1
|
Li B, He W, Ye L, Zhu Y, Tian Y, Chen L, Yang J, Miao M, Shi Y, Azevedo HS, Ma Z, Hao K. Targeted Delivery of Sildenafil for Inhibiting Pulmonary Vascular Remodeling. Hypertension 2019; 73:703-711. [PMID: 30636546 DOI: 10.1161/hypertensionaha.118.11932] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Pulmonary arterial hypertension is a fatal lung disease caused by the progressive remodeling of small pulmonary arteries (PAs). Sildenafil can prevent the remodeling of PAs, but conventional sildenafil formulations have shown limited treatment efficacy for their poor accumulation in PAs. Here, glucuronic acid (GlcA)-modified liposomes (GlcA-Lips) were developed to improve the delivery of sildenafil to aberrant over-proliferative PA smooth muscle cells via targeting the GLUT-1 (glucose transport-1), and, therefore, inhibiting the remodeling of PAs in a monocrotaline-induced PA hypertension model. GlcA-Lips encapsulating sildenafil (GlcA-sildenafil-Lips) had a size of 90 nm and a pH-sensitive drug release pattern. Immunostaining assay indicated the overexpression of GLUT-1 in PA smooth muscle cells. Cellular uptake studies showed a 1-fold increase of GlcA-Lips uptake by PA smooth muscle cells and pharmacokinetics and biodistribution experiments indicated longer blood circulation time of GlcA-Lips and increased ability to target PAs by 1-fold after 8 hours administration. Two-week treatment indicated GlcA-sildenafil-Lips significantly inhibited the remodeling of PAs, with a 32% reduction in the PA pressure, a 41% decrease in the medial thickening, and a 44% reduction of the right ventricle cardiomyocyte hypertrophy, and improved survival rate. Immunohistochemical analysis showed enhanced expression of caspase-3, after administration of GlcA-sildenafil-Lips, and reduced expression of P-ERK1/2 (phosphorylated ERK1/2) and HK-2 (hexokinase-2), and increased level of eNOS (endothelial nitric oxide synthase) and cyclic GMP (cGMP). In conclusion, targeted delivery of sildenafil to PA smooth muscle cells with GlcA-Lips could effectively inhibit the remodeling of PAs in the monocrotaline-induced PA hypertension.
Collapse
Affiliation(s)
- Bingbing Li
- From the Department of Anesthesiology, the Affiliated Hospital of Nanjing University Medical School, China (B.L., Y.Z., Y.T., L.C., J.Y., Z.M.)
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing, China (W.H., M.M.)
| | - Ling Ye
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China (L.Y.)
| | - Yuling Zhu
- From the Department of Anesthesiology, the Affiliated Hospital of Nanjing University Medical School, China (B.L., Y.Z., Y.T., L.C., J.Y., Z.M.)
| | - Yali Tian
- From the Department of Anesthesiology, the Affiliated Hospital of Nanjing University Medical School, China (B.L., Y.Z., Y.T., L.C., J.Y., Z.M.)
| | - Lian Chen
- From the Department of Anesthesiology, the Affiliated Hospital of Nanjing University Medical School, China (B.L., Y.Z., Y.T., L.C., J.Y., Z.M.)
| | - Jun Yang
- From the Department of Anesthesiology, the Affiliated Hospital of Nanjing University Medical School, China (B.L., Y.Z., Y.T., L.C., J.Y., Z.M.)
| | - Mingxing Miao
- School of Pharmacy, China Pharmaceutical University, Nanjing, China (W.H., M.M.)
| | - Yejiao Shi
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, United Kingdom (Y.S., H.S.A.)
| | - Helena S Azevedo
- School of Engineering and Materials Science, Institute of Bioengineering, Queen Mary, University of London, United Kingdom (Y.S., H.S.A.)
| | - Zhengliang Ma
- From the Department of Anesthesiology, the Affiliated Hospital of Nanjing University Medical School, China (B.L., Y.Z., Y.T., L.C., J.Y., Z.M.)
