1
|
Liu Q, Adhikari E, Lester DK, Fang B, Johnson JO, Tian Y, Mockabee-Macias AT, Izumi V, Guzman KM, White MG, Koomen JM, Wargo JA, Messina JL, Qi J, Lau EK. Androgen drives melanoma invasiveness and metastatic spread by inducing tumorigenic fucosylation. Nat Commun 2024; 15:1148. [PMID: 38326303 PMCID: PMC10850104 DOI: 10.1038/s41467-024-45324-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/18/2024] [Indexed: 02/09/2024] Open
Abstract
Melanoma incidence and mortality rates are historically higher for men than women. Although emerging studies have highlighted tumorigenic roles for the male sex hormone androgen and its receptor (AR) in melanoma, cellular and molecular mechanisms underlying these sex-associated discrepancies are poorly defined. Here, we delineate a previously undisclosed mechanism by which androgen-activated AR transcriptionally upregulates fucosyltransferase 4 (FUT4) expression, which drives melanoma invasiveness by interfering with adherens junctions (AJs). Global phosphoproteomic and fucoproteomic profiling, coupled with in vitro and in vivo functional validation, further reveal that AR-induced FUT4 fucosylates L1 cell adhesion molecule (L1CAM), which is required for FUT4-increased metastatic capacity. Tumor microarray and gene expression analyses demonstrate that AR-FUT4-L1CAM-AJs signaling correlates with pathological staging in melanoma patients. By delineating key androgen-triggered signaling that enhances metastatic aggressiveness, our findings help explain sex-associated clinical outcome disparities and highlight AR/FUT4 and its effectors as potential prognostic biomarkers and therapeutic targets in melanoma.
Collapse
Affiliation(s)
- Qian Liu
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Emma Adhikari
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Daniel K Lester
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Cancer Biology Ph.D. Program, University of South Florida, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Bin Fang
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joseph O Johnson
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Yijun Tian
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Andrea T Mockabee-Macias
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Victoria Izumi
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Kelly M Guzman
- Analytic Microscopy Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael G White
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jennifer A Wargo
- Department of Surgical Oncology, MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX, USA
| | - Jane L Messina
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jianfei Qi
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Eric K Lau
- Department of Tumor Microenvironment and Metastasis, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
- Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA.
| |
Collapse
|
2
|
Simbulan-Rosenthal CM, Haribabu Y, Vakili S, Kuo LW, Clark H, Dougherty R, Alobaidi R, Carney B, Sykora P, Rosenthal DS. Employing CRISPR-Cas9 to Generate CD133 Synthetic Lethal Melanoma Stem Cells. Int J Mol Sci 2022; 23:2333. [PMID: 35216449 PMCID: PMC8877091 DOI: 10.3390/ijms23042333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
Malignant melanoma is a lethal skin cancer containing melanoma-initiating cells (MIC) implicated in tumorigenesis, invasion, and drug resistance, and is characterized by the elevated expression of stem cell markers, including CD133. The siRNA knockdown of CD133 enhances apoptosis induced by the MEK inhibitor trametinib in melanoma cells. This study investigates the underlying mechanisms of CD133's anti-apoptotic activity in patient-derived BAKP and POT cells, harboring difficult-to-treat NRASQ61K and NRASQ61R drivers, after CRISPR-Cas9 CD133 knockout or Dox-inducible expression of CD133. MACS-sorted CD133(+) BAKP cells were conditionally reprogrammed to derive BAKR cells with sustained CD133 expression and MIC features. Compared to BAKP, CD133(+) BAKR exhibit increased cell survival and reduced apoptosis in response to trametinib or the chemotherapeutic dacarbazine (DTIC). CRISPR-Cas9-mediated CD133 knockout in BAKR cells (BAKR-KO) re-sensitized cells to trametinib. CD133 knockout in BAKP and POT cells increased trametinib-induced apoptosis by reducing anti-apoptotic BCL-xL, p-AKT, and p-BAD and increasing pro-apoptotic BAX. Conversely, Dox-induced CD133 expression diminished apoptosis in both trametinib-treated cell lines, coincident with elevated p-AKT, p-BAD, BCL-2, and BCL-xL and decreased activation of BAX and caspases-3 and -9. AKT1/2 siRNA knockdown or inhibition of BCL-2 family members with navitoclax (ABT-263) in BAKP-KO cells further enhanced caspase-mediated apoptotic PARP cleavage. CD133 may therefore activate a survival pathway where (1) increased AKT phosphorylation and activation induces (2) BAD phosphorylation and inactivation, (3) decreases BAX activation, and (4) reduces caspases-3 and -9 activity and caspase-mediated PARP cleavage, leading to apoptosis suppression and drug resistance in melanoma. Targeting nodes of the CD133, AKT, or BCL-2 survival pathways with trametinib highlights the potential for combination therapies for NRAS-mutant melanoma stem cells for the development of more effective treatments for patients with high-risk melanoma.
