1
|
Tran HDM, Tran YH, Ha TTX, Tran TD, Jong M, Coroneo M, Sankaridurg P. Role of caffeine in slowing progression of myopia: 1-year results from a prospective, longitudinal clinical trial. Asia Pac J Ophthalmol (Phila) 2025; 14:100138. [PMID: 39824253 DOI: 10.1016/j.apjo.2025.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/23/2024] [Indexed: 01/20/2025] Open
Abstract
PURPOSE To determine the role of topical caffeine in slowing progression of myopia, both as a standalone treatment and in combination with atropine. METHODS In a prospective, randomized, dispensing clinical trial, 96 children with myopia, aged 6-13 years, spherical equivalent (SE) from -0.50 diopters (D) to -6.00 D and astigmatism less than 2.00 D were randomly assigned to nightly use of either 2 % caffeine, 0.02 % atropine with 2 % caffeine (combination) or 0.02 % atropine eye drops. An additional 86 children with myopia were enrolled in a concurrent parallel group to wear single-vision (SV) spectacles. The primary outcomes were changes in SE and axial length (AL) over a period of 12 months for each group. RESULTS All groups progressed in myopia. At 12 months, the mean change in SE/AL was -0.76 ± 0.51 D / 0.37 ± 0.20 mm and -0.70 ± 0.55 D / 0.35 ± 0.23 mm with SV and 2 % caffeine, respectively. In comparison, progression was slower at -0.46 ± 0.50 D / 0.24 ± 0.19 mm and -0.47 ± 0.38 D / 0.23 ± 0.18 mm with atropine monotherapy and combination groups, respectively. Compared to the change in AL with SV, the change in AL was significantly less with 0.02 % atropine and the combination group (post hoc analysis, P = 0.024 and 0.007, respectively). Similarly, the change in SE was significantly less with 0.02 % atropine compared to the SV group (P = 0.027). CONCLUSIONS Used as a standalone treatment, topical 2 % caffeine did not slow myopia progression. When combined with atropine, caffeine had no impact on the efficacy of atropine in slowing myopia.
Collapse
Affiliation(s)
- Huy D M Tran
- University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam; Hai Yen Vision Institute, Ho Chi Minh City, Vietnam; Brien Holden Vision Institute, Sydney, Australia; School of Optometry and Vision Science, University of New South Wales, Sydney, Australia.
| | - Yen H Tran
- Hai Yen Vision Institute, Ho Chi Minh City, Vietnam; Department of Ophthalmology, An Sinh Hospital, Ho Chi Minh City, Vietnam
| | - Thao T X Ha
- Hai Yen Vision Institute, Ho Chi Minh City, Vietnam; Department of Ophthalmology, An Sinh Hospital, Ho Chi Minh City, Vietnam
| | - Tuan D Tran
- University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam
| | - Monica Jong
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| | - Minas Coroneo
- Department of Ophthalmology, University of New South Wales, Sydney, Australia
| | - Padmaja Sankaridurg
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
| |
Collapse
|
2
|
Ito K, Hoerig C, Dan YS, McFadden SA, Mamou J, Hoang QV. Biomechanical changes occur in myopic choroidal stroma and mirror those in the adjacent sclera. COMMUNICATIONS ENGINEERING 2024; 3:139. [PMID: 39384899 PMCID: PMC11464896 DOI: 10.1038/s44172-024-00280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 09/04/2024] [Indexed: 10/11/2024]
Abstract
Retina-derived growth signals relayed from the choroid to the sclera cause remodeling of the extracellular scleral matrix, resulting in myopic ocular elongation. However, to the best of our knowledge, no studies have assessed changes in choroidal stromal biomechanical properties during myopia progression. Here we utilized 7 µm-resolution scanning acoustic microscopy (SAM) to assess biomechanical properties (bulk modulus (K) and mass density (rho)) of choroidal stroma from guinea pig eyes with form-deprivation (FD) induced myopia. The choroidal stroma had considerable intrinsic strength arising from its biomechanical properties and these were differentially affected by myopia in central and peripheral regions. Choroidal stromal biomechanical values were also highly correlated with those in adjacent scleral regions, and the choroidal stromal-scleral association was stronger in myopic eyes. Biomechanical changes observed in the choroidal stroma of myopic eyes were mirrored to those observed in the adjacent sclera. These findings suggest that choroidal stromal remodeling may accompany myopia and open the door to the source of the signals that cause scleral remodeling in myopia.
Collapse
Affiliation(s)
- Kazuyo Ito
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore, Singapore
- Division of Advanced Applied Physics, Institute of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
- Department of Biomedical Engineering, Graduate School of Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Cameron Hoerig
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Yee Shan Dan
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore, Singapore
| | - Sally A McFadden
- Vision Sciences, School of Psychological Sciences, College of Engineering, Science and Environment, University of Newcastle, Newcastle, NSW, Australia.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Jonathan Mamou
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Quan V Hoang
- Singapore Eye Research Institute, Singapore National Eye Centre, Duke-NUS Medical School, Singapore, Singapore.
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Ophthalmology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Singh H, Singh H, Sharma S, Kaur H, Kaur A, Kaur S, Kaur S, Sahajpal NS, Chaubey A, Shahtaghi NR, Kaur I, Jain SK. Genotoxic and mutagenic potential of 7-methylxanthine: an investigational drug molecule for the treatment of myopia. Drug Chem Toxicol 2024; 47:264-273. [PMID: 36594462 DOI: 10.1080/01480545.2022.2164011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/14/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023]
Abstract
7-Methylxanthine (7-MX, CAS No. 552-62-5, purity 99.46%) is the first orally administered drug candidate, which showed anti-myopic activity in different pre-clinical studies. In the present study, we investigated the in-vivo genotoxic and mutagenic toxicity of 7-MX in Wistar rats using comet/single-cell gel electrophoresis, chromosomal aberration and micronucleus assays after oral administration. For the single-dose study (72 h), two doses of 7-MX 300 and 2000 mg/kg body weight were selected. For a repeated dose 28 d study, three doses (250, 500, and 1000 mg/kg) of 7-MX were selected. The doses were administered via oral gavage in the suspension form. Blood and major vital organs such as bone marrow, lung and liver were used to perform comet/single cell gel electrophoresis, chromosomal aberration, and micronucleus assays. The in-vitro Ames test was performed on TA98 and TA100 strains. In the chromosomal aberration study, a non-significant increase in deformities such as stickiness, ring chromosome, and endoreduplication was observed in bone marrow cells of 7-MX treated groups. These chromosomal alterations were observed upon treatment with doses of 2000 mg/kg single dose for 72 h and 1000 mg/kg repeated dose for 28 d. At a dose of 500 mg/kg, DNA damage in terms of tail length, tail moment, % tail DNA and the olive tail moment was also found to be non-significant in 7-MX treated groups. The Ames test showed the non-mutagenic nature of 7-MX in both strains of TA98 and TA100 of Salmonella typhimurium with or without metabolic activation. Thus, the present work is interesting in view of the non- genotoxicity and non-mutagenicity of repeated doses of 7-MX.
