families did not fit to a single major gene model. Therefore, multiple genes are likely to confer metabolism-based mesotrione resistance in this A. tuberculatus population from Nebraska. The results of this study aid to understand the genetics and inheritance of a non-target-site based mesotrione resistant A. tuberculatus population from Nebraska, USA.
Collapse
Affiliation(s)
- Maxwel C. Oliveira
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Concord, NE, United States
- *Correspondence: Maxwel C. Oliveira
| | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - Amit J. Jhala
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Stevan Z. Knezevic
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Concord, NE, United States
| |
Collapse
|
31
|
Ghanizadeh H, Harrington KC. Perspectives on non-target site mechanisms of herbicide resistance in weedy plant species using evolutionary physiology. AOB PLANTS 2017; 9:plx035. [PMID: 28894568 PMCID: PMC5585855 DOI: 10.1093/aobpla/plx035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 07/27/2017] [Indexed: 05/30/2023]
Abstract
Evolutionary physiology merges the disciplines of evolution and physiology, and it is a research approach that has not received much attention for studying the development of herbicide resistance. This paper makes a case for using evolutionary physiology more frequently when studying herbicide resistance, and illustrates this using three areas where more work would be useful: (i) the interaction among major and minor alleles over many generations during the evolution of physiological responses that lead to specific mechanisms of resistance; (ii) the role of epigenetic factors, especially at an early stage of evolution, on the physiological modifications that result in phenotypes that become insensitive to herbicides; and (iii) the interaction between fitness and physiological performance over time, with emphasis on understanding mechanisms that improve the fitness of herbicide-resistant phenotypes during selection.
Collapse
Affiliation(s)
- Hossein Ghanizadeh
- Institute of Agriculture and Environment, Massey University, PB 11-222, Palmerston North 4442, New Zealand
| | - Kerry C Harrington
- Institute of Agriculture and Environment, Massey University, PB 11-222, Palmerston North 4442, New Zealand
| |
Collapse
|
32
|
Kim G, Clarke CR, Larose H, Tran HT, Haak DC, Zhang L, Askew S, Barney J, Westwood JH. Herbicide injury induces DNA methylome alterations in Arabidopsis. PeerJ 2017; 5:e3560. [PMID: 28740750 PMCID: PMC5522609 DOI: 10.7717/peerj.3560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 06/19/2017] [Indexed: 11/20/2022] Open
Abstract
The emergence of herbicide-resistant weeds is a major threat facing modern agriculture. Over 470 weedy-plant populations have developed resistance to herbicides. Traditional evolutionary mechanisms are not always sufficient to explain the rapidity with which certain weed populations adapt in response to herbicide exposure. Stress-induced epigenetic changes, such as alterations in DNA methylation, are potential additional adaptive mechanisms for herbicide resistance. We performed methylC sequencing of Arabidopsis thaliana leaves that developed after either mock treatment or two different sub-lethal doses of the herbicide glyphosate, the most-used herbicide in the history of agriculture. The herbicide injury resulted in 9,205 differentially methylated regions (DMRs) across the genome. In total, 5,914 of these DMRs were induced in a dose-dependent manner, wherein the methylation levels were positively correlated to the severity of the herbicide injury, suggesting that plants can modulate the magnitude of methylation changes based on the severity of the stress. Of the 3,680 genes associated with glyphosate-induced DMRs, only 7% were also implicated in methylation changes following biotic or salinity stress. These results demonstrate that plants respond to herbicide stress through changes in methylation patterns that are, in general, dose-sensitive and, at least partially, stress-specific.
Collapse
Affiliation(s)
- Gunjune Kim
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Christopher R Clarke
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA.,Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, USA
| | - Hailey Larose
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Hong T Tran
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - David C Haak
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Liqing Zhang
- Department of Computer Science, Virginia Tech, Blacksburg, VA, USA
| | - Shawn Askew
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - Jacob Barney
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | - James H Westwood
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA, USA
| |
Collapse
|
33
|
Karn E, Jasieniuk M. Genetic diversity and structure of Lolium perenne ssp. multiflorum in California vineyards and orchards indicate potential for spread of herbicide resistance via gene flow. Evol Appl 2017; 10:616-629. [PMID: 28616068 PMCID: PMC5469165 DOI: 10.1111/eva.12478] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 03/05/2017] [Indexed: 11/28/2022] Open
Abstract
Management of agroecosystems with herbicides imposes strong selection pressures on weedy plants leading to the evolution of resistance against those herbicides. Resistance to glyphosate in populations of Lolium perenne L. ssp. multiflorum is increasingly common in California, USA, causing economic losses and the loss of effective management tools. To gain insights into the recent evolution of glyphosate resistance in L. perenne in perennial cropping systems of northwest California and to inform management, we investigated the frequency of glyphosate resistance and the genetic diversity and structure of 14 populations. The sampled populations contained frequencies of resistant plants ranging from 10% to 89%. Analyses of neutral genetic variation using microsatellite markers indicated very high genetic diversity within all populations regardless of resistance frequency. Genetic variation was distributed predominantly among individuals within populations rather than among populations or sampled counties, as would be expected for a wide-ranging outcrossing weed species. Bayesian clustering analysis provided evidence of population structuring with extensive admixture between two genetic clusters or gene pools. High genetic diversity and admixture, and low differentiation between populations, strongly suggest the potential for spread of resistance through gene flow and the need for management that limits seed and pollen dispersal in L. perenne.