Collapse
Affiliation(s)
- Cynthia M. Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Yogameenakshi Haribabu
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Sahar Vakili
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Li-Wei Kuo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Havens Clark
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Ryan Dougherty
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Ryyan Alobaidi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| | - Bonnie Carney
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
- Firefighters’ Burn and Surgical Laboratory, MedStar Health Research Institute, Washington, DC 20010, USA
| | - Peter Sykora
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
- Amelia Technologies, LLC, 1121 5th St. NW, Washington, DC 20001, USA
| | - Dean S. Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA; (C.M.S.-R.); (Y.H.); (S.V.); (L.-W.K.); (H.C.); (R.D.); (R.A.); (B.C.); (P.S.)
| |
Collapse
|
3
|
Simbulan-Rosenthal CM, Dougherty R, Vakili S, Ferraro AM, Kuo LW, Alobaidi R, Aljehane L, Gaur A, Sykora P, Glasgow E, Agarwal S, Rosenthal DS. CRISPR-Cas9 Knockdown and Induced Expression of CD133 Reveal Essential Roles in Melanoma Invasion and Metastasis. Cancers (Basel) 2019; 11:cancers11101490. [PMID: 31623313 PMCID: PMC6827046 DOI: 10.3390/cancers11101490] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023] Open
Abstract
CD133, known as prominin1, is a penta-span transmembrane glycoprotein presumably a cancer stem cell marker for carcinomas, glioblastomas, and melanomas. We showed that CD133(+) ‘melanoma-initiating cells’ are associated with chemoresistance, contributing to poor patient outcome. The current study investigates the role(s) of CD133 in invasion and metastasis. Magnetic-activated cell sorting of a melanoma cell line (BAKP) followed by transwell invasion assays revealed that CD133(+) cells are significantly more invasive than CD133(−) cells. Conditional reprogramming of BAKP CD133(+) cells maintained stable CD133 overexpression (BAK-R), and induced cancer stem cell markers, melanosphere formation, and chemoresistance to kinase inhibitors. BAK-R cells showed upregulated CD133 expression, and consequently were more invasive and metastatic than BAK-P cells in transwell and zebrafish assays. CD133 knockdown by siRNA or CRISPR-Cas9 (BAK-R-T3) in BAK-R cells reduced invasion and levels of matrix metalloproteinases MMP2/MMP9. BAK-R-SC cells, but not BAK-R-T3, were metastatic in zebrafish. While CD133 knockdown by siRNA or CRISPR-Cas9 in BAK-P cells attenuated invasion and diminished MMP2/MMP9 levels, doxycycline-induced CD133 expression in BAK-P cells enhanced invasion and MMP2/MMP9 concentrations. CD133 may therefore play an essential role in invasion and metastasis via upregulation of MMP2/MMP9, leading to tumor progression, and represents an attractive target for intervention in melanoma.
Collapse
Affiliation(s)
- Cynthia M Simbulan-Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Ryan Dougherty
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Sahar Vakili
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Alexandra M Ferraro
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Li-Wei Kuo
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Ryyan Alobaidi
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Leala Aljehane
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Anirudh Gaur
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | | | - Eric Glasgow
- Department of Oncology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Seema Agarwal
- Department of Pathology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| | - Dean S Rosenthal
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA.
| |
Collapse
|
4
|
Kaczorowski M, Biecek P, Donizy P, Pieniazek M, Matkowski R, Halon A. SMAD7 is a novel independent predictor of survival in patients with cutaneous melanoma. Transl Res 2019; 204:72-81. [PMID: 30342000 DOI: 10.1016/j.trsl.2018.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/13/2018] [Accepted: 09/23/2018] [Indexed: 12/18/2022]
Abstract
Overexpression of SMAD7-a hallmark inhibitor of transforming growth factor β (TGFβ) signaling-has been documented and related with adverse prognosis in a number of epithelial malignancies, suggesting that it may be responsible for resistance to TGFβ-induced growth arrest of cancer cells. The involvement of SMAD7 in development and progression of malignant melanoma is unclear, and its expression has not been characterized so far at the protein level in clinical melanoma tissue samples. We evaluated SMAD7 expression in 205 skin melanoma primary tumors by immunohistochemistry and correlated the findings with clinicopathological profiles of patients. Melanocytic SMAD7 was evidenced in 204 cases, and the expression pattern was predominantly nuclear. High expression of SMAD7 was positively associated with several features of tumor aggressiveness, for example, presence of ulceration (P < 0.001), higher tumor thickness (P < 0.001), and mitotic rate (P < 0.001), but not presence of regional or distant metastases. Moreover, high SMAD7 expression independently predicted unfavorable outcome: melanoma-specific survival (hazard ratio = 3.16, P < 0.001) and recurrence-free survival (hazard ratio = 2.88, P < 0.001). Taken together, our results underline the importance of TGFβ signaling in cancer and define SMAD7 as a marker of aggressive tumor behavior and adverse clinical outcomes in melanoma patients.
