1
|
Dhalla NS, Elimban V, Adameova AD. Role of Na +-K + ATPase Alterations in the Development of Heart Failure. Int J Mol Sci 2024; 25:10807. [PMID: 39409137 PMCID: PMC11476929 DOI: 10.3390/ijms251910807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024] Open
Abstract
Na+-K+ ATPase is an integral component of cardiac sarcolemma and consists of three major subunits, namely the α-subunit with three isoforms (α1, α2, and α3), β-subunit with two isoforms (β1 and β2) and γ-subunit (phospholemman). This enzyme has been demonstrated to transport three Na and two K ions to generate a trans-membrane gradient, maintain cation homeostasis in cardiomyocytes and participate in regulating contractile force development. Na+-K+ ATPase serves as a receptor for both exogenous and endogenous cardiotonic glycosides and steroids, and a signal transducer for modifying myocardial metabolism as well as cellular survival and death. In addition, Na+-K+ ATPase is regulated by different hormones through the phosphorylation/dephosphorylation of phospholemman, which is tightly bound to this enzyme. The activity of Na+-K+ ATPase has been reported to be increased, unaltered and depressed in failing hearts depending upon the type and stage of heart failure as well as the association/disassociation of phospholemman and binding with endogenous cardiotonic steroids, namely endogenous ouabain and marinobufagenin. Increased Na+-K+ ATPase activity in association with a depressed level of intracellular Na+ in failing hearts is considered to decrease intracellular Ca2+ and serve as an adaptive mechanism for maintaining cardiac function. The slight to moderate depression of Na+-K+ ATPase by cardiac glycosides in association with an increased level of Na+ in cardiomyocytes is known to produce beneficial effects in failing hearts. On the other hand, markedly reduced Na+-K+ ATPase activity associated with an increased level of intracellular Na+ in failing hearts has been demonstrated to result in an intracellular Ca2+ overload, the occurrence of cardiac arrhythmias and depression in cardiac function during the development of heart failure. Furthermore, the status of Na+-K+ ATPase activity in heart failure is determined by changes in isoform subunits of the enzyme, the development of oxidative stress, intracellular Ca2+-overload, protease activation, the activity of inflammatory cytokines and sarcolemmal lipid composition. Evidence has been presented to show that marked alterations in myocardial cations cannot be explained exclusively on the basis of sarcolemma alterations, as other Ca2+ channels, cation transporters and exchangers may be involved in this event. A marked reduction in Na+-K+ ATPase activity due to a shift in its isoform subunits in association with intracellular Ca2+-overload, cardiac energy depletion, increased membrane permeability, Ca2+-handling abnormalities and damage to myocardial ultrastructure appear to be involved in the progression of heart failure.
Collapse
Affiliation(s)
- Naranjan S. Dhalla
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Vijayan Elimban
- Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB R2H 2A6, Canada;
| | - Adriana Duris Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| |
Collapse
|
2
|
MacLeod KT. Changes in cellular Ca 2+ and Na + regulation during the progression towards heart failure. J Physiol 2023; 601:905-921. [PMID: 35946572 PMCID: PMC10952717 DOI: 10.1113/jp283082] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/02/2022] [Indexed: 11/08/2022] Open
Abstract
In adapting to disease and loss of tissue, the heart shows great phenotypic plasticity that involves changes to its structure, composition and electrophysiology. Together with parallel whole body cardiovascular adaptations, the initial decline in cardiac function resulting from the insult is compensated. However, in the long term, the heart muscle begins to fail and patients with this condition have a very poor prognosis, with many dying from disturbances of rhythm. The surviving myocytes of these hearts gain Na+ , which is positively inotropic because of alterations to Ca2+ fluxes mediated by the Na+ /Ca2+ exchange, but compromises Ca2+ -dependent energy metabolism in mitochondria. Uptake of Ca2+ into the sarcoplasmic reticulum (SR) is reduced because of diminished function of SR Ca2+ ATPases. The result of increased Ca2+ influx and reduced SR Ca2+ uptake is an increase in the diastolic cytosolic Ca2+ concentration, which promotes spontaneous SR Ca2+ release and induces delayed afterdepolarisations. Action potential duration prolongs because of increased late Na+ current and changes in expression and function of other ion channels and transporters increasing the probability of the formation of early afterdepolarisations. There is a reduction in T-tubule density and so the normal spatial arrangements required for efficient excitation-contraction coupling are compromised and lead to temporal delays in Ca2+ release from the SR. Therefore, the structural and electrophysiological responses that occur to provide compensation do so at the expense of (1) increasing the likelihood of arrhythmogenesis; (2) activating hypertrophic, apoptotic and Ca2+ signalling pathways; and (3) decreasing the efficiency of SR Ca2+ release.