Collapse
Affiliation(s)
- Elizabeth Karn
- University of California DavisDepartment of Plant SciencesDavisCAUSA
| | - Marie Jasieniuk
- University of California DavisDepartment of Plant SciencesDavisCAUSA
| |
Collapse
|
34
|
Tsatsakis AM, Nawaz MA, Kouretas D, Balias G, Savolainen K, Tutelyan VA, Golokhvast KS, Lee JD, Yang SH, Chung G. Environmental impacts of genetically modified plants: A review. ENVIRONMENTAL RESEARCH 2017; 156:818-833. [PMID: 28347490 DOI: 10.1016/j.envres.2017.03.011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/07/2017] [Accepted: 03/08/2017] [Indexed: 06/06/2023]
Abstract
Powerful scientific techniques have caused dramatic expansion of genetically modified crops leading to altered agricultural practices posing direct and indirect environmental implications. Despite the enhanced yield potential, risks and biosafety concerns associated with such GM crops are the fundamental issues to be addressed. An increasing interest can be noted among the researchers and policy makers in exploring unintended effects of transgenes associated with gene flow, flow of naked DNA, weediness and chemical toxicity. The current state of knowledge reveals that GM crops impart damaging impacts on the environment such as modification in crop pervasiveness or invasiveness, the emergence of herbicide and insecticide tolerance, transgene stacking and disturbed biodiversity, but these impacts require a more in-depth view and critical research so as to unveil further facts. Most of the reviewed scientific resources provide similar conclusions and currently there is an insufficient amount of data available and up until today, the consumption of GM plant products are safe for consumption to a greater extent with few exceptions. This paper updates the undesirable impacts of GM crops and their products on target and non-target species and attempts to shed light on the emerging challenges and threats associated with it. Underpinning research also realizes the influence of GM crops on a disturbance in biodiversity, development of resistance and evolution slightly resembles with the effects of non-GM cultivation. Future prospects are also discussed.
Collapse
Affiliation(s)
- Aristidis M Tsatsakis
- Department of Toxicology and Forensics, School of Medicine, University of Crete, Heraklion, Crete, Greece; Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation
| | - Muhammad Amjad Nawaz
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, University of Thessaly, Larisa, Greece
| | | | - Kai Savolainen
- Finnish Institute of Occupational Health, POB 40 Helsinki, Finland
| | - Victor A Tutelyan
- Federal Research Centre of Nutrition, Biotechnology and Food Safety, Moscow, Russian Federation
| | - Kirill S Golokhvast
- Educational Scientific Center of Nanotechnology, Far Eastern Federal University, Vladivostok 690950, Russian Federation; Pacific Institute of Geography, FEB RAS, Vladivostok 690041, Russian Federation
| | - Jeong Dong Lee
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Seung Hwan Yang
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu, Chonnam 59626, Republic of Korea.
| |
Collapse
|
35
|
Somerville GJ, Powles SB, Walsh MJ, Renton M. Why was resistance to shorter-acting pre-emergence herbicides slower to evolve? PEST MANAGEMENT SCIENCE 2017; 73:844-851. [PMID: 28019070 DOI: 10.1002/ps.4509] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 11/29/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Across several agricultural systems the evolution of herbicide resistance has occurred more rapidly to post-emergence than pre-emergence herbicides; however, the reasons for this are not clear. We used a new simulation model to investigate whether interactions between differences in order of application and weed cohorts affected could explain this historically observed difference between the herbicide groups. RESULTS A 10 year delay in resistance evolution was predicted for a shorter-acting residual pre-emergence (cf. post-emergence), when all other parameters were identical. Differences in order of application between pre- and post-emergence herbicides had minimal effect on rates of resistance evolution when similar weed cohorts were affected. CONCLUSION This modelling suggested that the historically observed lower levels of resistance to pre-emergence herbicides are most likely to be due to the smaller number of weed cohorts affected by many pre-emergence herbicides. The lower number of weed cohorts affected by pre-emergence herbicides necessitated the use of additional, effective control measures, thereby reducing resistance evolution. This study highlights the advantages of applying multiple control measures to each weed cohort. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gayle J Somerville