Collapse
Affiliation(s)
- Maciej Kaczorowski
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland.
| | - Przemyslaw Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
| | - Piotr Donizy
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| | - Malgorzata Pieniazek
- Department of Clinical Oncology, Tadeusz Koszarowski Regional Oncology Centre, Opole, Poland
| | - Rafal Matkowski
- Department of Oncology and Division of Surgical Oncology, Wroclaw Medical University, Wroclaw, Poland; Lower Silesian Oncology Centre, Wroclaw, Poland
| | - Agnieszka Halon
- Department of Pathomorphology and Oncological Cytology, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
5
|
Zhao YG, Shi BY, Qian YY, Bai HW, Xiao L, He XY. Dynamic Expression Changes between Non-Muscle-Invasive Bladder Cancer and Muscle-Invasive Bladder Cancer. TUMORI JOURNAL 2018. [DOI: 10.1177/1778.19294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Yu-gang Zhao
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Bing-yi Shi
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Ye-yong Qian
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Hong-wei Bai
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Li Xiao
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| | - Xiu-yun He
- Organ Transplantation Institute of People's Liberation Army, 309th Hospital of Chinese People's Liberation Army, Beijing, China
| |
Collapse
|
6
|
DiVito KA, Daniele MA, Roberts SA, Ligler FS, Adams AA. Microfabricated blood vessels undergo neoangiogenesis. Biomaterials 2017; 138:142-152. [DOI: 10.1016/j.biomaterials.2017.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/25/2017] [Accepted: 05/07/2017] [Indexed: 01/06/2023]
|
7
|
Liu H, Mastriani E, Yan ZQ, Yin SY, Zeng Z, Wang H, Li QH, Liu HY, Wang X, Bao HX, Zhou YJ, Kou JJ, Li D, Li T, Liu J, Liu Y, Yin L, Qiu L, Gong L, Liu SL. SOX7 co-regulates Wnt/β-catenin signaling with Axin-2: both expressed at low levels in breast cancer. Sci Rep 2016; 6:26136. [PMID: 27188720 PMCID: PMC4870566 DOI: 10.1038/srep26136] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 04/27/2016] [Indexed: 12/29/2022] Open
Abstract
SOX7 as a tumor suppressor belongs to the SOX F gene subfamily and is associated with a variety of human cancers, including breast cancer, but the mechanisms involved are largely unclear. In the current study, we investigated the interactions between SOX7 and AXIN2 in their co-regulation on the Wnt/β-catenin signal pathway, using clinical specimens and microarray gene expression data from the GEO database, for their roles in breast cancer. We compared the expression levels of SOX7 and other co-expressed genes in the Wnt/β-catenin pathway and found that the expression of SOX7, SOX17 and SOX18 was all reduced significantly in the breast cancer tissues compared to normal controls. AXIN2 had the highest co-relativity with SOX7 in the Wnt/β-catenin signaling pathway. Clinicopathological analysis demonstrated that the down-regulated SOX7 was significantly correlated with advanced stages and poorly differentiated breast cancers. Consistent with bioinformatics predictions, SOX7 was correlated positively with AXIN2 and negatively with β-catenin, suggesting that SOX7 and AXIN2 might play important roles as co-regulators through the Wnt-β-catenin pathway in the breast tissue to affect the carcinogenesis process. Our results also showed Smad7 as the target of SOX7 and AXIN2 in controlling breast cancer progression through the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Huidi Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China.,HMU-UCFM Centre for Infection and Genomics, Harbin, 150081, China.,Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, T2N 4N1, Canada
| | - Emilio Mastriani
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Zi-Qiao Yan
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Si-Yuan Yin
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Zheng Zeng
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong Wang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150086, China
| | - Qing-Hai Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong-Yu Liu
- Pathology Department, The First Hospital of Qiqihaer City, Qiqihaer, 161006, China
| | - Xiaoyu Wang
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Hong-Xia Bao
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Yu-Jie Zhou
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Jun-Jie Kou
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Dongsheng Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ting Li
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianrui Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China
| | - Yongfang Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lin Yin
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Li Qiu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Liling Gong
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,Collage of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Shu-Lin Liu
- Genomics Research Centre, Harbin Medical University, Harbin, 150081, China.,HMU-UCFM Centre for Infection and Genomics, Harbin, 150081, China.,Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, T2N 4N1, Canada
| |
Collapse
|
8
|
Simbulan-Rosenthal CM, Gaur A, Sanabria VA, Dussan LJ, Saxena R, Schmidt J, Kitani T, Chen YS, Rahim S, Uren A, Crooke E, Rosenthal DS. Inorganic polyphosphates are important for cell survival and motility of human skin keratinocytes. Exp Dermatol 2015; 24:636-9. [DOI: 10.1111/exd.12729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 12/01/2022]
Affiliation(s)
| | - Anirudh Gaur