Collapse
Affiliation(s)
- Harjeet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Pharmacy, Government Polytechnic College, Amritsar, India
| | - Harmanpreet Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Pathology, Augusta University, Georgia, USA
| | - Sunil Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Harmanpreet Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Arvinder Kaur
- Department of Zoology, Guru Nanak Dev University, Amritsar, India
| | - Satwinderjeet Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar India
| | - Sandeep Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar India
| | - Nikhil Shri Sahajpal
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Department of Pathology, Augusta University, Georgia, USA
| | - Alka Chaubey
- Department of Molecular Genetics, Bionano Genomics Inc., San Diego, CA, USA
| | - Navid Reza Shahtaghi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Inderjeet Kaur
- Department of Ophthalmology, Baba Farid University of Health Sciences, Faridkot, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
- Center for Basic and Translational Research in Health Science, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
4
|
Mérida S, Návea A, Desco C, Celda B, Pardo-Tendero M, Morales-Tatay JM, Bosch-Morell F. Glutathione and a Pool of Metabolites Partly Related to Oxidative Stress Are Associated with Low and High Myopia in an Altered Bioenergetic Environment. Antioxidants (Basel) 2024; 13:539. [PMID: 38790644 PMCID: PMC11117864 DOI: 10.3390/antiox13050539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Oxidative stress forms part of the molecular basis contributing to the development and manifestation of myopia, a refractive error with associated pathology that is increasingly prevalent worldwide and that subsequently leads to an upsurge in degenerative visual impairment due to conditions that are especially associated with high myopia. The purpose of our study was to examine the interrelation of potential oxidative-stress-related metabolites found in the aqueous humor of high-myopic, low-myopic, and non-myopic patients within a clinical study. We conducted a cross-sectional study, selecting two sets of patients undergoing cataract surgery. The first set, which was used to analyze metabolites through an NMR assay, comprised 116 patients. A total of 59 metabolites were assigned and quantified. The PLS-DA score plot clearly showed a separation with minimal overlap between the HM and control samples. The PLS-DA model allowed us to determine 31 major metabolite differences in the aqueous humor of the study groups. Complementary statistical analysis of the data allowed us to determine six metabolites that presented significant differences among the experimental groups (p < 005). A significant number of these metabolites were discovered to have a direct or indirect connection to oxidative stress linked with conditions of myopic eyes. Notably, we identified metabolites associated with bioenergetic pathways and metabolites that have undergone methylation, along with choline and its derivatives. The second set consisted of 73 patients who underwent a glutathione assay. Here, we showed significant variations in both reduced and oxidized glutathione in aqueous humor among all patient groups (p < 0.01) for the first time. Axial length, refractive status, and complete ophthalmologic examination were also recorded, and interrelations among metabolic and clinical parameters were evaluated.
Collapse
Affiliation(s)
- Salvador Mérida
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| | - Amparo Návea
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
| | - Carmen Desco
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
- Instituto de la Retina y Enfermedades Oculares, 46005 Valencia, Spain;
- FOM, Fundación de Oftalmología Médica de la Comunidad Valenciana, 46015 Valencia, Spain
| | - Bernardo Celda
- Physical Chemistry Department, University of Valencia, 46100 Valencia, Spain;
| | - Mercedes Pardo-Tendero
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - José Manuel Morales-Tatay
- Department of Pathology, Medicine and Odontology Faculty, University of Valencia, 46010 Valencia, Spain;
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
| | - Francisco Bosch-Morell
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, CEU Universities, Alfara del Patriarca, 46115 Valencia, Spain; (S.M.); (C.D.)
| |
Collapse
|
5
|
Desmettre T, Gatinel D, Leveziel N. Épigénétique et myopie : mécanismes et perspectives thérapeutiques. J Fr Ophtalmol 2022; 45:1209-1216. [DOI: 10.1016/j.jfo.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022]
|
6
|
Brown DM, Mazade R, Clarkson-Townsend D, Hogan K, Datta Roy PM, Pardue MT. Candidate pathways for retina to scleral signaling in refractive eye growth. Exp Eye Res 2022; 219:109071. [PMID: 35447101 PMCID: PMC9701099 DOI: 10.1016/j.exer.2022.109071] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/22/2022]
Abstract
The global prevalence of myopia, or nearsightedness, has increased at an alarming rate over the last few decades. An eye is myopic if incoming light focuses prior to reaching the retinal photoreceptors, which indicates a mismatch in its shape and optical power. This mismatch commonly results from excessive axial elongation. Important drivers of the myopia epidemic include environmental factors, genetic factors, and their interactions, e.g., genetic factors influencing the effects of environmental factors. One factor often hypothesized to be a driver of the myopia epidemic is environmental light, which has changed drastically and rapidly on a global scale. In support of this, it is well established that eye size is regulated by a homeostatic process that incorporates visual cues (emmetropization). This process allows the eye to detect and minimize refractive errors quite accurately and locally over time by modulating the rate of elongation of the eye via remodeling its outermost coat, the sclera. Critically, emmetropization is not dependent on post-retinal processing. Thus, visual cues appear to influence axial elongation through a retina-to-sclera, or retinoscleral, signaling cascade, capable of transmitting information from the innermost layer of the eye to the outermost layer. Despite significant global research interest, the specifics of retinoscleral signaling pathways remain elusive. While a few pharmacological treatments have proven to be effective in slowing axial elongation (most notably topical atropine), the mechanisms behind these treatments are still not fully understood. Additionally, several retinal neuromodulators, neurotransmitters, and other small molecules have been found to influence axial length and/or refractive error or be influenced by myopigenic cues, yet little progress has been made explaining how the signal that originates in the retina crosses the highly vascular choroid to affect the sclera. Here, we compile and synthesize the evidence surrounding three of the major candidate pathways receiving significant research attention - dopamine, retinoic acid, and adenosine. All three candidates have both correlational and causal evidence backing their involvement in axial elongation and have been implicated by multiple independent research groups across diverse species. Two hypothesized mechanisms are presented for how a retina-originating signal crosses the choroid - via 1) all-trans retinoic acid or 2) choroidal blood flow influencing scleral oxygenation. Evidence of crosstalk between the pathways is discussed in the context of these two mechanisms.
Collapse
Affiliation(s)
- Dillon M Brown
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Reece Mazade
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Danielle Clarkson-Townsend
- Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA; Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA, 02115, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, USA; Gangarosa Department of Environmental Health, Emory University, 1518 Clifton Rd, Atlanta, GA, 30322, USA
| | - Kelleigh Hogan
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Pooja M Datta Roy
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA
| | - Machelle T Pardue
- Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, 313 Ferst Drive, Atlanta, GA, 30332, USA; Center for Visual and Neurocognitive Rehabilitation, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Atlanta, GA, 30033, USA.
| |
Collapse
|
7
|
Agarwal P, Agarwal R. Tackling retinal ganglion cell apoptosis in glaucoma: role of adenosine receptors. Expert Opin Ther Targets 2021; 25:585-596. [PMID: 34402357 DOI: 10.1080/14728222.2021.1969362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION The role of adenosine receptors as therapeutic targets for neuroprotection is now widely recognized. Their role, however, in protection against retinal ganglion cell (RGC) apoptosis in glaucoma needs further investigation. Hence, in this review, we look into the possibility of adenosine receptors as potential therapeutic targets by exploring their role in modulating various pathophysiological mechanisms underlying glaucomatous RGC loss. AREAS COVERED This review presents a summary of the adenosine receptor distribution in retina and the cellular functions mediated by them. The major pathophysiological mechanisms such as excitotoxicity, vascular dysregulation, loss of neurotrophic signaling, and inflammatory responses involved in glaucomatous RGC loss are discussed. The literature showing the role of adenosine receptors in modulating these pathophysiological mechanisms is discussed. The literature search was conducted using Pubmed search engine using key words such as 'RGC apoptosis,' 'adenosine,' adenosine receptors' 'retina' 'excitotoxicity,' 'neurotrophins,' 'ischemia', and 'cytokines' individually and in various combinations. EXPERT OPINION Use of adenosine receptor agonists and antagonists, for preservation of the RGCs in glaucomatous eyes independent of the level of intraocular pressure seems a very useful strategy. Future application of this strategy would require appropriate designing of drug formulation for tissue and disease-specific receptor targeting. Furthermore, the modulation of physiological functions and potential adverse effects need further investigations.