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Michael J Walsh
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| | - Michael Renton
- Australian Herbicide Resistance Initiative, School of Agriculture and Environment, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
36
|
Duhoux A, Carrère S, Duhoux A, Délye C. Transcriptional markers enable identification of rye-grass (Lolium sp.) plants with non-target-site-based resistance to herbicides inhibiting acetolactate-synthase. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 257:22-36. [PMID: 28224916 DOI: 10.1016/j.plantsci.2017.01.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 05/20/2023]
Abstract
Molecular detection of herbicide non-target-site-based resistance (NTSR) classically requires extensively validated NTSR genes. We assessed the feasibility of predicting NTSR phenotypes using expression data of NTSR transcriptional markers, i.e., transcripts which expression levels are statistically correlated to NTSR. Markers were sought by comparative RNA-Seq analysis of untreated NTSR or sensitive plants from four rye-grass populations followed by expression quantification in 299 individual plants with characterised sensitivity to two acetolactate-synthase-inhibiting herbicides. Multivariate analyses were implemented to predict NTSR using combined marker expression data. Nineteen markers (four cytochromes P450, four glutathione-S-transferases, three glycosyltransferases, two ABC transporters, two hydrolases, one aldolase, one peptidase, one transferase and one esterase) expressed significantly higher in NTSR plants were identified. Expression was highest in the most resistant plants. Some markers appeared co-regulated. Combined marker expression data enabled prediction of NTSR phenotypes in individual plants or of resistant plant frequencies in populations. Thus, NTSR detection based on transcriptional markers proved feasible. Accuracy can be improved by identifying additional markers, especially markers associated to NTSR regulation. Additionally, our data suggest that NTSR mechanisms emerged in different populations via redundant evolution, and that NTSR can evolve by selection for higher constitutive expression of whole herbicide-response pathways.
Collapse
Affiliation(s)
- Arnaud Duhoux
- INRA, Agroécologie, 17 rue Sully, F-21000, Dijon, France
| | | | - Alexis Duhoux
- INRA, Agroécologie, 17 rue Sully, F-21000, Dijon, France
| | | |
Collapse
|
37
|
Pan L, Zhao H, Yu Q, Bai L, Dong L. miR397/Laccase Gene Mediated Network Improves Tolerance to Fenoxaprop- P-ethyl in Beckmannia syzigachne and Oryza sativa. FRONTIERS IN PLANT SCIENCE 2017; 8:879. [PMID: 28588605 PMCID: PMC5440801 DOI: 10.3389/fpls.2017.00879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 05/10/2017] [Indexed: 05/03/2023]
Abstract
Herbicide resistance can be either target-site or non-target-site based. The molecular mechanisms underlying non-target-site resistance (NTSR) are poorly understood, especially at the level of gene expression regulation. MicroRNAs (miRNAs) represent key post-transcriptional regulators of eukaryotic gene expression and play important roles in stress responses. In this study, the miR397 gene from Beckmannia syzigachne (referred to as bsy-miR397) was functionally characterized to determine its role in regulating fenoxaprop-P-ethyl resistance. We showed that (1) bsy-miR397 transcript level is constitutively higher in resistant than in sensitive B. syzigachne plants, whereas bsy-Laccase expression and activity show the opposite trend, and (2) bsy-miR397 suppresses the expression of bsy-Laccase in tobacco, indicating that it negatively regulates bsy-Laccase at the transcriptional level. We found evidences that miR397/laccase regulation might be involved in fenoxaprop-P-ethyl NTSR. First, the rice transgenic line overexpressing OXmiR397 showed improved fenoxaprop-P-ethyl tolerance. Second, following activation of bsy-Laccase gene expression by CuSO4 treatment, fenoxaprop resistance in B. syzigachne tended to decrease. Therefore, we suggest that bsy-miR397 might play a role in fenoxaprop-P-ethyl NTSR in B. syzigachne by down-regulating laccase expression, potentially leading to the enhanced expression of three oxidases/peroxidases genes to introduce an active moiety into herbicide molecules in Phase-2 metabolism. Bsy-miR397, bsy-Laccase, and other regulatory components might form a regulatory network to detoxify fenoxaprop-P-ethyl in B. syzigachne, supported by the differential expression of transcription factors and oxidases/peroxidases in the rice transgenic line overexpressing OXmiR397. This implies how down-regulation of a gene (laccase) can enhance NTSR. Our findings shed light on the daunting task of understanding and managing complex NTSR in weedy plant species.