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
| | - Virginia A. Sanabria
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
| | - Lucia J. Dussan
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
| | - Rahul Saxena
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
| | - Jozef Schmidt
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
| | - Takashi Kitani
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
| | - You-shin Chen
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
| | - Said Rahim
- Department of Oncology; Georgetown University; School of Medicine; Washington DC USA
- Lombardi Comprehensive Cancer Center; Georgetown University; School of Medicine; Washington DC USA
| | - Aykut Uren
- Department of Oncology; Georgetown University; School of Medicine; Washington DC USA
- Lombardi Comprehensive Cancer Center; Georgetown University; School of Medicine; Washington DC USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
- Lombardi Comprehensive Cancer Center; Georgetown University; School of Medicine; Washington DC USA
| | - Dean S. Rosenthal
- Department of Biochemistry and Molecular Biology; Georgetown University; School of Medicine; Washington DC USA
- Lombardi Comprehensive Cancer Center; Georgetown University; School of Medicine; Washington DC USA
| |
Collapse
|
9
|
DiVito KA, Trabosh VA, Chen YS, Simbulan-Rosenthal CM, Rosenthal DS. Inhibitor of differentiation-4 (Id4) stimulates pigmentation in melanoma leading to histiocyte infiltration. Exp Dermatol 2015; 24:101-7. [DOI: 10.1111/exd.12582] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Kyle A. DiVito
- Department of Biochemistry & Molecular Biology; Georgetown University School of Medicine; Washington DC USA
| | - Valerie A. Trabosh
- Department of Biochemistry & Molecular Biology; Georgetown University School of Medicine; Washington DC USA
| | - You-Shin Chen
- Department of Biochemistry & Molecular Biology; Georgetown University School of Medicine; Washington DC USA
| | | | - Dean S. Rosenthal
- Department of Biochemistry & Molecular Biology; Georgetown University School of Medicine; Washington DC USA
| |
Collapse
|
10
|
N-cadherin participated in invasion and metastasis of human esophageal squamous cell carcinoma via taking part in the formation of vasculogenic mimicry. Med Oncol 2015; 32:480. [PMID: 25575439 DOI: 10.1007/s12032-014-0480-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 12/20/2014] [Indexed: 12/13/2022]
Abstract
Vasculogenic mimicry (VM) refers to the unique ability of highly aggressive tumor cells to mimic the pattern of embryonic vasculogenic networks, and the presence of VM correlates to an increased risk of metastasis and poor clinical outcome of cancers. Several key molecules, including N-cadherin, have been implicated in VM. However, the role of N-cadherin in the formation of VM in esophageal squamous cell carcinoma (ESCC) had not been elucidated. In this study, firstly we aimed to identify VM patterns in ESCC tissues and to explore their clinical significance. VM was present in 12 out of 56 samples, and ESCC with lymph node metastasis had a higher incidence of VM than that without lymph node metastasis. More importantly, VM channels were associated with the expression of N-cadherin in ESCC tissues. In order to further explore the role of N-cadherin in VM formation and invasion and metastasis in ESCC, secondly, we silenced the expression of N-cadherin with small hairpin RNA in ESCC cell line KYSE-70; herein, we showed that KYSE-70 cells with N-cadherin silencing lost not only the capacity to form tube-like structures on collagen (VM) but also the invasion, metastasis and proliferation ability in KYSE-70 cells in vitro. Taken together, antivascular therapies targeting tumor cell VM may be an effective approach to the treatment of patients with highly metastatic ESCC.
Collapse
|
11
|
Bian L, Han G, Zhao CW, Garl PJ, Wang XJ. The role of Smad7 in oral mucositis. Protein Cell 2015; 6:160-9. [PMID: 25566830 PMCID: PMC4348243 DOI: 10.1007/s13238-014-0130-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 12/12/2014] [Indexed: 12/23/2022] Open
Abstract
Oral mucositis, a severe oral ulceration, is a common toxic effect of radio- or chemoradio-therapy and a limiting factor to using the maximum dose of radiation for effective cancer treatment. Among cancer patients, at least 40% and up to 70%, of individuals treated with standard chemotherapy regimens or upper-body radiation, develop oral mucositis. To date, there is no FDA approved drug to treat oral mucositis in cancer patients. The key challenges for oral mucositis treatment are to repair and protect ulcerated oral mucosa without promoting cancer cell growth. Oral mucositis is the result of complex, multifaceted pathobiology, involving a series of signaling pathways and a chain of interactions between the epithelium and submucosa. Among those pathways and interactions, the activation of nuclear factor-kappa B (NF-κB) is critical to the inflammation process of oral mucositis. We recently found that activation of TGFβ (transforming growth factor β) signaling is associated with the development of oral mucositis. Smad7, the negative regulator of TGFβ signaling, inhibits both NF-κB and TGFβ activation and thus plays a pivotal role in the prevention and treatment of oral mucositis by attenuating growth inhibition, apoptosis, and inflammation while promoting epithelial migration. The major objective of this review is to evaluate the known functions of Smad7, with a particular focus on its molecular mechanisms and its function in blocking multiple pathological processes in oral mucositis.
