1
|
Li D, Jan de Beur S, Hou C, Ruzhnikov MR, Seeley H, Cutting GR, Sheridan MB, Levine MA. Recurrent small variants in NESP55/NESPAS associated with broad GNAS methylation defects and pseudohypoparathyroidism type 1B. JCI Insight 2024; 9:e185874. [PMID: 39541438 DOI: 10.1172/jci.insight.185874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Pseudohypoparathyroidism type 1B (PHP1B) is associated with epigenetic changes in the maternal allele of the imprinted GNAS gene that inhibit expression of the α subunit of Gs (Gsα), thereby leading to parathyroid hormone resistance in renal proximal tubule cells where expression of Gsα from the paternal GNAS allele is normally silent. Although all patients with PHP1B show loss of methylation for the exon A/B differentially methylated region (DMR), some patients with autosomal dominant PHP1B (AD-PHP1B) and most patients with sporadic PHP1B have additional methylation defects that affect the DMRs corresponding to exons XL, AS1, and NESP. Because the genetic defect is unknown in most of these patients, we sought to identify the underlying genetic basis for AD-PHP1B in 2 multigenerational families with broad GNAS methylation defects and negative clinical exomes. Genome sequencing identified small GNAS variants in each family that were also present in unrelated individuals with PHP1B in a replication cohort. Maternal transmission of one GNAS microdeletion showed reduced penetrance in some unaffected patients. Expression of AS transcripts was increased, and NESP was decreased, in cells from affected patients. These results suggest that the small deletion activated AS transcription, leading to methylation of the NESP DMR with consequent inhibition of NESP transcription, and thereby provide a potential mechanism for PHP1B.
Collapse
Affiliation(s)
- Dong Li
- Center for Applied Genomics, and
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Suzanne Jan de Beur
- Division of Endocrinology and Metabolism, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Maura Rz Ruzhnikov
- Neurology and Neurological Sciences, Pediatrics, Division of Medical Genetics, and
| | - Hilary Seeley
- Division of Pediatric Endocrinology, Stanford University and Lucile Packard Children's Hospital, Palo Alto, California, USA
| | - Garry R Cutting
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Molly B Sheridan
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael A Levine
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Division of Endocrinology and Diabetes and The Center for Bone Health, The Children's Hospital of Philadelphia, and Department of Pediatrics University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Lin YL, Ma R, Li Y. The biological basis and function of GNAS mutation in pseudomyxoma peritonei: a review. J Cancer Res Clin Oncol 2020; 146:2179-2188. [PMID: 32700107 PMCID: PMC7382651 DOI: 10.1007/s00432-020-03321-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/10/2020] [Indexed: 12/16/2022]
Abstract
Purpose Pseudomyxoma peritonei (PMP) is a rare clinical malignancy syndrome characterized by the uncontrollable accumulation of copious mucinous ascites in the peritoneal cavity, resulting in “jelly belly”. The mechanism of tumor progression and mucin hypersecretion remains largely unknown, but GNAS mutation is a promising contributor. This review is to systemically summarize the biological background and variant features of GNAS, as well as the impacts of GNAS mutations on mucin expression, tumor cell proliferation, clinical-pathological characteristics, and prognosis of PMP. Methods NCBI PubMed database (in English) and WAN FANG DATA (in Chinese) were used for literature search. And NCBI Gene and Protein databases, Ensembl Genome Browser, COSMIC, UniProt, and RCSB PDB database were used for gene and protein review. Results GNAS encodes guanine nucleotide-binding protein α subunit (Gsα). The mutation sites of GNAS mutation in PMP are relatively stable, usually at Chr20: 57,484,420 (base pair: C-G) and Chr20: 57,484,421 (base pair: G-C). Typical GNAS mutation results in the reduction of GTP enzyme activity in Gsα, causing failure to hydrolyze GTP and release phosphoric acid, and eventually the continuous binding of GTP to Gsα. The activated Gsα could thus continuously promote mucin secretion through stimulating the cAMP-PKA signaling pathway, which is a possible mechanism leading to elevated mucin secretion in PMP. Conclusion GNAS mutation is one of the most important molecular biological features in PMP, with major functions to promote mucin hypersecretion.