Collapse
Affiliation(s)
- Lang Pan
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests – Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Hongwei Zhao
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests – Nanjing Agricultural University, Ministry of EducationNanjing, China
| | - Qin Yu
- Australian Herbicide Resistance Initiative (AHRI), School of Agriculture & Environment, University of Western Australia, PerthWA, Australia
| | - Lianyang Bai
- Biotechnology Research Center, Hunan Academy of Agricultural SciencesChangsha, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agricultural UniversityNanjing, China
- Key Laboratory of Integrated Management of Crop Diseases and Pests – Nanjing Agricultural University, Ministry of EducationNanjing, China
- *Correspondence: Liyao Dong,
| |
Collapse
|
38
|
Ashworth MB, Walsh MJ, Flower KC, Powles SB. Recurrent selection with reduced 2,4-D amine doses results in the rapid evolution of 2,4-D herbicide resistance in wild radish (Raphanus raphanistrum L.). PEST MANAGEMENT SCIENCE 2016; 72:2091-2098. [PMID: 27442188 DOI: 10.1002/ps.4364] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/04/2016] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND When used at effective doses, weed resistance to auxinic herbicides has been slow to evolve when compared with other modes of action. Here we report the evolutionary response of a herbicide-susceptible population of wild radish (Raphanus raphanistrum L.) and confirm that sublethal doses of 2,4-dichlorophenoxyacetic acid (2,4-D) amine can lead to the rapid evolution of 2,4-D resistance and cross-resistance to acetolactate synthase (ALS)-inhibiting herbicides. RESULTS Following four generations of 2,4-D selection, the progeny of a herbicide-susceptible wild radish population evolved 2,4-D resistance, increasing the LD50 from 16 to 138 g ha-1 . Along with 2,4-D resistance, cross-resistance to the ALS-inhibiting herbicides metosulam (4.0-fold) and chlorsulfuron (4.5-fold) was evident. Pretreatment of the 2,4-D-selected population with the cytochrome P450 inhibitor malathion restored chlorsulfuron to full efficacy, indicating that cross-resistance to chlorsulfuron was likely due to P450-catalysed enhanced rates of herbicide metabolism. CONCLUSION This study is the first to confirm the rapid evolution of auxinic herbicide resistance through the use of low doses of 2,4-D and serves as a reminder that 2,4-D must always be used at highly effective doses. With the introduction of transgenic auxinic-herbicide-resistant crops in the Americas, there will be a marked increase in auxinic herbicide use and therefore the risk of resistance evolution. Auxinic herbicides should be used only at effective doses and with diversity if resistance is to remain a minimal issue. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael B Ashworth
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Michael J Walsh
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Ken C Flower
- School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia.
| |
Collapse
|
39
|
Loureiro I, Escorial MC, Chueca MC. Pollen-Mediated Movement of Herbicide Resistance Genes in Lolium rigidum. PLoS One 2016; 11:e0157892. [PMID: 27336441 PMCID: PMC4918886 DOI: 10.1371/journal.pone.0157892] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 06/07/2016] [Indexed: 01/05/2023] Open
Abstract
The transfer of herbicide resistance genes by pollen is a major concern in cross-pollinated species such as annual ryegrass (Lolium rigidum). A two-year study was conducted in the greenhouse, under favorable conditions for pollination, to generate information on potential maximum cross-pollination. This maximum cross-pollination rate was 56.1%. A three-year field trial was also conducted to study the cross-pollination rates in terms of distance and orientation to an herbicide-resistant pollen source. Under field conditions, cross-pollination rates varied from 5.5% to 11.6% in plants adjacent to the pollen source and decreased with increasing distances (1.5 to 8.9% at 15 m distance and up to 4.1% at 25 m in the downwind direction). Environmental conditions influenced the cross-pollination both under greenhouse and field conditions. Data were fit to an exponential decay model to predict gene flow at increasing distances. This model predicted an average gene flow of 7.1% when the pollen donor and recipient plants were at 0 m distance from each other. Pollen-mediated gene flow declined by 50% at 16.7 m from the pollen source, yet under downwind conditions gene flow of 5.2% was predicted at 25 m, the farthest distance studied. Knowledge of cross-pollination rates will be useful for assessing the spread of herbicide resistance genes in L. rigidum and in developing appropriate strategies for its mitigation.
Collapse
Affiliation(s)
- Iñigo Loureiro
- Plant Protection Department, Weed Control Group, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid. Spain
| | - María-Concepción Escorial
- Plant Protection Department, Weed Control Group, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid. Spain
| | - María-Cristina Chueca
- Plant Protection Department, Weed Control Group, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid. Spain
- * E-mail:
| |
Collapse
|
40
|
Busi R, Girotto M, Powles SB. Response to low-dose herbicide selection in self-pollinated Avena fatua. PEST MANAGEMENT SCIENCE 2016; 72:603-608. [PMID: 25988941 DOI: 10.1002/ps.4032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/08/2015] [Accepted: 04/27/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND When applied at the correct plant stage and dose, herbicides are highly toxic to plants. At reduced, low herbicide doses (below the recommended dose) plants can survive and display continuous and quantitative variation in dose-survival responses. Recurrent (directional) selection studies can reveal whether such a phenotypic variation in plant survival response to low herbicide dose is heritable and leads to herbicide resistance. In a common experimental garden study, we have subjected a susceptible population of self-pollinated hexaploid Avena fatua to low-dose recurrent selection with the ACCase-inhibiting herbicide diclofop-methyl for three consecutive generations. RESULTS Significant differences in response to low-dose diclofop-methyl selection were observed between the selected progenies and parent plants, with a twofold diclofop-methyl resistance and cross-resistance to ALS-inhibiting herbicides. Thus, the capacity of self-pollinated A. fatua to respond to low-dose herbicide selection is marginal, and it is much lower than in cross-pollinated L. rigidum. Lolium rigidum in the same experiment evolved 40-fold diclofop-methyl resistance by progressive enrichment of quantitative resistance-endowing traits. CONCLUSION Cross-pollination rate, genetic variation and ploidy levels are identified as possible drivers affecting the contrasting capacity of Avena versus Lolium plants to respond to herbicide selection and the subsequent likelihood of resistance evolution at low herbicide dose usage.