Collapse
Affiliation(s)
- Li Bian
- Department of Pathology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | | | | | | | | |
Collapse
|
12
|
Gordian E, Li J, Pevzner Y, Mediavilla-Varela M, Luddy K, Ohaegbulam K, Daniel KG, Haura EB, Muñoz-Antonia T. Transforming growth factor β signaling overcomes dasatinib resistance in lung cancer. PLoS One 2014; 9:e114131. [PMID: 25501935 PMCID: PMC4263601 DOI: 10.1371/journal.pone.0114131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the second most common cancer and the leading cause of cancer-related deaths. Despite recent advances in the development of targeted therapies, patients with advanced disease remain incurable, mostly because metastatic non-small cell lung carcinomas (NSCLC) eventually become resistant to tyrosine kinase inhibitors (TKIs). Kinase inhibitors have the potential for target promiscuity because the kinase super family is the largest family of druggable genes that binds to a common substrate (ATP). As a result, TKIs often developed for a specific purpose have been found to act on other targets. Drug affinity chromatography has been used to show that dasatinib interacts with the TGFβ type I receptor (TβR-I), a serine-threonine kinase. To determine the potential biological relevance of this association, we studied the combined effects of dasatinib and TGFβ on lung cancer cell lines. We found that dasatinib treatment alone had very little effect; however, when NSCLC cell lines were treated with a combination of TGFβ and dasatinib, apoptosis was induced. Combined TGFβ-1 + dasatinib treatment had no effect on the activity of Smad2 or other non-canonical TGFβ intracellular mediators. Interestingly, combined TGFβ and dasatinib treatment resulted in a transient increase in p-Smad3 (seen after 3 hours). In addition, when NSCLC cells were treated with this combination, the pro-apoptotic protein BIM was up-regulated. Knockdown of the expression of Smad3 using Smad3 siRNA also resulted in a decrease in BIM protein, suggesting that TGFβ-1 + dasatinib-induced apoptosis is mediated by Smad3 regulation of BIM. Dasatinib is only effective in killing EGFR mutant cells, which is shown in only 10% of NSCLCs. Therefore, the observation that wild-type EGFR lung cancers can be manipulated to render them sensitive to killing by dasatinib could have important implications for devising innovative and potentially more efficacious treatment strategies for this disease.
Collapse
Affiliation(s)
- Edna Gordian
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Jiannong Li
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Yuri Pevzner
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Melanie Mediavilla-Varela
- Immunology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Kimberly Luddy
- Cancer Imaging & Metabolism Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Kim Ohaegbulam
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York 10461, United States of America
| | - Kenyon G. Daniel
- Chemical Biology Core, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Eric B. Haura
- Department of Thoracic Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
| | - Teresita Muñoz-Antonia
- Molecular Oncology Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida 33612, United States of America
- * E-mail:
| |
Collapse
|
13
|
DiVito KA, Simbulan-Rosenthal CM, Chen YS, Trabosh VA, Rosenthal DS. Id2, Id3 and Id4 overcome a Smad7-mediated block in tumorigenesis, generating TGF-β-independent melanoma. Carcinogenesis 2013; 35:951-8. [PMID: 24343358 DOI: 10.1093/carcin/bgt479] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role for the inhibitors of differentiation (Ids) proteins in melanomagenesis has been poorly explored. In other cell types, Ids have been shown to contribute to cell proliferation, migration and angiogenesis and, along with a number of other genes, are direct downstream targets of the transforming growth factor (TGF)-β pathway. Expression of Smad7, which suppress TGF-β signaling, or synthetic TGF-β inhibitors, was shown to potently suppress melanomagenesis. We found that endogenous Id2, Id3 and Id4 expression was elevated in 1205Lu versus 1205Lu cells constitutively expressing Smad7, indicating Ids may play a role in melanomagenesis. Therefore, the effects of Tet-inducible expression of Id2, Id3 or Id4 along with Smad7 in TGF-β-dependent 1205Lu human melanoma cells were explored in vitro and in vivo. 1205Lu cells formed subcutaneous tumors in athymic mice, whereas cells expressing Smad7 failed to form tumors. However, 1205Lu cells expressing Smad7 along with doxycycline-induced Id2, Id3 or Id4 were able to overcome the potent tumorigenic block mediated by S7, to varying degrees. Conversely, Id small interfering RNA knockdown suppressed anchorage-independent growth of melanoma. Histology of tumors from 1205Lu cells expressing Smad7 + Id4 revealed an average of 31% necrosis, compared with 5.2% in tumors from 1205Lu with vector only. Downstream, Ids suppressed cyclin-dependent kinase inhibitors, and re-upregulated invasion and metastasis-related genes matrix metalloproteinase 2 (MMP2), MMP9, CXCR4 and osteopontin, shown previously to be downregulated in response to Smad7. This study shows that Id2, Id3 and Id4 are each able to overcome TGF-β dependence, and establish a role for Ids as key mediators of TGF-β melanomagenesis.