Collapse
Affiliation(s)
- Yu-Lin Lin
- Department of Peritoneal Cancer Surgery and Pathology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, 100038, China
| | - Ru Ma
- Department of Peritoneal Cancer Surgery and Pathology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, 100038, China
| | - Yan Li
- Department of Peritoneal Cancer Surgery and Pathology, Beijing Shijitan Hospital, Capital Medical University, No. 10 Tieyi Road, Yangfangdian Street, Haidian District, Beijing, 100038, China.
| |
Collapse
|
3
|
Abstract
Imprinting disorders are a group of congenital diseases caused by dysregulation of genomic imprinting, affecting prenatal and postnatal growth, neurocognitive development, metabolism and cancer predisposition. Aberrant expression of imprinted genes can be achieved through different mechanisms, classified into epigenetic - if not involving DNA sequence change - or genetic in the case of altered genomic sequence. Despite the underlying mechanism, the phenotype depends on the parental allele affected and opposite phenotypes may result depending on the involvement of the maternal or the paternal chromosome. Imprinting disorders are largely underdiagnosed because of the broad range of clinical signs, the overlap of presentation among different disorders, the presence of mild phenotypes, the mitigation of the phenotype with age and the limited availability of molecular techniques employed for diagnosis. This review briefly illustrates the currently known human imprinting disorders, highlighting endocrinological aspects of pediatric interest.
Collapse
Affiliation(s)
- Diana Carli
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | - Evelise Riberi
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy
| | | | - Alessandro Mussa
- University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy,* Address for Correspondence: University of Torino, Department of Pediatric and Public Health Sciences, Torino, Italy Phone: +39-011-313-1985 E-mail:
| |
Collapse
|
4
|
Congras A, Yerle-Bouissou M, Pinton A, Vignoles F, Liaubet L, Ferchaud S, Acloque H. Sperm DNA methylation analysis in swine reveals conserved and species-specific methylation patterns and highlights an altered methylation at the GNAS locus in infertile boars. Biol Reprod 2014; 91:137. [PMID: 25320151 DOI: 10.1095/biolreprod.114.119610] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Male infertility is an increasing health issue in today's society for both human and livestock populations. In livestock, male infertility slows the improvement of animal selection programs and agricultural productivity. There is increasing evidence that epigenetic marks play an important role in the production of good-quality sperm. We therefore screened for specific or common epigenetic signatures of livestock infertility. To do so, we compared DNA methylation level in sperm DNA from fertile and infertile boars. We evaluated first the global level of sperm DNA methylation and found no difference between the two groups of boars. We then selected 42 loci of interest, most of them known to be imprinted in human or mice, and assessed the imprinting status of five of them not previously described in swine tissues: WT1, CNTN3, IMPACT, QPCT, and GRB10. DNA methylation level was then quantified in fertile and infertile boars at these 42 loci. Results from fertile boars indicated that the methylation level of the selected loci is highly conserved between pig, human, and mice, with a few exceptions, including the POU5F1 (OCT4) promoter and RTL1. Comparison between fertile and infertile boars revealed that one imprinted region, the GNAS locus, shows an increase in sperm DNA methylation in three out of eight infertile boars with low semen quality. This increase in DNA methylation is associated with an altered expression of the genes belonging to the GNAS locus, suggesting a new role for GNAS in the proper formation of functional gametes.