Collapse
Affiliation(s)
- Roberto Busi
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Marcelo Girotto
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Plant Biology, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
41
|
Han H, Yu Q, Owen MJ, Cawthray GR, Powles SB. Widespread occurrence of both metabolic and target-site herbicide resistance mechanisms in Lolium rigidum populations. PEST MANAGEMENT SCIENCE 2016; 72:255-63. [PMID: 25703739 DOI: 10.1002/ps.3995] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/21/2015] [Accepted: 02/15/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Lolium rigidum populations in Australia and globally have demonstrated rapid and widespread evolution of resistance to acetyl coenzyme A carboxylase (ACCase)-inhibiting and acetolactate synthase (ALS)-inhibiting herbicides. Thirty-three resistant L. rigidum populations, randomly collected from crop fields in a most recent resistance survey, were analysed for non-target-site diclofop metabolism and all known target-site ACCase gene resistance-endowing mutations. RESULTS The HPLC profile of [(14) C]-diclofop-methyl in vivo metabolism revealed that 79% of these resistant L. rigidum populations showed enhanced capacity for diclofop acid metabolism (metabolic resistance). ACCase gene sequencing identified that 91% of the populations contain plants with ACCase resistance mutation(s). Importantly, 70% of the populations exhibit both non-target-site metabolic resistance and target-site ACCase mutations. CONCLUSIONS This work demonstrates that metabolic herbicide resistance is commonly occurring in L. rigidum, and coevolution of both metabolic resistance and target-site resistance is an evolutionary reality. Metabolic herbicide resistance can potentially endow resistance to many herbicides and poses a threat to herbicide sustainability and thus crop production, calling for major research and management efforts.
Collapse
Affiliation(s)
- Heping Han
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | - Qin Yu
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | - Mechelle J Owen
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | - Gregory R Cawthray
- School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| | - Stephen B Powles
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
42
|
Scarabel L, Pernin F, Délye C. Occurrence, genetic control and evolution of non-target-site based resistance to herbicides inhibiting acetolactate synthase (ALS) in the dicot weed Papaver rhoeas. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:158-69. [PMID: 26259184 DOI: 10.1016/j.plantsci.2015.06.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 06/01/2015] [Accepted: 06/06/2015] [Indexed: 05/08/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides is a major issue for the chemical control of weeds. Whilst predominant in grass weeds, NTSR remains largely uninvestigated in dicot weeds. We investigated the occurrence, inheritance and genetic control of NTSR to acetolactate synthase (ALS) inhibitors in Papaver rhoeas (corn poppy) using progenies from plants with potential NTSR to the imidazolinone herbicide imazamox. NTSR to imazamox was inherited from parents over two successive generations. NTSR to tritosulfuron (a sulfonylurea) was observed in F1 generations and inherited in F2 generations. NTSR to florasulam (a triazolopyrimidine) emerged in F2 generations. Our findings suggest NTSR was polygenic and gradually built-up by accumulation over generations of loci with moderate individual effects in single plants. We also demonstrated that ALS alleles conferring herbicide resistance can co-exist with NTSR loci in P. rhoeas plants. Previous research focussed on TSR in P. rhoeas, which most likely caused underestimation of NTSR significance in this species. This may also apply to other dicot species. From our data, resistance to ALS inhibitors in P. rhoeas appears complex, and involves well-known mutant ALS alleles and a set of unknown NTSR loci that confer resistance to ALS inhibitors from different chemical families.