Collapse
Affiliation(s)
- Kyle A DiVito
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
14
|
Stolfi C, Marafini I, De Simone V, Pallone F, Monteleone G. The dual role of Smad7 in the control of cancer growth and metastasis. Int J Mol Sci 2013; 14:23774-90. [PMID: 24317436 PMCID: PMC3876077 DOI: 10.3390/ijms141223774] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 02/07/2023] Open
Abstract
Smad7 was initially identified as an inhibitor of Transforming growth factor (TGF)-β due mainly to its ability to bind TGF-β receptor type I and prevent TGF-β-associated Smad signaling. More recently, it has been demonstrated that Smad7 can interact with other intracellular proteins and regulate also TGF-β-independent signaling pathways thus making a valid contribution to the neoplastic processes in various organs. In particular, data emerging from experimental studies indicate that Smad7 may differently modulate the course of various tumors depending on the context analyzed. These observations, together with the demonstration that Smad7 expression is deregulated in many cancers, suggest that therapeutic interventions around Smad7 can help interfere with the development/progression of human cancers. In this article we review and discuss the available data supporting the role of Smad7 in the modulation of cancer growth and progression.
Collapse
Affiliation(s)
- Carmine Stolfi
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-6-7259-6150 (G.S.); Fax: +39-6-7259-6391 (G.S.)
| | | | | | | | - Giovanni Monteleone
- Authors to whom correspondence should be addressed; E-Mails: (C.S.); (G.M.); Tel.: +39-6-7259-6150 (G.S.); Fax: +39-6-7259-6391 (G.S.)
| |
Collapse
|
15
|
Perrot CY, Javelaud D, Mauviel A. Insights into the Transforming Growth Factor-β Signaling Pathway in Cutaneous Melanoma. Ann Dermatol 2013; 25:135-44. [PMID: 23717002 PMCID: PMC3662904 DOI: 10.5021/ad.2013.25.2.135] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transforming growth factor-β (TGF-β) is a pleiotropic growth factor with broad tissue distribution that plays critical roles during embryonic development, normal tissue homeostasis, and cancer. While its cytostatic activity on normal epithelial cells initially defined TGF-β signaling as a tumor suppressor pathway, there is ample evidence indicating that TGF-β is a potent pro-tumorigenic agent, acting via autocrine and paracrine mechanisms to promote peri-tumoral angiogenesis, together with tumor cell migration, immune escape, and dissemination to metastatic sites. This review summarizes the current knowledge on the implication of TGF-β signaling in melanoma.
Collapse
Affiliation(s)
- Carole Yolande Perrot
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| | - Delphine Javelaud
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| | - Alain Mauviel
- Institut Curie, Team "TGF-β and Oncogenesis", Equipe Labellisée Ligue Contre le Cancer, Orsay, France
- INSERM U1021 Orsay, France
- CNRS UMR 3347, Orsay, France
| |
Collapse
|
16
|
Voronkov A, Krauss S. Wnt/beta-catenin signaling and small molecule inhibitors. Curr Pharm Des 2013; 19:634-64. [PMID: 23016862 PMCID: PMC3529405 DOI: 10.2174/138161213804581837] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Accepted: 09/23/2012] [Indexed: 12/27/2022]
Abstract
Wnt/β-catenin signaling is a branch of a functional network that dates back to the first metazoans and it is involved in a broad range of biological systems including stem cells, embryonic development and adult organs. Deregulation of components involved in Wnt/β-catenin signaling has been implicated in a wide spectrum of diseases including a number of cancers and degenerative diseases. The key mediator of Wnt signaling, β-catenin, serves several cellular functions. It functions in a dynamic mode at multiple cellular locations, including the plasma membrane, where β-catenin contributes to the stabilization of intercellular adhesive complexes, the cytoplasm where β-catenin levels are regulated and the nucleus where β-catenin is involved in transcriptional regulation and chromatin interactions. Central effectors of β-catenin levels are a family of cysteine-rich secreted glycoproteins, known as Wnt morphogens. Through the LRP5/6-Frizzled receptor complex, Wnts regulate the location and activity of the destruction complex and consequently intracellular β- catenin levels. However, β-catenin levels and their effects on transcriptional programs are also influenced by multiple other factors including hypoxia, inflammation, hepatocyte growth factor-mediated signaling, and the cell adhesion molecule E-cadherin. The broad implications of Wnt/β-catenin signaling in development, in the adult body and in disease render the pathway a prime target for pharmacological research and development. The intricate regulation of β-catenin at its various locations provides alternative points for therapeutic interventions.