Collapse
Affiliation(s)
- Annabelle Congras
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Martine Yerle-Bouissou
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Alain Pinton
- Université de Toulouse INPT ENVT, UMR1388 Génétique Physiologie et Systèmes d'Elevage GenPhySE, Toulouse, France
| | - Florence Vignoles
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Laurence Liaubet
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| | - Stéphane Ferchaud
- UE1372 GenESI Génétique, Expérimentation et Système Innovants, Surgères, France
| | - Hervé Acloque
- INRA, UMR1388 Génétique, Physiologie et Systèmes d'Elevage, GenPhySE, Castanet-Tolosan, France
| |
Collapse
|
5
|
Grybek V, Aubry L, Maupetit-Méhouas S, Le Stunff C, Denis C, Girard M, Linglart A, Silve C. Methylation and transcripts expression at the imprinted GNAS locus in human embryonic and induced pluripotent stem cells and their derivatives. Stem Cell Reports 2014; 3:432-43. [PMID: 25241742 PMCID: PMC4266011 DOI: 10.1016/j.stemcr.2014.07.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 07/04/2014] [Accepted: 07/07/2014] [Indexed: 02/06/2023] Open
Abstract
Data from the literature indicate that genomic imprint marks are disturbed in human pluripotent stem cells (PSCs). GNAS is an imprinted locus that produces one biallelic (Gsα) and four monoallelic (NESP55, GNAS-AS1, XLsα, and A/B) transcripts due to differential methylation of their promoters (DMR). To document imprinting at the GNAS locus in PSCs, we studied GNAS locus DMR methylation and transcript (NESP55, XLsα, and A/B) expression in human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) derived from two human fibroblasts and their progenies. Results showed that (1) methylation at the GNAS locus DMRs is DMR and cell line specific, (2) changes in allelic transcript expression can be independent of a change in allele-specific DNA methylation, and (3) interestingly, methylation at A/B DMR is correlated with A/B transcript expression. These results indicate that these models are valuable to study the mechanisms controlling GNAS methylation, factors involved in transcript expression, and possibly mechanisms involved in the pathophysiology of pseudohypoparathyroidism type 1B. GNAS locus methylation is DMR and cell line specific in human pluripotent stem cells Allelic transcript expression can be independent of allele-specific DNA methylation A/B transcript expression, a key for PHP1B, is correlated with A/B DMR methylation
Collapse
Affiliation(s)
- Virginie Grybek
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Laetitia Aubry
- UEVE UMR 861, I-Stem, AFM, Evry 91030, France; INSERM UMR 861, I-Stem, AFM, Evry 91030, France
| | | | | | - Cécile Denis
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Mathilde Girard
- CECS, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, Evry 91030, France
| | - Agnès Linglart
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Service d'Endocrinologie Pédiatrique, Hôpital Bicêtre-AP-HP, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France
| | - Caroline Silve
- INSERM U986, Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Centre de Référence des Maladies Rares du Métabolisme Phospho-Calcique Hôpital Bicêtre, Le Kremlin Bicêtre 94276, France; Laboratoire de Biochimie Hormonale et Génétique, Hôpital Bichat Claude Bernard-AP-HP, Paris 75018, France.
| |
Collapse
|
6
|
Richard N, Molin A, Coudray N, Rault-Guillaume P, Jüppner H, Kottler ML. Paternal GNAS mutations lead to severe intrauterine growth retardation (IUGR) and provide evidence for a role of XLαs in fetal development. J Clin Endocrinol Metab 2013; 98:E1549-56. [PMID: 23884777 PMCID: PMC3763972 DOI: 10.1210/jc.2013-1667] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
CONTEXT Heterozygous GNAS inactivating mutations cause pseudohypoparathyroidism type Ia (PHP-Ia) when maternally inherited and pseudopseudohypoparathyroidism (PPHP)/progressive osseous heteroplasia (POH) when paternally inherited. Recent studies have suggested that mutations on the paternal, but not the maternal, GNAS allele could be associated with intrauterine growth retardation (IUGR) and thus small size for gestational age. OBJECTIVES The aim of the study was to confirm and expand these findings in a large number of patients presenting with either PHP-Ia or PPHP/POH. PATIENTS AND METHODS We collected birth parameters (ie, gestational age, weight, length, and head circumference) of patients with either PHP-Ia (n = 29) or PPHP/POH (n = 26) with verified GNAS mutations. The parental allele carrying the mutation was assessed by investigating the parents or, when a de novo mutation was identified, through informative intragenic polymorphisms. RESULTS Heterozygous GNAS mutations on either parental allele were associated with IUGR. However, when these mutations are located on the paternal GNAS allele, IUGR was considerably more pronounced than with mutations on the maternal allele. Moreover, birth weights were lower with paternal GNAS mutations affecting exons 2-13 than with exon 1/intron 1 mutations. CONCLUSIONS These data indicate that a paternally derived GNAS transcript, possibly XLαs, is required for normal fetal growth and development and that this transcript affects placental functions. Thus, similar to other imprinted genes, GNAS controls growth and/or fetal development.