Collapse
Affiliation(s)
- Puneet Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Renu Agarwal
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Wen Y, Jin L, Zhang D, Zhang L, Xie C, Guo D, Wang Y, Wang L, Zhu M, Tong J, Shen Y. Quantitative proteomic analysis of scleras in guinea pig exposed to wavelength defocus. J Proteomics 2021; 243:104248. [PMID: 33964483 DOI: 10.1016/j.jprot.2021.104248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Myopia is the most common optical disorder in the world, and wavelength defocus induced ametropia and myopia have attracted great attention. The objective was to identify and quantify scleral proteins involved in the response to the wavelength defocus. Guinea pigs were randomly divided into 3 groups that received different lighting conditions for 8 weeks: white light, short wavelength light, and long wavelength light. Refraction and axial length were measured, Hematoxylin-Eosin staining and transmission electron microscope were adopted to observe the scleral structure, and scleral proteome was also detected to analyze protein abundance by employing TMT labeling method. After light stimulation, the long- and short -wavelength light induced myopic and hyperopic effect on the guinea pig's eye and induced distinct protein signature, respectively. 186 dyregulated proteins between the short- and long-wavelength group were identified, which were mainly located in extracellular region and involved in metabolic process. We also found that 5 proteins in the guinea pigs scleras in response to wavelength defocus were also human myopic candidate targets, suggesting functional overlap between dyregulated proteins in scleral upon exposure to wavelength defocus and genes causing myopia in humans. SIGNIFICANCE: Wavelength defocus induces refractive errors and leads to myopia or hyperopia. However, sclera proteomics respond to wavelength defocus is lacking, which is crucial to understanding how wavelength defocus influences refractive development and induces myopia. In this proteome analysis, we identified unique protein signatures response to wavelength defocus in sclera of guinea pigs, identified potential mechanisms contributing to myopia formation, and found that several human myopia-related genes may involve in response to wavelength defocus. The results of this study provide a foundation to understand the mechanisms of myopia and wavelength defocus induced ametropia.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Le Jin
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyu Guo
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yang Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyin Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
9
|
Smith EL, Hung LF, She Z, Beach K, Ostrin LA, Jong M. Topically instilled caffeine selectively alters emmetropizing responses in infant rhesus monkeys. Exp Eye Res 2021; 203:108438. [PMID: 33428866 DOI: 10.1016/j.exer.2021.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/30/2020] [Accepted: 01/02/2021] [Indexed: 11/30/2022]
Abstract
Oral administration of the adenosine receptor (ADOR) antagonist, 7-methylxanthine (7-MX), reduces both form-deprivation and lens-induced myopia in mammalian animal models. We investigated whether topically instilled caffeine, another non-selective ADOR antagonist, retards vision-induced axial elongation in monkeys. Beginning at 24 days of age, a 1.4% caffeine solution was instilled in both eyes of 14 rhesus monkeys twice each day until the age of 135 days. Concurrent with the caffeine regimen, the monkeys were fitted with helmets that held either -3 D (-3D/pl caffeine, n = 8) or +3 D spectacle lenses (+3D/pl caffeine, n = 6) in front of their lens-treated eyes and zero-powered lenses in front of their fellow-control eyes. Refractive errors and ocular dimensions were measured at baseline and periodically throughout the lens-rearing period. Control data were obtained from 8 vehicle-treated animals also reared with monocular -3 D spectacles (-3D/pl vehicle). In addition, historical comparison data were available for otherwise untreated lens-reared controls (-3D/pl controls, n = 20; +3D/pl controls, n = 9) and 41 normal monkeys. The vehicle controls and the untreated lens-reared controls consistently developed compensating axial anisometropias (-3D/pl vehicle = -1.44 ± 1.04 D; -3D/pl controls = -1.85 ± 1.20 D; +3D/pl controls = +1.92 ± 0.56 D). The caffeine regime did not interfere with hyperopic compensation in response to +3 D of anisometropia (+1.93 ± 0.82 D), however, it reduced the likelihood that animals would compensate for -3 D of anisometropia (+0.58 ± 1.82 D). The caffeine regimen also promoted hyperopic shifts in both the lens-treated and fellow-control eyes; 26 of the 28 caffeine-treated eyes became more hyperopic than the median normal monkey (mean (±SD) relative hyperopia = +2.27 ± 1.65 D; range = +0.31 to +6.37 D). The effects of topical caffeine on refractive development, which were qualitatively similar to those produced by oral administration of 7-MX, indicate that ADOR antagonists have potential in treatment strategies for preventing and/or reducing myopia progression.
Collapse
Affiliation(s)
- Earl L Smith
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia.
| | - Li-Fang Hung
- College of Optometry, University of Houston, Houston, TX, United States; Brien Holden Vision Institute, Sydney, Australia
| | - Zhihui She
- College of Optometry, University of Houston, Houston, TX, United States
| | - Krista Beach
- College of Optometry, University of Houston, Houston, TX, United States
| | - Lisa A Ostrin
- College of Optometry, University of Houston, Houston, TX, United States
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia; Discipline of Optometry and Vision Science, University of Canberra, Canberra, Australia
| |
Collapse
|
10
|
Wang WY, Chen C, Chang J, Chien L, Shih YF, Lin LLK, Pang CP, Wang IJ. Pharmacotherapeutic candidates for myopia: A review. Biomed Pharmacother 2021; 133:111092. [PMID: 33378986 DOI: 10.1016/j.biopha.2020.111092] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/28/2020] [Indexed: 01/11/2023] Open
Abstract
This review provides insights into the mechanism underlying the pathogenesis of myopia and potential targets for clinical intervention. Although the etiology of myopia involves both environmental and genetic factors, recent evidence has suggested that the prevalence and severity of myopia appears to be affected more by environmental factors. Current pharmacotherapeutics are aimed at inhibiting environmentally induced changes in visual input and subsequent changes in signaling pathways during myopia pathogenesis and progression. Recent studies on animal models of myopia have revealed specific molecules potentially involved in the regulation of eye development. Among them, the dopamine receptor plays a critical role in controlling myopia. Subsequent studies have reported pharmacotherapeutic treatments to control myopia progression. In particular, atropine treatment yielded favorable outcomes and has been extensively used; however, current studies are aimed at optimizing its efficacy and confirming its safety. Furthermore, future studies are required to assess the efficacy of combinatorial use of low-dose atropine and contact lenses or orthokeratology.