Collapse
Affiliation(s)
- Andrey Voronkov
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| | - Stefan Krauss
- SFI-CAST Biomedical Innovation Center, Unit for Cell Signaling, Oslo University Hospital, Forskningsparken, Gaustadalleén 21, 0349, Oslo, Norway
| |
Collapse
|
17
|
Noguchi F, Inui S, Nakajima T, Itami S. Hic-5 affects proliferation, migration and invasion of B16 murine melanoma cells. Pigment Cell Melanoma Res 2012; 25:773-82. [PMID: 22883018 DOI: 10.1111/pcmr.12005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hic-5 is a shuttling protein between the cell membrane and the nucleus which functions as a focal adhesion adaptor protein and a nuclear receptor coactivator. Although several studies have shown its involvement in other types of cancer, the role of Hic-5 in melanoma is unknown. Herein, we show for the first time that Hic-5 is expressed in B16-F1 murine melanoma cells. To determine its function in melanoma cells, we used shRNA-mediated RNA interference and established stable clones with down-regulated Hic-5 expression. These clones had impaired growth and metastatic potential compared with controls in vivo, which correlated with decreased proliferation, migration and invasion in vitro. Moreover, silencing of Hic-5 expression in B16-F1 activated RhoA with an amoeboid phenotypic change, indicating that Hic-5 is a key regulator of B16-F1 metastasis in the context of Rho-dependent motility. These results provide new evidence that Hic-5 is a possible molecular target for treatment of melanoma.
Collapse
Affiliation(s)
- Fumihito Noguchi
- Department of Regenerative Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan
| | | | | | | |
Collapse
|
18
|
Pierrat MJ, Marsaud V, Mauviel A, Javelaud D. Expression of microphthalmia-associated transcription factor (MITF), which is critical for melanoma progression, is inhibited by both transcription factor GLI2 and transforming growth factor-β. J Biol Chem 2012; 287:17996-8004. [PMID: 22496449 DOI: 10.1074/jbc.m112.358341] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The melanocyte-specific transcription factor M-MITF is involved in numerous aspects of melanoblast lineage biology including pigmentation, survival, and migration. It plays complex roles at all stages of melanoma progression and metastasis. We established previously that GLI2, a Kruppel-like transcription factor that acts downstream of Hedgehog signaling, is a direct transcriptional target of the TGF-β/SMAD pathway and contributes to melanoma progression, exerting antagonistic activities against M-MITF to control melanoma cell invasiveness. Herein, we dissected the molecular mechanisms underlying both TGF-β and GLI2-driven M-MITF gene repression. Using transient cell transfection experiments with M-MITF promoter constructs, chromatin immunoprecipitation, site-directed mutagenesis, and electrophoretic mobility shift assays, we identified a GLI2 binding site within the -334/-296 region of the M-MITF promoter, critical for GLI2-driven transcriptional repression. This region is, however, not needed for inhibition of M-MITF promoter activity by TGF-β. We determined that TGF-β rapidly repressed protein kinase A activity, thus reducing both phospho-cAMP-response element-binding protein (CREB) levels and CREB-dependent transcription of the M-MITF promoter. Increased GLI2 binding to its cognate cis-element, associated with reduced CREB-dependent transcription, allowed maximal inhibition of the M-MITF promoter via two distinct mechanisms.
Collapse
Affiliation(s)
- Marie-Jeanne Pierrat
- Institut Curie, Centre de Recherche, INSERM U1021, CNRS UMR3347, and Université Paris XI, 91400 Orsay, France
| | | | | | | |
Collapse
|
19
|
Javelaud D, Alexaki VI, Pierrat MJ, Hoek KS, Dennler S, Van Kempen L, Bertolotto C, Ballotti R, Saule S, Delmas V, Mauviel A. GLI2 and M-MITF transcription factors control exclusive gene expression programs and inversely regulate invasion in human melanoma cells. Pigment Cell Melanoma Res 2011; 24:932-43. [PMID: 21801332 DOI: 10.1111/j.1755-148x.2011.00893.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We recently identified GLI2, the most active of GLI transcription factors, as a direct TGF-β/SMAD target, whose expression in melanoma cells is associated with increased invasiveness and metastatic capacity. In this work, we provide evidence that high GLI2 expression is inversely correlated with that of the melanocyte-specific transcription factor M-microphthalmia transcription factor (M-MITF) and associated transcriptional program. GLI2-expressing cell lines were characterized by the loss of M-MITF-dependent melanocytic differentiation markers and reduced pigmentation. The balance between M-MITF and GLI2 expression did not correlate with the presence or absence of BRAF-activating mutations, but rather was controlled by two distinct pathways: the TGF-β pathway, which favors GLI2 expression, and the protein kinase A (PKA)/cAMP pathway, which pushes the balance toward high M-MITF expression. Furthermore, overexpression and knockdown experiments demonstrated that GLI2 and M-MITF reciprocally repress each other's expression and control melanoma cell invasion in an opposite manner. These findings thus identify GLI2 as a critical transcription factor antagonizing M-MITF function to promote melanoma cell phenotypic plasticity and invasive behavior.