Collapse
Affiliation(s)
- Laura Scarabel
- Institute of Agro-environmental and Forest Biology (IBAF), CNR, AGRIPOLIS, Viale dell'Università 16, 35020 Legnaro (PD), Italy.
| | - Fanny Pernin
- INRA, UMR1347 Agroécologie, 17 rue de Sully, F-21000 Dijon, France.
| | - Christophe Délye
- INRA, UMR1347 Agroécologie, 17 rue de Sully, F-21000 Dijon, France.
| |
Collapse
|
43
|
Godar AS, Varanasi VK, Nakka S, Prasad PVV, Thompson CR, Mithila J. Physiological and Molecular Mechanisms of Differential Sensitivity of Palmer Amaranth (Amaranthus palmeri) to Mesotrione at Varying Growth Temperatures. PLoS One 2015; 10:e0126731. [PMID: 25992558 PMCID: PMC4437998 DOI: 10.1371/journal.pone.0126731] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 04/07/2015] [Indexed: 11/19/2022] Open
Abstract
Herbicide efficacy is known to be influenced by temperature, however, underlying mechanism(s) are poorly understood. A marked alteration in mesotrione [a 4-hydroxyphenylpyruvate dioxygenase (HPPD) inhibitor] efficacy on Palmer amaranth (Amaranthus palmeri S. Watson) was observed when grown under low- (LT, 25/15 °C, day/night temperatures) and high (HT, 40/30° C) temperature compared to optimum (OT, 32.5/22.5 °C) temperature. Based on plant height, injury, and mortality, Palmer amaranth was more sensitive to mesotrione at LT and less sensitive at HT compared to OT (ED50 for mortality; 18.5, 52.3, and 63.7 g ai ha-1, respectively). Similar responses were observed for leaf chlorophyll index and photochemical efficiency of PSII (Fv/Fm). Furthermore, mesotrione translocation and metabolism, and HPPD expression data strongly supported such variation. Relatively more mesotrione was translocated to meristematic regions at LT or OT than at HT. Based on T50 values (time required to metabolize 50% of the 14C mesotrione), plants at HT metabolized mesotrione faster than those at LT or OT (T50; 13, 21, and 16.5 h, respectively). The relative HPPD:CPS (carbamoyl phosphate synthetase) or HPPD:β-tubulin expression in mesotrione-treated plants increased over time in all temperature regimes; however, at 48 HAT, the HPPD:β-tubulin expression was exceedingly higher at HT compared to LT or OT (18.4-, 3.1-, and 3.5-fold relative to untreated plants, respectively). These findings together with an integrated understanding of other interacting key environmental factors will have important implications for a predictable approach for effective weed management.
Collapse
Affiliation(s)
- Amar S. Godar
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Vijaya K. Varanasi
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Sridevi Nakka
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - Curtis R. Thompson
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| | - J. Mithila
- Department of Agronomy, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
44
|
Duhoux A, Carrère S, Gouzy J, Bonin L, Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. PLANT MOLECULAR BIOLOGY 2015; 87:473-87. [PMID: 25636204 DOI: 10.1007/s11103-015-0292-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 05/03/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.
Collapse
Affiliation(s)
- Arnaud Duhoux
- UMR1347 Agroécologie, INRA, 17 rue Sully, 21000, Dijon, France
| | | | | | | | | |
Collapse
|
45
|
Duhoux A, Carrère S, Gouzy J, Bonin L, Délye C. RNA-Seq analysis of rye-grass transcriptomic response to an herbicide inhibiting acetolactate-synthase identifies transcripts linked to non-target-site-based resistance. PLANT MOLECULAR BIOLOGY 2015; 87:473-487. [PMID: 25636204 DOI: 10.1007/s11103-015-0292-293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/26/2015] [Indexed: 05/20/2023]
Abstract
Non-target-site resistance (NTSR) to herbicides that disrupts agricultural weed control is a worldwide concern for food security. NTSR is considered a polygenic adaptive trait driven by differential gene regulation in resistant plants. Little is known about its genetic determinism, which precludes NTSR diagnosis and evolutionary studies. We used Illumina RNA-sequencing to investigate transcriptomic differences between plants from the global major weed rye-grass sensitive or resistant to the acetolactate-synthase (ALS) inhibiting herbicide pyroxsulam. Plants were collected before and along a time-course after herbicide application. De novo transcriptome assembly yielded a resource (LOLbase) including 92,381 contigs representing potentially active transcripts that were assigned putative annotations. Early effects of ALS inhibition consistent with the literature were observed in resistant and sensitive plants, proving LOLbase data were relevant to study herbicide response. Comparison of resistant and sensitive plants identified 30 candidate NTSR contigs. Further validation using 212 plants resistant or sensitive to pyroxsulam and/or to the ALS inhibitors iodosulfuron + mesosulfuron confirmed four contigs (two cytochromes P450, one glycosyl-transferase and one glutathione-S-transferase) were NTSR markers which combined expression levels could reliably identify resistant plants. This work confirmed that NTSR is driven by differential gene expression and involves different mechanisms. It provided tools and foundation for subsequent NTSR investigations.