| | - Kun Hao
- Key Lab of Drug Metabolism & Pharmacokinetics, China Pharmaceutical University, Nanjing (K.H.)
| |
Collapse
|
2
|
Shi R, Wei Z, Zhu D, Fu N, Wang C, Yin S, Liang Y, Xing J, Wang X, Wang Y. Baicalein attenuates monocrotaline-induced pulmonary arterial hypertension by inhibiting vascular remodeling in rats. Pulm Pharmacol Ther 2017; 48:124-135. [PMID: 29133079 DOI: 10.1016/j.pupt.2017.11.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/01/2017] [Accepted: 11/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a devastating cardiopulmonary disorder characterized by elevated pulmonary arterial pressure (PAP) and right ventricular hypertrophy (RVH) driven by progressive vascular remodeling. Reversing adverse vascular remodeling is an important concept in the treatment of PAH. Endothelial injury, inflammation, and oxidative stress are three main contributors to pulmonary vascular remodeling. Baicalein is a natural flavonoid that has been shown to possess anti-proliferative, anti-inflammatory, anti-oxidative, and cardioprotective properties. We hypothesized that baicalein may prevent the progression of PAH and preserve the right heart function by inhibiting pulmonary arterial remodeling. METHODS Male Sprague-Dawley rats were distributed randomly into 4 groups: control, monocrotaline (MCT)-exposed, and MCT-exposed plus baicalein treated rats (50 and 100 mg/kg/day for 2 weeks). Hemodynamic changes, RVH, and lung morphological features were examined on day 28. Apoptosis was determined by TUNEL staining, and the mRNA levels of tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and IL-6 were detected by qRT-PCR. The changes in oxidative indicators, including malondialdehyde (MDA), superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) were measured using corresponding commercial kits. The levels of Bax, Bcl-2, and cleaved caspase-3, and the activation of mitogen-activated protein kinase (MAPK) and NF-κB were assessed by western blotting. RESULTS MCT induced an increase in hemodynamic parameters and RVH, which were attenuated by baicalein treatment. Baicalein also blocked MCT-induced pulmonary arterial remodeling. The levels of apoptotic (Bax/Bcl-2 ratio and cleaved caspase-3) and inflammatory (IL-6, TNF-α, and IL-1β) biomarkers in lung tissue were lower in baicalein-treated groups. Baicalein also decreased MDA level, and increased SOD and GSH-Px activity in rat pulmonary tissue. Furthermore, baicalein inhibited MCT-induced activation of the MAPK and NF-κB pathways. CONCLUSION Baicalein ameliorates MCT-induced PAH by inhibiting pulmonary arterial remodeling at least partially via the MAPK and NF-κB pathways in rats.
Collapse
Affiliation(s)
- Ruizan Shi
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China.
| | - Zehui Wei
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Diying Zhu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Naijie Fu
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Chang Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Sha Yin
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| | - Yueqin Liang
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Jianfeng Xing
- Medical Functional Experimental Center, Shanxi Medical University, Taiyuan, 030001, China
| | - Xuening Wang
- Department of Cardiovascular Surgery, Shanxi Academy of Medical Sciences, Shanxi Dayi Hospital, Taiyuan, 030032, China
| | - Yan Wang
- Department of Pharmacology, Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
3
|
Zhao H, Xue Y, Guo Y, Sun Y, Liu D, Wang X. Inhibition of endocan attenuates monocrotaline-induced connective tissue disease related pulmonary arterial hypertension. Int Immunopharmacol 2016; 42:115-121. [PMID: 27912147 DOI: 10.1016/j.intimp.2016.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 12/21/2022]
Abstract
Connective tissue disease related pulmonary arterial hypertension (CTD-PAH) is characterized by vascular remodeling, endothelial dysfunction and inflammation. Endocan is a novel endothelial dysfunction marker. The aim of the present study was to investigate the role of endocan in CTD-PAH. Monocrotaline (MCT)-induced PAH rats were used as the CTD-PAH model. Short hairpin RNA packed in a lentiviral vector used to inhibit endocan expression was intratracheally instilled in rats prior to the MCT injection. Endocan was found to be increased in the serum and lung of MCT-induced PAH rats. Short hairpin RNA mediated knockdown of endocan significantly decreased right ventricular systolic pressure, attenuated pulmonary remodeling and inflammatory responses in the lung. In the in vitro study, tumor necrosis factor-α (TNF-α) exposure caused increased endocan expression in the primary cultured rat pulmonary microvascular endothelial cells (RPMECs). Endocan knockdown inhibited the permeability increase and adhesion molecules secretion in RPMECs induced by TNF-α. In addition, TNF-α induced MAPK activation was blocked when endocan gene was knocked down. These data demonstrate that endocan may play an important role in the development of CTD-PAH. This study provides novel evidence to better understand the pathogenesis of CTD-PAH, which may be beneficial for the treatment of this disease.