Collapse
|
20
|
Mu Y, Gudey SK, Landström M. Non-Smad signaling pathways. Cell Tissue Res 2011; 347:11-20. [PMID: 21701805 DOI: 10.1007/s00441-011-1201-y] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 06/03/2011] [Indexed: 12/19/2022]
Abstract
Transforming growth factor-beta (TGFβ) is a key regulator of cell fate during embryogenesis and has also emerged as a potent driver of the epithelial-mesenchymal transition during tumor progression. TGFβ signals are transduced by transmembrane type I and type II serine/threonine kinase receptors (TβRI and TβRII, respectively). The activated TβR complex phosphorylates Smad2 and Smad3, converting them into transcriptional regulators that complex with Smad4. TGFβ also uses non-Smad signaling pathways such as the p38 and Jun N-terminal kinase (JNK) mitogen-activated protein kinase (MAPK) pathways to convey its signals. Ubiquitin ligase tumor necrosis factor (TNF)-receptor-associated factor 6 (TRAF6) and TGFβ-associated kinase 1 (TAK1) have recently been shown to be crucial for the activation of the p38 and JNK MAPK pathways. Other TGFβ-induced non-Smad signaling pathways include the phosphoinositide 3-kinase-Akt-mTOR pathway, the small GTPases Rho, Rac, and Cdc42, and the Ras-Erk-MAPK pathway. Signals induced by TGFβ are tightly regulated and specified by post-translational modifications of the signaling components, since they dictate the subcellular localization, activity, and duration of the signal. In this review, we discuss recent findings in the field of TGFβ-induced responses by non-Smad signaling pathways.
Collapse
Affiliation(s)
- Yabing Mu
- Medical Biosciences, Umeå University, SE-901 85 Umeå, Sweden
| | | | | |
Collapse
|
21
|
Abstract
TGF-β (transforming growth factor-β) is a pleiotropic cytokine regulating diverse cellular processes. It signals through membrane-bound receptors, downstream Smad proteins and/or other signalling mediators. Smad7 has been well established to be a key negative regulator of TGF-β signalling. It antagonizes TGF-β signalling through multiple mechanisms in the cytoplasm and in the nucleus. Smad7 can be transcriptionally induced by TGF-β and other growth factors and serves as an important cross-talk mediator of the TGF-β signalling pathway with other signalling pathways. Accordingly, it plays pivotal roles in embryonic development and adult homoeostasis, and altered expression of Smad7 is often associated with human diseases, such as cancer, tissue fibrosis and inflammatory diseases.
Collapse
|
22
|
Mohammad KS, Javelaud D, Fournier PGJ, Niewolna M, McKenna CR, Peng XH, Duong V, Dunn LK, Mauviel A, Guise TA. TGF-beta-RI kinase inhibitor SD-208 reduces the development and progression of melanoma bone metastases. Cancer Res 2011; 71:175-84. [PMID: 21084275 PMCID: PMC3225124 DOI: 10.1158/0008-5472.can-10-2651] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Melanoma often metastasizes to bone where it is exposed to high concentrations of TGF-β. Constitutive Smad signaling occurs in human melanoma. Because TGF-β promotes metastases to bone by several types of solid tumors including breast cancer, we hypothesized that pharmacologic blockade of the TGF-β signaling pathway may interfere with the capacity of melanoma cells to metastasize to bone. In this study, we tested the effect of a small molecule inhibitor of TGF-β receptor I kinase (TβRI), SD-208, on various parameters affecting the development and progression of melanoma, both in vitro and in a mouse model of human melanoma bone metastasis. In melanoma cell lines, SD-208 blocked TGF-β induction of Smad3 phosphorylation, Smad3/4-specific transcription, Matrigel invasion and expression of the TGF-β target genes PTHrP, IL-11, CTGF, and RUNX2. To assess effects of SD-208 on melanoma development and metastasis, nude mice were inoculated with 1205Lu melanoma cells into the left cardiac ventricle and drug was administered by oral gavage on prevention or treatment protocols. SD-208 (60 mg/kg/d), started 2 days before tumor inoculation prevented the development of osteolytic bone metastases compared with vehicle. In mice with established bone metastases, the size of osteolytic lesions was significantly reduced after 4 weeks treatment with SD-208 compared with vehicle-treated mice. Our results demonstrate that therapeutic targeting of TGF-β may prevent the development of melanoma bone metastases and decrease the progression of established osteolytic lesions.
Collapse
Affiliation(s)
- Khalid S. Mohammad
- Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - Delphine Javelaud
- Institut Curie, Orsay, France
- INSERM U1021, 91400 Orsay, France
- CNRS UMR 3347, 91400 Orsay, France
- Université Paris XI, 91400 Orsay, France
| | | | - Maria Niewolna
- Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - C. Ryan McKenna
- Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - Xiang H. Peng
- Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - Vu Duong
- Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - Lauren K. Dunn
- Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| | - Alain Mauviel
- Institut Curie, Orsay, France
- INSERM U1021, 91400 Orsay, France
- CNRS UMR 3347, 91400 Orsay, France
- Université Paris XI, 91400 Orsay, France
| | - Theresa A. Guise
- Division of Endocrinology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|