Collapse
Affiliation(s)
- Arnaud Duhoux
- UMR1347 Agroécologie, INRA, 17 rue Sully, 21000, Dijon, France
| | | | | | | | | |
Collapse
|
46
|
Kraehmer H, van Almsick A, Beffa R, Dietrich H, Eckes P, Hacker E, Hain R, Strek HJ, Stuebler H, Willms L. Herbicides as weed control agents: state of the art: II. Recent achievements. PLANT PHYSIOLOGY 2014; 166:1132-48. [PMID: 25104721 PMCID: PMC4226375 DOI: 10.1104/pp.114.241992] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 08/03/2014] [Indexed: 05/20/2023]
Abstract
In response to changing market dynamics, the discovery of new herbicides has declined significantly over the past few decades and has only seen a modest upsurge in recent years. Nevertheless, the few introductions have proven to be interesting and have brought useful innovation to the market. In addition, herbicide-tolerant or herbicide-resistant crop technologies have allowed the use of existing nonselective herbicides to be extended into crops. An increasing and now major challenge is being posed by the inexorable increase in biotypes of weeds that are resistant to herbicides. This problem is now at a level that threatens future agricultural productivity and needs to be better understood. If herbicides are to remain sustainable, then it is a must that we adopt diversity in crop rotation and herbicide use as well as increase the use of nonchemical measures to control weeds. Nevertheless, despite the difficulties posed by resistant weeds and increased regulatory hurdles, new screening tools promise to provide an upsurge of potential herbicide leads. Our industry urgently needs to supply agriculture with new, effective resistance-breaking herbicides along with strategies to sustain their utility.
Collapse
Affiliation(s)
| | | | - Roland Beffa
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | | | - Peter Eckes
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | - Erwin Hacker
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | - Ruediger Hain
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| | | | | | - Lothar Willms
- Bayer CropScience AG, D-65926 Frankfurt am Main, Germany
| |
Collapse
|
47
|
Yu Q, Powles S. Metabolism-based herbicide resistance and cross-resistance in crop weeds: a threat to herbicide sustainability and global crop production. PLANT PHYSIOLOGY 2014; 166:1106-18. [PMID: 25106819 PMCID: PMC4226378 DOI: 10.1104/pp.114.242750] [Citation(s) in RCA: 235] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/03/2014] [Indexed: 05/18/2023]
Abstract
Weedy plant species that have evolved resistance to herbicides due to enhanced metabolic capacity to detoxify herbicides (metabolic resistance) are a major issue. Metabolic herbicide resistance in weedy plant species first became evident in the 1980s in Australia (in Lolium rigidum) and the United Kingdom (in Alopecurus myosuroides) and is now increasingly recognized in several crop-weed species as a looming threat to herbicide sustainability and thus world crop production. Metabolic resistance often confers resistance to herbicides of different chemical groups and sites of action and can extend to new herbicide(s). Cytochrome P450 monooxygenase, glycosyl transferase, and glutathione S-transferase are often implicated in herbicide metabolic resistance. However, precise biochemical and molecular genetic elucidation of metabolic resistance had been stalled until recently. Complex cytochrome P450 superfamilies, high genetic diversity in metabolic resistant weedy plant species (especially cross-pollinated species), and the complexity of genetic control of metabolic resistance have all been barriers to advances in understanding metabolic herbicide resistance. However, next-generation sequencing technologies and transcriptome-wide gene expression profiling are now revealing the genes endowing metabolic herbicide resistance in plants. This Update presents an historical review to current understanding of metabolic herbicide resistance evolution in weedy plant species.
Collapse
Affiliation(s)
- Qin Yu
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Western Australia 6009, Australia
| | - Stephen Powles
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Western Australia 6009, Australia
| |
Collapse
|
48
|
Busi R. Resistance to herbicides inhibiting the biosynthesis of very-long-chain fatty acids. PEST MANAGEMENT SCIENCE 2014; 70:1378-84. [PMID: 24482320 DOI: 10.1002/ps.3746] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/15/2014] [Accepted: 01/30/2014] [Indexed: 05/27/2023]
Abstract
Herbicides that act by inhibiting the biosynthesis of very-long-chain fatty acids (VLCFAs) have been used to control grass weeds in major crops throughout the world for the past 60 years. VLCFA-inhibiting herbicides are generally highly selective in crops, induce similar symptoms in susceptible grasses and can be found within the herbicide groups classified by the HRAC as K3 and N. Even after many years of continuous use, only 12 grass weed species have evolved resistance to VLCFA-inhibiting herbicides. Here, the cases of resistance that have evolved in major grass weed species belonging to the Avena, Echinochloa and Lolium genera in three different agricultural systems are reviewed. In particular we explore the possible reasons why VLCFA herbicides have been slow to select resistant weeds, outline the herbicide mode of action and discuss the resistance mechanisms that are most likely to have been selected.