Collapse
Affiliation(s)
- Haiyan Zhao
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yunxin Xue
- Department of Respiration, Liaoning Jinqiu Hospital, Shenyang 110016, People's Republic of China
| | - Yun Guo
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Yue Sun
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Dongmei Liu
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China
| | - Xiaofei Wang
- Department of Immunology and Rheumatology, Shengjing Hospital of China Medical University, Shenyang 110004, People's Republic of China.
| |
Collapse
|
4
|
A urotensin II receptor antagonist, KR36676, decreases vascular remodeling and inflammation in experimental pulmonary hypertension. Int Immunopharmacol 2016; 40:196-202. [DOI: 10.1016/j.intimp.2016.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/27/2016] [Accepted: 09/02/2016] [Indexed: 12/11/2022]
|
5
|
Li W, Guo A, Wang L, Kong Q, Wang R, Han L, Zhao C. Expression of peptide fragments from proADM and involvement of mitogen-activated protein kinase signaling pathways in pulmonary remodeling induced by high pulmonary blood flow. Congenit Anom (Kyoto) 2016; 56:28-34. [PMID: 25990643 DOI: 10.1111/cga.12114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 05/09/2015] [Indexed: 01/02/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a life-threatening disease characterized by progressive pulmonary arterial remodeling and right ventricular failure. Despite recent advances in pathophysiological mechanism exploration and new therapeutic approaches, PAH remains a challenging condition. In this study, we investigated the roles of the peptide fragments from proadrenomedullin (proADM) such as adrenomedullin (ADM), adrenotensin (ADT), and proadrenomedullin N-terminal 20 peptide (PAMP) during pulmonary remodeling caused by high pulmonary blood flow, and probed the possible involvement of mitogen-activated protein kinase (MAPK) signal transduction pathways. Sixteen rat models of PAH were artificially established by surgically connecting the left common carotid artery to the external jugular vein. We subcutaneously injected an extracellular signal-regulated protein kinase (ERK1/2) inhibitor, PD98059, in eight rats, treated another eight rats with an equal volume of saline. Eight rats without connections served as the control group. We observed that mRNA expression levels of ADM, stress-activated protein kinase (SAPK), and ERK1/2 were significantly elevated in the shunted rats; furthermore, ERK1/2 levels were significantly inhibited by PD98059. Protein levels of ADM, PAMP, p-SAPK, and p-ERK1/2 were significantly higher ADT was lower, and p-p38 remained unchanged in the rat models compared with the controls. However, the protein expression of both ADM and p-ERK1/2 was significantly inhibited by PD98059. Our results suggest that levels of ADM, ADT, and PAMP respond to pulmonary remodeling, and that activation of the SAPK and ERK1/2 signaling pathways is involved in pulmonary hypertension and artery remodeling caused by high pulmonary blood flow.