Collapse
Affiliation(s)
- Wen-Yi Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Camille Chen
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Justine Chang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Lillian Chien
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Feng Shih
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Luke L K Lin
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
| | - Chi Pui Pang
- Department of Ophthalmology and Visual Sciences, Chinese University of Hong Kong, Hong Kong Eye Hospital, 147K Argyle Street, KLN, Hong Kong, China.
| | - I-Jong Wang
- Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan; Graduate Institute of Biomedical Sciences, School of Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
11
|
Ke C, Xu H, Chen Q, Zhong H, Pan CW. Serum metabolic signatures of high myopia among older Chinese adults. Eye (Lond) 2020; 35:817-824. [PMID: 32424328 DOI: 10.1038/s41433-020-0968-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 05/06/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
PURPOSE High myopia is associated with blinding ocular morbidities. Identifying novel biomarkers may provide clues on pathogenic pathways that are currently unknown. We aimed to identify serum metabolic biomarkers and investigate the metabolic alterations in relation to high myopia. METHODS Forty adults with high myopia and 40 with low myopia aged 60 years or older from the Weitang Geriatric Diseases study were included in the case-control study. Refractive error was determined by autorefraction followed by subjective refraction. We performed the metabolomic analysis of serum samples from patients with high myopia and age- and sex- matched controls with low myopia, using a nontargeted gas chromatography coupled to time-of-flight mass spectrometer. The area under the receiver operating characteristic curve (AUC) was computed to assess the discrimination capacities of each metabolite marker. Databases including KEGG and MetaboAnalyst were utilized to search for the potential pathways of metabolites. RESULTS Serum metabolomic profiles could well distinguish high myopia from low myopia. Twenty metabolic biomarkers were identified as potential serum biomarkers for high myopia, yielding AUC values of 0.59-0.71. Metabolic pathways in relation to high myopia, mainly characterized by increased energy metabolism, increased oxidative stress, abnormal amino acid metabolism, and altered biotin metabolism, provide a foundation to support myopia progression. CONCLUSIONS This study identified valuable metabolic biomarkers and pathways that may facilitate an improved understanding of the disease pathogenesis. The finding holds translational value in the development of new therapeutic measures for high myopia-related complications.
Collapse
Affiliation(s)
- Chaofu Ke
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hua Xu
- Department of Ophthalmology, Children's Hospital of Soochow University, Suzhou, China
| | - Qin Chen
- Department of Ophthalmology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Hua Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chen-Wei Pan
- School of Public Health, Medical College of Soochow University, Suzhou, China.
| |
Collapse
|
12
|
Santiago AR, Madeira MH, Boia R, Aires ID, Rodrigues-Neves AC, Santos PF, Ambrósio AF. Keep an eye on adenosine: Its role in retinal inflammation. Pharmacol Ther 2020; 210:107513. [PMID: 32109489 DOI: 10.1016/j.pharmthera.2020.107513] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adenosine is an endogenous purine nucleoside ubiquitously distributed throughout the body that interacts with G protein-coupled receptors, classified in four subtypes: A1R, A2AR, A2BR and A3R. Among the plethora of functions of adenosine, it has been increasingly recognized as a key mediator of the immune response. Neuroinflammation is a feature of chronic neurodegenerative diseases and contributes to the pathophysiology of several retinal degenerative diseases. Animal models of retinal diseases are helping to elucidate the regulatory roles of adenosine receptors in the development and progression of those diseases. Mounting evidence demonstrates that the adenosinergic system is altered in the retina during pathological conditions, compromising retinal physiology. This review focuses on the roles played by adenosine and the elements of the adenosinergic system (receptors, enzymes, transporters) in the neuroinflammatory processes occurring in the retina. An improved understanding of the molecular and cellular mechanisms of the signalling pathways mediated by adenosine underlying the onset and progression of retinal diseases will pave the way towards the identification of new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Raquel Santiago
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| | - Maria H Madeira
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal
| | - Raquel Boia
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Inês Dinis Aires
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ana Catarina Rodrigues-Neves
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Paulo Fernando Santos
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal
| | - António Francisco Ambrósio
- Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; Association for Innovation and Biomedical Research on Light and Image (AIBILI), Coimbra, 3000-548 Coimbra, Portugal.
| |
Collapse
|
13
|
Liu H, Schaeffel F, Trier K, Feldkaemper M. Effects of 7-Methylxanthine on Deprivation Myopia and Retinal Dopamine Release in Chickens. Ophthalmic Res 2019; 63:347-357. [PMID: 31533122 DOI: 10.1159/000502529] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/06/2019] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Intake of 7-methylxanthine (7-MX), an adenosine receptor (AR) antagonist, has been shown to inhibit school myopia in children and deprivation myopia in rhesus monkeys, but the underlying mechanisms are not known. Also retinal dopamine seems to be involved in the control of eye growth, and in the brain, ARs and dopamine receptors interact widely by heteromerization. We have studied whether 7-MX can inhibit deprivation myopia also in chickens and whether inhibition may involve the retinal dopamine system. METHODS 7-MX was applied by either tube-feeding (100 µg/g body weight, twice a day) or intravitreal injection (12.5 µg, every other day). Forty-eight 2-week-old chicks wore unilateral diffusers and were randomly assigned to either the tube-feeding group (involving 7-MX, vehicle [xanthan gum], or no feeding, for 13 days) or the intravitreal injection group (involving 7-MX, vehicle, or DMSO, for 8 days). Refractions (REs), ocular biometry (AL, VCD), and scleral and choroidal thickness (ChT) were measured before and after treatment. Dopamine and dihydroxyphenylacetic acid (DOPAC) content were determined in retina and vitreous by HPLC at the end of the experiments. RESULTS No matter how 7-MX was applied, it did not inhibit deprivation myopia in chicks. No significant differences were observed in RE, VCD, AL, and scleral fibrous layer thickness. Feeding 7-MX produced more choroidal thinning in the open contralateral eye compared to control eyes in the vehicle-fed group (-40 ± 14 vs. -1 ± 7 µm, unpaired t test, p < 0.05). DOPAC and dopamine concentration in vitreous and DOPAC concentration in retina did not change with 7-MX. Vitreal dopamine content was significantly decreased in deprived eyes in the groups fed with the vehicle xanthan gum (paired t test, p < 0.01) but not in 7-MX-treated eyes, perhaps indicating a small effect of 7-MX on dopamine. CONCLUSIONS In our study, 7-MX had no effect on DM in chicks and only minor effects on ChT and retinal dopamine. It remains unclear whether 7-MX inhibits myopia through a retinal mechanism or whether it acts directly on choroid and sclera. In the latter case, the finding that myopia is suppressed in mammals but not birds might be explained by differences in scleral structure.