Collapse
Affiliation(s)
- Roberto Busi
- Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
49
|
Iwakami S, Endo M, Saika H, Okuno J, Nakamura N, Yokoyama M, Watanabe H, Toki S, Uchino A, Inamura T. Cytochrome P450 CYP81A12 and CYP81A21 Are Associated with Resistance to Two Acetolactate Synthase Inhibitors in Echinochloa phyllopogon. PLANT PHYSIOLOGY 2014; 165:618-629. [PMID: 24760819 PMCID: PMC4044852 DOI: 10.1104/pp.113.232843] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/22/2014] [Indexed: 05/20/2023]
Abstract
Previous studies have demonstrated multiple herbicide resistance in California populations of Echinochloa phyllopogon, a noxious weed in rice (Oryza sativa) fields. It was suggested that the resistance to two classes of acetolactate synthase-inhibiting herbicides, bensulfuron-methyl (BSM) and penoxsulam (PX), may be caused by enhanced activities of herbicide-metabolizing cytochrome P450. We investigated BSM metabolism in the resistant (R) and susceptible (S) lines of E. phyllopogon, which were originally collected from different areas in California. R plants metabolized BSM through O-demethylation more rapidly than S plants. Based on available information about BSM tolerance in rice, we isolated and analyzed P450 genes of the CYP81A subfamily in E. phyllopogon. Two genes, CYP81A12 and CYP81A21, were more actively transcribed in R plants compared with S plants. Transgenic Arabidopsis (Arabidopsis thaliana) expressing either of the two genes survived in media containing BSM or PX at levels at which the wild type stopped growing. Segregation of resistances in the F2 generation from crosses of R and S plants suggested that the resistance to BSM and PX were each under the control of a single regulatory element. In F6 recombinant inbred lines, BSM and PX resistances cosegregated with increased transcript levels of CYP81A12 and CYP81A21. Heterologously produced CYP81A12 and CYP81A21 proteins in yeast (Saccharomyces cerevisiae) metabolized BSM through O-demethylation. Our results suggest that overexpression of the two P450 genes confers resistance to two classes of acetolactate synthase inhibitors to E. phyllopogon. The overexpression of the two genes could be regulated simultaneously by a single trans-acting element in the R line of E. phyllopogon.
Collapse
Affiliation(s)
- Satoshi Iwakami
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Masaki Endo
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Hiroaki Saika
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Junichi Okuno
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Naoki Nakamura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Masao Yokoyama
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Hiroaki Watanabe
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Seiichi Toki
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Akira Uchino
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| | - Tatsuya Inamura
- Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan (S.I., T.I.);Plant Genome Engineering Research Unit, Agrogenomics Research Center, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan (M.E., H.S., S.T.);The Japan Association for Advancement of Phyto-Regulators, Ushiku 300-1211, Japan (J.O., N.N., M.Y.); andCrop Production Systems Division, NARO Agricultural Research Center, Tsukuba 305-8666, Japan (H.W., A.U.)
| |
Collapse
|
50
|
Gaines TA, Lorentz L, Figge A, Herrmann J, Maiwald F, Ott MC, Han H, Busi R, Yu Q, Powles SB, Beffa R. RNA-Seq transcriptome analysis to identify genes involved in metabolism-based diclofop resistance in Lolium rigidum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 78:865-76. [PMID: 24654891 DOI: 10.1111/tpj.12514] [Citation(s) in RCA: 127] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 03/10/2014] [Accepted: 03/13/2014] [Indexed: 05/20/2023]
Abstract
Weed control failures due to herbicide resistance are an increasing and worldwide problem that significantly affect crop yields. Metabolism-based herbicide resistance (referred to as metabolic resistance) in weeds is not well characterized at the genetic level. An RNA-Seq transcriptome analysis was used to find candidate genes that conferred metabolic resistance to the herbicide diclofop in a diclofop-resistant population (R) of the major global weed Lolium rigidum. A reference cDNA transcriptome (19 623 contigs) was assembled and assigned putative annotations. Global gene expression was measured using Illumina reads from untreated control, adjuvant-only control, and diclofop treatment of R and susceptible (S). Contigs that showed constitutive expression differences between untreated R and untreated S were selected for further validation analysis, including 11 contigs putatively annotated as cytochrome P450 (CytP450), glutathione transferase (GST), or glucosyltransferase (GT), and 17 additional contigs with annotations related to metabolism or signal transduction. In a forward genetics validation experiment, nine contigs had constitutive up-regulation in R individuals from a segregating F2 population, including three CytP450, one nitronate monooxygenase (NMO), three GST, and one GT. Principal component analysis using these nine contigs differentiated F2 -R from F2 -S individuals. In a physiological validation experiment in which 2,4-D pre-treatment induced diclofop protection in S individuals due to increased metabolism, seven of the nine genetically validated contigs were induced significantly. Four contigs (two CytP450, NMO, and GT) were consistently highly expressed in nine field-evolved metabolic resistant L. rigidum populations. These four contigs were strongly associated with the resistance phenotype and are major candidates for contributing to metabolic diclofop resistance.
Collapse
Affiliation(s)
- Todd A Gaines
- Australian Herbicide Resistance Initiative (AHRI), School of Plant Biology, University of Western Australia, Crawley, 6009, Western Australia, Australia; Bayer CropScience, Weed Resistance Research, 65926, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|