Collapse
Affiliation(s)
- Kenneth T. MacLeod
- National Heart & Lung InstituteImperial Centre for Translational and Experimental MedicineImperial CollegeHammersmith HospitalLondonUK
| |
Collapse
|
3
|
Cuomo M, Florio E, Della Monica R, Costabile D, Buonaiuto M, Di Risi T, De Riso G, Sarnataro A, Cocozza S, Visconti R, Chiariotti L. Epigenetic remodelling of Fxyd1 promoters in developing heart and brain tissues. Sci Rep 2022; 12:6471. [PMID: 35440736 PMCID: PMC9018693 DOI: 10.1038/s41598-022-10365-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/04/2022] [Indexed: 11/24/2022] Open
Abstract
FXYD1 is a key protein controlling ion channel transport. FXYD1 exerts its function by regulating Na+/K+-ATPase activity, mainly in brain and cardiac tissues. Alterations of the expression level of the FXYD1 protein cause diastolic dysfunction and arrhythmias in heart and decreased neuronal dendritic tree and spine formation in brain. Moreover, FXYD1, a target of MeCP2, plays a crucial role in the pathogenesis of the Rett syndrome, a neurodevelopmental disorder. Thus, the amount of FXYD1 must be strictly controlled in a tissue specific manner and, likely, during development. Epigenetic modifications, particularly DNA methylation, represent the major candidate mechanism that may regulate Fxyd1 expression. In the present study, we performed a comprehensive DNA methylation analysis and mRNA expression level measurement of the two Fxyd1 transcripts, Fxyd1a and Fxyd1b, in brain and heart tissues during mouse development. We found that DNA methylation at Fxyd1a increased during brain development and decreased during heart development along with coherent changes in mRNA expression levels. We also applied ultra-deep methylation analysis to detect cell to cell methylation differences and to identify possible distinct methylation profile (epialleles) distribution between heart and brain and in different developmental stages. Our data indicate that the expression of Fxyd1 transcript isoforms inversely correlates with DNA methylation in developing brain and cardiac tissues suggesting the existence of a temporal-specific epigenetic program. Moreover, we identified a clear remodeling of epiallele profiles which were distinctive for single developmental stage both in brain and heart tissues.
Collapse
Affiliation(s)
- Mariella Cuomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.
| | - Ermanno Florio
- Department of Medicine, University of California, San Diego UCSD, Gilman Dr, La Jolla, CA, 95000, USA
| | - Rosa Della Monica
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Davide Costabile
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,SEMM-European School of Molecular Medicine, University of Naples, "Federico II", 80131, Naples, Italy
| | - Michela Buonaiuto
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy
| | - Teodolinda Di Risi
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Department of Public Health, University of Naples "Federico II", Via S. Pansini, 5, 80131, Naples, Italy
| | - Giulia De Riso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Antonella Sarnataro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Sergio Cocozza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy
| | - Roberta Visconti
- CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy.,Institute of Experimental Endocrinology and Oncology, Italian National Council of Research, Via S. Pansini 5, 80131, Naples, Italy
| | - Lorenzo Chiariotti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", 80131, Naples, Italy. .,CEINGE-Biotecnologie Avanzate, Via Gaetano Salvatore, 486, 80145, Naples, Italy. .,SEMM-European School of Molecular Medicine, University of Naples, "Federico II", 80131, Naples, Italy.
| |
Collapse
|
4
|
Zhang XQ, Wang J, Song J, Rabinowitz J, Chen X, Houser SR, Peterson BZ, Tucker AL, Feldman AM, Cheung JY. Regulation of L-type calcium channel by phospholemman in cardiac myocytes. J Mol Cell Cardiol 2015; 84:104-11. [PMID: 25918050 PMCID: PMC4468006 DOI: 10.1016/j.yjmcc.2015.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/24/2015] [Accepted: 04/21/2015] [Indexed: 11/26/2022]
Abstract
We evaluated whether phospholemman (PLM) regulates L-type Ca(2+) current (ICa) in mouse ventricular myocytes. Expression of α1-subunit of L-type Ca(2+) channels between wild-type (WT) and PLM knockout (KO) hearts was similar. Compared to WT myocytes, peak ICa (at -10 mV) from KO myocytes was ~41% larger, the inactivation time constant (τ(inact)) of ICa was ~39% longer, but deactivation time constant (τ(deact)) was similar. In the presence of isoproterenol (1 μM), peak ICa was ~48% larger and τ(inact) was ~144% higher in KO myocytes. With Ba(2+) as the permeant ion, PLM enhanced voltage-dependent inactivation but had no effect on τ(deact). To dissect the molecular determinants by which PLM regulated ICa, we expressed PLM mutants by adenovirus-mediated gene transfer in cultured KO myocytes. After 24h in culture, KO myocytes expressing green fluorescent protein (GFP) had significantly larger peak ICa and longer τ(inact) than KO myocytes expressing WT PLM; thereby independently confirming the observations in freshly isolated myocytes. Compared to KO myocytes expressing GFP, KO myocytes expressing the cytoplasmic domain truncation mutant (TM43), the non-phosphorylatable S68A mutant, the phosphomimetic S68E mutant, and the signature PFXYD to alanine (ALL5) mutant all resulted in lower peak ICa. Expressing PLM mutants did not alter expression of α1-subunit of L-type Ca(2+) channels in cultured KO myocytes. Our results suggested that both the extracellular PFXYD motif and the transmembrane domain of PLM but not the cytoplasmic tail were necessary for regulation of peak ICa amplitude. We conclude that PLM limits Ca(2+) influx in cardiac myocytes by reducing maximal ICa and accelerating voltage-dependent inactivation.
Collapse
Affiliation(s)
- Xue-Qian Zhang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - JuFang Wang
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Jianliang Song
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joseph Rabinowitz
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA
| | - Xiongwen Chen
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Steven R Houser
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Blaise Z Peterson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Amy L Tucker
- Cardiovascular Division, Department of Internal Medicine, University of Virginia Health Sciences Center, Charlottesville, VA, USA
| | - Arthur M Feldman
- Cardiovascular Research Center, Temple University School of Medicine, Philadelphia, PA, USA
| | - Joseph Y Cheung
- Center of Translational Medicine, Temple University School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|