Collapse
Affiliation(s)
- Hong Liu
- Aier School of Ophthalmology, Central South University, Changsha, China
- Institute for Ophthalmic Research, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Frank Schaeffel
- Institute for Ophthalmic Research, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany
| | - Klaus Trier
- Trier Research Laboratories, Hellerup, Denmark
| | - Marita Feldkaemper
- Institute for Ophthalmic Research, Section of Neurobiology of the Eye, University of Tuebingen, Tuebingen, Germany,
| |
Collapse
|
14
|
Epigenetically dysregulated genes and pathways implicated in the pathogenesis of non-syndromic high myopia. Sci Rep 2019; 9:4145. [PMID: 30858441 PMCID: PMC6411983 DOI: 10.1038/s41598-019-40299-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Myopia, commonly referred to as nearsightedness, is one of the most common causes of visual disability throughout the world. It affects more people worldwide than any other chronic visual impairment condition. Although the prevalence varies among various ethnic groups, the incidence of myopia is increasing in all populations across globe. Thus, it is considered a pressing public health problem. Both genetics and environment play a role in development of myopia. To elucidate the epigenetic mechanism(s) underlying the pathophysiology of high-myopia, we conducted methylation profiling in 18 cases and 18 matched controls (aged 4–12 years), using Illumina MethylationEPIC BeadChips array. The degree of myopia was variable among subjects, ranging from −6 to −15D. We identified 1541 hypermethylated CpGs, representing 1745 genes (2.0-fold or higher) (false discovery rate (FDR) p ≤ 0.05), multiple CpGs were p < 5 × 10−8 with a receiver operating characteristic area under the curve (ROC-AUC) ≥ 0.75 in high-myopia subjects compared to controls. Among these, 48 CpGs had excellent correlation (AUC ≥ 0.90). Herein, we present the first genome-wide DNA methylation analysis in a unique high-myopia cohort, showing extensive and discrete methylation changes relative to controls. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination.
Collapse
|
15
|
Abstract
PURPOSE To investigate the relationship between expression level of vesicular monoamine transporter 2 (VMAT2) and myopia, as well as the feasibility of noninvasive myopia diagnosis through imaging VMAT2 in retina by using [18F]fluoropropyl-(+)-dihydrotetrabenazine ([18F]FP-(+)-DTBZ). PROCEDURES The right eyes of ten guinea pigs were deprived of vision to establish form-deprived (FD) myopia and the left eyes were untreated as the self-control eyes. The location and expression level of VMAT2 in the eyes were detected by micro-positron emission tomography (PET)/X-ray computed tomography (CT) imaging through using [18F]FP-(+)-DTBZ. Immunofluorescence staining and Western blot were used to confirm the location and expression level of VMAT2 in the eyes. The concentrations of dopamine (DA) and its metabolites including 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) were also investigated by high-performance liquid chromatography. RESULTS The right eyes deprived of vision were obviously myopic (- 3.17 ± 1.33 D) after procedure, while the left eyes were hyperopic (4.60 ± 0.83 D, P < 0.0001). The main expressions of VMAT2 in the eyes were located in retina. VMAT2 was significantly reduced in the myopic retina compared to the normal one from PET/CT results (P = 0.0008), which could also be verified by Western blots (P = 0.029). The concentrations of DA, DOPAC, and HVA in the FD eyes were all significantly less than those in the control eyes (P = 0.024, P = 0.018, P = 0.008). As a role of storing and releasing DA in vesicles, VMAT2 was demonstrated positively correlating with the amounts of DA (P = 0.030), DOPAC (P = 0.038), and HVA (P = 0.025) through Pearson's correlation coefficient test. CONCLUSIONS We demonstrate that [18F]FP-(+)-DTBZ can be used to noninvasively image VMAT2 in retina. The expression level of VMAT2 in retina may act as a new biomarker for myopia diagnosis. The decreasing of VMAT2 expression level may play an important role in the development of myopia through correspondingly reducing the amount of DA in retina.
Collapse
|
16
|
Ventura ALM, Dos Santos-Rodrigues A, Mitchell CH, Faillace MP. Purinergic signaling in the retina: From development to disease. Brain Res Bull 2018; 151:92-108. [PMID: 30458250 DOI: 10.1016/j.brainresbull.2018.10.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/14/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023]
Abstract
Retinal injuries and diseases are major causes of human disability involving vision impairment by the progressive and permanent loss of retinal neurons. During development, assembly of this tissue entails a successive and overlapping, signal-regulated engagement of complex events that include proliferation of progenitors, neurogenesis, cell death, neurochemical differentiation and synaptogenesis. During retinal damage, several of these events are re-activated with both protective and detrimental consequences. Purines and pyrimidines, along with their metabolites are emerging as important molecules regulating both retinal development and the tissue's responses to damage. The present review provides an overview of the purinergic signaling in the developing and injured retina. Recent findings on the presence of vesicular and channel-mediated ATP release by retinal and retinal pigment epithelial cells, adenosine synthesis and release, expression of receptors and intracellular signaling pathways activated by purinergic signaling in retinal cells are reported. The pathways by which purinergic receptors modulate retinal cell proliferation, migration and death of retinal cells during development and injury are summarized. The contribution of nucleotides to the self-repair of the injured zebrafish retina is also discussed.
Collapse
Affiliation(s)
- Ana Lucia Marques Ventura
- Department of Neurobiology, Neuroscience Program, Fluminense Federal University, Niterói, RJ, Brazil.
| | | | - Claire H Mitchell
- Department of Anatomy and Cell Biology, Ophthalmology, and Physiology, University of Pennsylvania, Philadelphia, PA 19104, United States.
| | - Maria Paula Faillace
- Instituto de Fisiología y Biofísica Prof. Bernardo Houssay (IFIBIO-Houssay), Universidad de Buenos Aires y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina; Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Hung LF, Arumugam B, Ostrin L, Patel N, Trier K, Jong M, Smith EL. The Adenosine Receptor Antagonist, 7-Methylxanthine, Alters Emmetropizing Responses in Infant Macaques. Invest Ophthalmol Vis Sci 2018; 59:472-486. [PMID: 29368006 PMCID: PMC5786285 DOI: 10.1167/iovs.17-22337] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Previous studies suggest that the adenosine receptor antagonist, 7-methylxanthine (7-MX), retards myopia progression. Our aim was to determine whether 7-MX alters the compensating refractive changes produced by defocus in rhesus monkeys. Methods Starting at age 3 weeks, monkeys were reared with −3 diopter (D; n = 10; 7-MX −3D/pl) or +3D (n = 6; 7-MX +3D/pl) spectacles over their treated eyes and zero-powered lenses over their fellow eyes. In addition, they were given 100 mg/kg of 7-MX orally twice daily throughout the lens-rearing period (age 147 ± 4 days). Comparison data were obtained from lens-reared controls (−3D/pl, n = 17; +3D/pl, n = 9) and normal monkeys (n = 37) maintained on a standard diet. Refractive status, corneal power, and axial dimensions were assessed biweekly. Results The −3D/pl and +3D/pl lens-reared controls developed compensating myopic (−2.10 ± 1.07 D) and hyperopic anisometropias (+1.86 ± 0.54 D), respectively. While the 7-MX +3D/pl monkeys developed hyperopic anisometropias (+1.79 ± 1.11 D) that were similar to those observed in +3D/pl controls, the 7-MX −3D/pl animals did not consistently exhibit compensating myopia in their treated eyes and were on average isometropic (+0.35 ± 1.96 D). The median refractive errors for both eyes of the 7-MX −3D/pl (+5.47 D and +4.38 D) and 7-MX +3D/pl (+5.28 and +3.84 D) monkeys were significantly more hyperopic than that for normal monkeys (+2.47 D). These 7-MX–induced hyperopic ametropias were associated with shorter vitreous chambers and thicker choroids. Conclusions In primates, 7-MX reduced the axial myopia produced by hyperopic defocus, augmented hyperopic shifts in response to myopic defocus, and induced hyperopia in control eyes. The results suggest that 7-MX has therapeutic potential in efforts to slow myopia progression.