Collapse
Affiliation(s)
- Nicolas Richard
- Centre Hospitalier Universitaire de Caen, Department of Genetics, Reference Centre for Rare Disorders of Calcium and Phosphorus Metabolism, F-14000 Caen, France
| | | | | | | | | | | |
Collapse
|
7
|
Dunk C, Roggensack A, Cox B, Perkins J, Åsenius F, Keating S, Weksberg R, Kingdom J, Adamson S. A distinct microvascular endothelial gene expression profile in severe IUGR placentas. Placenta 2012; 33:285-93. [DOI: 10.1016/j.placenta.2011.12.020] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 01/13/2023]
|
8
|
Expression and imprinting analysis of the NESP55 gene in pigs. Gene Expr Patterns 2011; 12:18-23. [PMID: 22067442 DOI: 10.1016/j.gep.2011.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 10/17/2011] [Accepted: 10/18/2011] [Indexed: 12/19/2022]
Abstract
Most imprinted genes play important roles in a mammalian development. One of them is GNAS complex locus which codes for several imprinted or biallelically expressed transcripts. The function of some of them are well understood (for example GSα-guanine nucleotide binding, α -stimulating protein is essential element of cell signaling), whereas the others are little known. The function of NESP55 (Neuroendocrine secretory protein 55) remains elusive, although there are suggestions about its role in brain development. Imprinted genes are currently being studied as potential candidate genes for quantitative trait loci (QTLs) in farm animals. In our study, we analyzed tissue distribution of NESP55 mRNA in pigs and established imprinting status of this gene in the brain stem, muscle, kidney and liver at several developmental stages. NESP55 mRNA was most abundant in central nervous system (CNS) and pituitary. Substantial expression was also noticed in the kidney, testis and muscle. Moreover, we identified a 12-nucleotides deletion within the coding region of NESP55 (accession number ss#342570450) which was used in imprinting analysis. The deletion was very rare in the analyzed populations and present only in heterozygous form. The imprinting analysis showed that NESP55 is maternally expressed in young and adult pigs, similar to what was obtained in humans, mice and cattle.
Collapse
|
9
|
Klenke S, Siffert W, Frey UH. A novel aspect of GNAS imprinting: higher maternal expression of Gαs in human lymphoblasts, peripheral blood mononuclear cells, mammary adipose tissue, and heart. Mol Cell Endocrinol 2011; 341:63-70. [PMID: 21664251 DOI: 10.1016/j.mce.2011.05.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 10/25/2022]
Abstract
The human GNAS gene is imprinted in a tissue-specific manner, being expressed primarily from the maternal allele in pituitary, thyroid, renal proximal tubules, and gonads, but is supposed to be biallelically expressed with an equal allelic expression in most other tissues. We analysed allelic expression of Gαs using Pyrosequencing. By genotyping the GNAS T393C polymorphism we quantified mRNA transcripts in lymphoblasts (Ly, n=11), peripheral blood mononuclear cells (PBMC, n=18), mammary adipose tissue (MAT, n=23) and heart tissue (HT, n=44). Allelic expression analysis revealed an unequal allelic expression (ratio maternal/total×100±SEM: 55.7±1% (95% CI 53.4-58.1%) in Ly, 56.1±0.8 (95% CI 54.5-57.7%) in PBMC, 54.5±0.8% (95% CI 53-56.1%) in MAT and 54.1±0.6% (95% CI 53-55.3%) in HT). Maternal ratio differed significantly from the mean (p<0.0001). This phenomenon may be a general feature existing in all tissues.
Collapse
Affiliation(s)
- Stefanie Klenke
- Institut für Pharmakogenetik, Universität Duisburg-Essen and Universitätsklinikum Essen, Hufelandstr. 55, 45122 Essen, Germany
| | | | | |
Collapse
|