Collapse
Affiliation(s)
- Li-Fang Hung
- College of Optometry, University of Houston, Houston, Texas, United States.,Brien Holden Vision Institute, Sydney, Australia
| | - Baskar Arumugam
- College of Optometry, University of Houston, Houston, Texas, United States.,Brien Holden Vision Institute, Sydney, Australia
| | - Lisa Ostrin
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Nimesh Patel
- College of Optometry, University of Houston, Houston, Texas, United States
| | - Klaus Trier
- Trier Research Laboratories, Hellerup, Denmark
| | - Monica Jong
- Brien Holden Vision Institute, Sydney, Australia.,Department of Optometry and Vision Science, University of New South Wales, Kensington, New South Wales, Australia
| | - Earl L Smith
- College of Optometry, University of Houston, Houston, Texas, United States.,Brien Holden Vision Institute, Sydney, Australia.,Trier Research Laboratories, Hellerup, Denmark.,Department of Optometry and Vision Science, University of New South Wales, Kensington, New South Wales, Australia
| |
Collapse
|
18
|
Abstract
Worldwide, myopia is the leading cause of visual impairment. It results from inappropriate extension of the ocular axis and concomitant declines in scleral strength and thickness caused by extracellular matrix (ECM) remodeling. However, the identities of the initiators and signaling pathways that induce scleral ECM remodeling in myopia are unknown. Here, we used single-cell RNA-sequencing to identify pathways activated in the sclera during myopia development. We found that the hypoxia-signaling, the eIF2-signaling, and mTOR-signaling pathways were activated in murine myopic sclera. Consistent with the role of hypoxic pathways in mouse model of myopia, nearly one third of human myopia risk genes from the genome-wide association study and linkage analyses interact with genes in the hypoxia-inducible factor-1α (HIF-1α)-signaling pathway. Furthermore, experimental myopia selectively induced HIF-1α up-regulation in the myopic sclera of both mice and guinea pigs. Additionally, hypoxia exposure (5% O2) promoted myofibroblast transdifferentiation with down-regulation of type I collagen in human scleral fibroblasts. Importantly, the antihypoxia drugs salidroside and formononetin down-regulated HIF-1α expression as well as the phosphorylation levels of eIF2α and mTOR, slowing experimental myopia progression without affecting normal ocular growth in guinea pigs. Furthermore, eIF2α phosphorylation inhibition suppressed experimental myopia, whereas mTOR phosphorylation induced myopia in normal mice. Collectively, these findings defined an essential role of hypoxia in scleral ECM remodeling and myopia development, suggesting a therapeutic approach to control myopia by ameliorating hypoxia.
Collapse
|
19
|
Beach KM, Hung LF, Arumugam B, Smith EL, Ostrin LA. Adenosine receptor distribution in Rhesus monkey ocular tissue. Exp Eye Res 2018; 174:40-50. [PMID: 29792846 DOI: 10.1016/j.exer.2018.05.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/26/2018] [Accepted: 05/20/2018] [Indexed: 02/06/2023]
Abstract
Adenosine receptor (ADOR) antagonists, such as 7-methylxanthine (7-MX), have been shown to slow myopia progression in humans and animal models. Adenosine receptors are found throughout the body, and regulate the release of neurotransmitters such as dopamine and glutamate. However, the role of adenosine in eye growth is unclear. Evidence suggests that 7-MX increases scleral collagen fibril diameter, hence preventing axial elongation. This study used immunohistochemistry (IHC) and reverse-transcription quantitative polymerase chain reaction (RT-qPCR) to examine the distribution of the four ADORs in the normal monkey eye to help elucidate potential mechanisms of action. Eyes were enucleated from six Rhesus monkeys. Anterior segments and eyecups were separated into components and flash-frozen for RNA extraction or fixed in 4% paraformaldehyde and processed for immunohistochemistry against ADORA1, ADORA2a, ADORA2b, and ADORA3. RNA was reverse-transcribed, and qPCR was performed using custom primers. Relative gene expression was calculated using the ΔΔCt method normalizing to liver expression, and statistical analysis was performed using Relative Expression Software Tool. ADORA1 immunostaining was highest in the iris sphincter muscle, trabecular meshwork, ciliary epithelium, and retinal nerve fiber layer. ADORA2a immunostaining was highest in the corneal epithelium, trabecular meshwork, ciliary epithelium, retinal nerve fiber layer, and scleral fibroblasts. ADORA2b immunostaining was highest in corneal basal epithelium, limbal stem cells, iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells and scattered scleral fibroblasts. ADORA3 immunostaining was highest in the iris sphincter, ciliary muscle, ciliary epithelium, choroid, isolated retinal ganglion cells, and scleral fibroblasts. Compared to liver mRNA, ADORA1 mRNA was significantly higher in the brain, retina and choroid, and significantly lower in the iris/ciliary body. ADORA2a expression was higher in brain and retina, ADORA2b expression was higher in retina, and ADORA3 was higher in the choroid. In conclusion, immunohistochemistry and RT-qPCR indicated differential patterns of expression of the four adenosine receptors in the ocular tissues of the normal non-human primate. The presence of ADORs in scleral fibroblasts and the choroid may support mechanisms by which ADOR antagonists prevent myopia. The potential effects of ADOR inhibition on both anterior and posterior ocular structures warrant investigation.
Collapse
Affiliation(s)
- Krista M Beach
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Li-Fang Hung
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Baskar Arumugam
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Earl L Smith
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA
| | - Lisa A Ostrin
- University of Houston College of Optometry, 4901 Calhoun Rd, Houston, TX 77204, USA.
| |
Collapse
|
20
|
Chen JF, Zhang S, Zhou R, Lin Z, Cai X, Lin J, Huo Y, Liu X. Adenosine receptors and caffeine in retinopathy of prematurity. Mol Aspects Med 2017; 55:118-125. [PMID: 28088487 DOI: 10.1016/j.mam.2017.01.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 12/28/2016] [Accepted: 01/10/2017] [Indexed: 01/26/2023]
Abstract
Retinopathy of prematurity (ROP) is a major cause of childhood blindness in the world and is caused by oxygen-induced damage to the developing retinal vasculature, resulting in hyperoxia-induced vaso-obliteration and subsequent delayed retinal vascularization and hypoxia-induced pathological neovascularization driven by vascular endothelial growth factor (VEGF) signaling pathway in retina. Current anti-VEGF therapy has shown some effective in a clinical trial, but is associated with the unintended effects on delayed eye growth and retinal vasculature development of preterm infants. Notably, cellular responses to hypoxia are characterized by robust increases in extracellular adenosine production and the markedly induced adenosine receptors, which provide a novel target for preferential control of pathological angiogenesis without affecting normal vascular development. Here, we review the experimental evidence in support of adenosine receptor-based therapeutic strategy for ROP, including the aberrant adenosine signaling in oxygen-induced retinopathy and the role of three adenosine receptor subtypes (A1R, A2AR, A2BR) in development and treatment of ROP using oxygen-induced retinopathy models. The clinical and initial animal evidence that implicate the therapeutic effect of caffeine (a non-selective adenosine receptor antagonist) in treatment of ROP are highlighted. Lastly, we discussed the translational potential as well therapeutic advantage of adenosine receptor- and caffeine-based therapy for ROR and possibly other proliferative retinopathy.
Collapse
Affiliation(s)
- Jiang-Fan Chen
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China.
| | - Shuya Zhang
- Molecular Neuropharmacology Laboratory, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China; State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China
| | - Rong Zhou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China
| | - Zhenlang Lin
- Department of Neonatology, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiaohong Cai
- Department of Neonatology, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jing Lin
- Department of Neonatology, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, GA 30912, USA; Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xiaoling Liu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health of China, Wenzhou, Zhejiang, China
| |
Collapse
|
21
|
Zhang S, Li H, Li B, Zhong D, Gu X, Tang L, Wang Y, Wang C, Zhou R, Li Y, He Y, Chen M, Huo Y, Liu XL, Chen JF. Adenosine A1 Receptors Selectively Modulate Oxygen-Induced Retinopathy at the Hyperoxic and Hypoxic Phases by Distinct Cellular Mechanisms. Invest Ophthalmol Vis Sci 2016; 56:8108-19. [PMID: 26720463 DOI: 10.1167/iovs.15-17202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
PURPOSE We critically evaluated the role of the adenosine A1 receptor (A1R) in normal development of retinal vasculature and pathogenesis of retinopathy of prematurity (ROP) by using the A1R knockout (KO) mice and oxygen-induced retinopathy (OIR) model. METHODS Mice deficient in A1Rs and their wild-type (WT) littermates were examined during normal postnatal development or after being subjected to 75% oxygen from postnatal day (P) 7 to P12 and to room air from P12 to P17 (OIR model of ROP). Retinal vascularization was examined by whole-mount fluorescence and cross-sectional hematoxylin-eosin staining. Cellular proliferation, astrocyte and microglial activation, and tip cell function were determined by isolectin staining and immunohistochemistry. Apoptosis was determined by TUNEL assay. RESULTS Genetic deletion of the A1R did not affect normal retinal vascularization during postnatal development with indistinguishable three-layer vascularization patterns in retina between WT and A1R KO mice. In the OIR model, genetic deletion of the A1R resulted in stage-specific effects: reduced hyperoxia-induced retinal vaso-obliteration at P12, but reduced avascular area and attenuated hypoxia-induced intraretinal revascularization without affecting intravitreal neovascularization at P17 and reduced avascular areas in retina at P21. These distinct effects of A1Rs on OIR were associated with A1R control of apoptosis mainly in inner and outer nuclear layers at the vaso-obliterative phase (P12) and the growth of endothelium tip cells at the vasoproliferative phase (P17), without modification of cellular proliferation, astrocytic activation, and tissue inflammation. CONCLUSIONS Adenosine A1 receptor activity is not required for normal postnatal development of retinal vasculature but selectively controls hyperoxia-induced vaso-obliteration and hypoxia-driven revascularization by distinct cellular mechanisms.
Collapse
Affiliation(s)
- Shuya Zhang
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyan Li
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Bo Li
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Dingjuan Zhong
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xuejiao Gu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Lingyun Tang
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yanyan Wang
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Cun Wang
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Rong Zhou
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Yan Li
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan He
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mozi Chen
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuqing Huo
- Vascular Biology Center, Department of Cellular Biology and Anatomy, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States 4Drug Discovery Center, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate S
| | - Xiao-Ling Liu
- State Key Laboratory Cultivation Base and Key Laboratory of Vision Science, Ministry of Health, China and Zhejiang Provincial Key Laboratory of Ophthalmology and Optometry, Wenzhou, Zhejiang, China
| | - Jiang-Fan Chen
- Institute of Molecular Medicine, School of Optometry and Ophthalmology and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China 5Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, United States
| |
Collapse
|
22
|
Chakraborty R, Pardue MT. Molecular and Biochemical Aspects of the Retina on Refraction. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 134:249-67. [PMID: 26310159 DOI: 10.1016/bs.pmbts.2015.06.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mutant mouse models with specific visual pathway defects offer an advantage to comprehensively investigate the role of specific pathways/neurons involved in refractive development. In this review, we will focus on recent studies using mouse models that have provided insight into retinal pathways and neurotransmitters controlling refractive development. Specifically, we will examine the contributions of rod and cone photoreceptors and the ON and OFF retinal pathways to visually driven eye growth with emphasis on dopaminergic mechanisms.
Collapse
Affiliation(s)
- Ranjay Chakraborty
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Machelle T Pardue
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, Georgia, USA.
| |
Collapse
|
23
|
Dos Santos-Rodrigues A, Pereira MR, Brito R, de Oliveira NA, Paes-de-Carvalho R. Adenosine transporters and receptors: key elements for retinal function and neuroprotection. VITAMINS AND HORMONES 2015; 98:487-523. [PMID: 25817878 DOI: 10.1016/bs.vh.2014.12.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adenosine is an important neuroactive substance in the central nervous system, including in the retina where subclasses of adenosine receptors and transporters are expressed since early stages of development. Here, we review some evidence showing that adenosine plays important functions in the mature as well as in the developing tissue. Adenosine transporters are divided into equilibrative and concentrative, and the major transporter subtype present in the retina is the ENT1. This transporter is responsible for a bidirectional transport of adenosine and the uptake or release of this nucleoside appears to be regulated by different signaling pathways that are also controlled by activation of adenosine receptors. Adenosine receptors are also key players in retina physiology regulating a variety of functions in the mature and developing tissue. Regulation of excitatory neurotransmitter release and neuroprotection are the main functions played be adenosine in the mature tissue, while regulation of cell survival and neurogenesis are some of the functions played by adenosine in developing retina. Since adenosine is neuroprotective against excitotoxic and metabolic dysfunctions observed in neurological and ocular diseases, the search for adenosine-related drugs regulating adenosine transporters and receptors can be important for advancement of therapeutic strategies against these diseases.
Collapse
Affiliation(s)
| | - Mariana R Pereira
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Rafael Brito
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Nádia A de Oliveira
- Program of Neurosciences, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | | |
Collapse
|
24
|
He L, Frost MR, Siegwart JT, Norton TT. Gene expression signatures in tree shrew choroid during lens-induced myopia and recovery. Exp Eye Res 2014; 123:56-71. [PMID: 24742494 PMCID: PMC4155741 DOI: 10.1016/j.exer.2014.04.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 03/20/2014] [Accepted: 04/03/2014] [Indexed: 01/19/2023]
Abstract
Gene expression in tree shrew choroid was examined during the development of minus-lens induced myopia (LIM, a GO condition), after completion of minus-lens compensation (a STAY condition), and early in recovery (REC) from induced myopia (a STOP condition). Five groups of tree shrews (n = 7 per group) were used. Starting 24 days after normal eye-opening (days of visual experience [DVE]), one minus-lens group wore a monocular -5 D lens for 2 days (LIM-2), another minus-lens group achieved stable lens compensation while wearing a monocular -5 D lens for 11 days (LIM-11); a recovery group also wore a -5 D lens for 11 days and then received 2 days of recovery starting at 35 DVE (REC-2). Two age-matched normal groups were examined at 26 DVE and 37 DVE. Quantitative PCR was used to measure the relative differences in mRNA levels in the choroid for 77 candidate genes that were selected based on previous studies or because a whole-transcriptome analysis suggested their expression would change during myopia development or recovery. Small myopic changes were observed in the treated eyes of the LIM-2 group (-1.0 ± 0.2 D; mean ± SEM) indicating eyes were early in the process of developing LIM. The LIM-11 group exhibited complete refractive compensation (-5.1 ± 0.2 D) that was stable for five days. The REC-2 group recovered by 1.3 ± 0.3 D from full refractive compensation. Sixty genes showed significant mRNA expression differences during normal development, LIM, or REC conditions. In LIM-2 choroid (GO), 18 genes were significantly down-regulated in the treated eyes relative to the fellow control eyes and 10 genes were significantly up-regulated. In LIM-11 choroid (STAY), 10 genes were significantly down-regulated and 12 genes were significantly up-regulated. Expression patterns in GO and STAY were similar, but not identical. All genes that showed differential expression in GO and STAY were regulated in the same direction in both conditions. In REC-2 choroid (STOP), 4 genes were significantly down-regulated and 18 genes were significantly up-regulated. Thirteen genes showed bi-directional regulation in GO vs. STOP. The pattern of differential gene expression in STOP was very different from that in GO or in STAY. Significant regulation was observed in genes involved in signaling as well as extracellular matrix turnover. These data support an active role for the choroid in the signaling cascade from retina to sclera. Distinctly different treated eye vs. control eye mRNA signatures are present in the choroid in the GO, STAY, and STOP conditions. The STAY signature, present after full compensation has occurred and the GO visual stimulus is no longer present, may participate in maintaining an elongated globe. The 13 genes with bi-directional expression differences in GO and STOP responded in a sign of defocus-dependent manner. Taken together, these data further suggest that a network of choroidal gene expression changes generate the signal that alters scleral fibroblast gene expression and axial elongation rate.
Collapse
Affiliation(s)
- Li He
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA.
| | - Michael R Frost
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| | - John T Siegwart
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| | - Thomas T Norton
- Department of Vision Sciences, School of Optometry, University of Alabama at Birmingham, USA
| |
Collapse
|
25
|
Nie HH, Huo LJ, Yang X, Gao ZY, Zeng JW, Trier K, Cui DM. Effects of 7-methylxanthine on form-deprivation myopia in pigmented rabbits. Int J Ophthalmol 2012; 5:133-7. [PMID: 22762036 DOI: 10.3980/j.issn.2222-3959.2012.02.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 03/31/2012] [Indexed: 11/02/2022] Open
Abstract
AIM To determine the effect of 7-methylxanthine (7-MX) on the posterior sclera of form-deprivation myopia (FDM) in pigmented rabbits. METHODS Sixteen pigmented rabbits were monocularly deprived (MD) by suturing the right eyelids after natural eye opening (ten-day old) for a period of 30 days. Two groups of pigmented rabbits were fed either 7-MX (30 mg per kg body weight; n=8) or vehicle control (saline equal volume with 7-MX; n=8). Ocular refractions, axial lengths and body weights were measured at the start and the end of the experiment 30 days later. Electron microscopy was used to measure and determine the collagen fibril diameters in the posterior pole of sclera. RESULTS In vehicle control MD pigmented rabbits, 30 days of MD produced -1.10D±0.78D of myopia and the axial length increased 0.51mm±0.09mm. In MD pigmented rabbits fed with 7-MX, 30 days of MD induced only -0.21D±0.11D of myopia and the axial length increased 0.07mm±0.10mm. There was significant change in axial length of vehicle control MD pigmented rabbits (13.11mm±0.19mm versus 12.60mm±0.06mm; P=0.03). The changes in refraction and axial length of two MD groups' contralateral eyes during the 30 days were not significantly different (2.75D±0.27D versus 2.75D±0.35D, P>0.05; 12.60mm±0.06mm versus 12.45mm±0.14mm, P>0.05). The weights of the two groups pigmented rabbits had no significant changes (187g±22.1g versus 189g±19.3g, P>0.05). The diameter of scleral collagen fibers increased in both eyes of 7-MX treated pigmented rabbits. There was significant difference in collagen fibril diameters of inner layer (111.34nm±28.30nm versus 94.80nm±27.52nm, P=0.002) and outer layer (167.92nm±55.82 nm versus 144.04 nm±47.02nm, P=0.016) in the posterior sclera between the myopic eyes of vehicle control MD group and contralateral eyes of 7-MX treated MD group. CONCLUSION 7-MX appears to prevent FDM in pigmented rabbits by remodeling the posterior sclera.
Collapse
Affiliation(s)
- Hao-Hui Nie
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, SunYat-sen University, Guangzhou 510060, Guangdong Province, China
| | | | | | | | | | | | | |
Collapse
|
26
|
Jiang M, Zhang C, Wang J, Chen J, Xia C, Du D, Zhao N, Cao Y, Shen L, Zhu D. Adenosine A(2A)R modulates cardiovascular function by activating ERK1/2 signal in the rostral ventrolateral medulla of acute myocardial ischemic rats. Life Sci 2011; 89:182-7. [PMID: 21703281 DOI: 10.1016/j.lfs.2011.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/25/2011] [Accepted: 05/27/2011] [Indexed: 02/06/2023]
Abstract
AIMS To investigate the cardiovascular regulatory mechanism of adenosine A(2A) receptor (A(2A)R) in the rostral ventrolateral medulla (RVLM) in acute myocardial ischemic (AMI) rats. MAIN METHODS The animal model of AMI was established by ligating the left anterior descending coronary artery (LAD). The A(2A)R expression was examined by immunohistochemistry, western blot and real-time PCR. CGS21680 and SCH58261 (an agonist and antagonist of A(2A)R) were respectively microinjected into the RVLM. In a subgroup of rats, PD98059 (an antagonist of extracellular signal-regulated kinase (ERK1/2)) was microinjected prior to CGS21680 administration. Phosphorylation of ERK1/2 was examined by western blot. KEY FINDINGS Our results demonstrated that A(2A)R immunoreactive positive neurons, the expressions of protein and mRNA of A(2A)R in the RVLM of AMI group were increased compared with the sham group. Microinjection CGS21680 into the RVLM inhibited mean arterial pressure (MAP) and heart rate (HR) in both AMI and sham groups. The inhibition was significantly greater in AMI group than in sham group. The cardiovascular effects of CGS21680 mentioned above were almost abolished by prior administration of PD98059. The increase of ERK1/2 in the RVLM with the cardiovascular responses was induced by CGS21680 in AMI rats; this effect was also blocked by SCH58261. SIGNIFICANCE This study reveals that the activated A(2A)R in the RVLM underlies the depressor and bradycardiac responses in AMI rats via phosphorylation of ERK1/2 increasing.
Collapse
Affiliation(s)
- Meiyan Jiang
- Department of Physiology and Pathophysiology, Shanghai Medical College of Fudan University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Jiang MY, Chen J, Wang J, Xiao F, Zhang HH, Zhang CR, Du DS, Cao YX, Shen LL, Zhu DN. Nitric oxide modulates cardiovascular function in the rat by activating adenosine A2A receptors and inhibiting acetylcholine release in the rostral ventrolateral medulla. Clin Exp Pharmacol Physiol 2011; 38:380-6. [DOI: 10.1111/j.1440-1681.2011.05521.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|