Collapse
Affiliation(s)
- Wei Li
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Aili Guo
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| | - Lijuan Wang
- Beijing Children's Hospital Affiliated to Capital Medical University, Beijing, China
| | - Qingyu Kong
- Biomedical Engineering Institute, School of Control Science and Engineering, Shandong University, Jinan, China
| | - Rong Wang
- Key Laboratory of Cardiovascular Remodeling and Function Research, Qilu Hospital, Shandong University, Jinan, China
| | - Li Han
- Department of Ophthalmology, Yidu Central Hospital of Weifang, Qingzhou, China
| | - Cuifen Zhao
- Department of Pediatrics, Qilu Hospital, Shandong University, Jinan, China
| |
Collapse
|
6
|
Qin N, Yang W, Feng D, Wang X, Qi M, Du T, Sun H, Wu S. Total ginsenosides suppress monocrotaline-induced pulmonary hypertension in rats: involvement of nitric oxide and mitogen-activated protein kinase pathways. J Ginseng Res 2015; 40:285-91. [PMID: 27616905 PMCID: PMC5005363 DOI: 10.1016/j.jgr.2015.09.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/22/2015] [Accepted: 09/30/2015] [Indexed: 11/28/2022] Open
Abstract
Background Ginsenosides have been shown to exert beneficial pharmacological effects on the central nervous, cardiovascular, and endocrine systems. We sought to determine whether total ginsenosides (TG) inhibit monocrotaline (MCT)-induced pulmonary hypertension and to elucidate the underlying mechanism. Methods MCT-intoxicated rats were treated with gradient doses of TG, with or without NG-nitro-l-arginine methyl ester. The levels of molecules involving the regulation of nitric oxide and mitogen-activated protein kinase pathways were determined. Results TG ameliorated MCT-induced pulmonary hypertension in a dose-dependent manner, as assessed by the right ventricular systolic pressure, the right ventricular hypertrophy index, and pulmonary arterial remodeling. Furthermore, TG increased the levels of pulmonary nitric oxide, endothelial nitric oxide synthase, and cyclic guanosine monophosphate. Lastly, TG increased mitogen-activated protein kinase phosphatase-1 expression and promoted the dephosphorylation of extracellular signal-regulated protein kinases 1/2, p38 mitogen-activated protein kinase, and c-Jun NH2-terminal kinase 1/2. Conclusion TG attenuates MCT-induced pulmonary hypertension, which may involve in part the regulation of nitric oxide and mitogen-activated protein kinase pathways.
Collapse
Affiliation(s)
- Na Qin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Department of Pharmacy, Luoyang Orthopedic Hospital, Orthopedics Hospital of Henan Province, Luoyang, Henan, China
| | - Wei Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Dongxu Feng
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Xinwen Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China; Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Muyao Qi
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Tianxin Du
- Department of Pharmacy, Luoyang Orthopedic Hospital, Orthopedics Hospital of Henan Province, Luoyang, Henan, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| |
Collapse
|
7
|
Wilson JL, Yu J, Taylor L, Polgar P. Hyperplastic Growth of Pulmonary Artery Smooth Muscle Cells from Subjects with Pulmonary Arterial Hypertension Is Activated through JNK and p38 MAPK. PLoS One 2015; 10:e0123662. [PMID: 25905460 PMCID: PMC4408087 DOI: 10.1371/journal.pone.0123662] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/06/2015] [Indexed: 12/20/2022] Open
Abstract
Smooth muscle in the pulmonary artery of PAH subjects, both idiopathic and hereditary, is characterized by hyperplasia. Smooth muscle cells (HPASMC) isolated from subjects with or without PAH retain their in vivo phenotype as illustrated by their expression of alpha-smooth muscle actin and expression of H-caldesmon. Both non PAH and PAH HPASMC display a lengthy, approximately 94h, cell cycle. The HPASMC from both idiopathic and hereditary PAH display an abnormal proliferation characterized by continued growth under non-proliferative, non-growth stimulated conditions. This effector independent proliferation is JNK and p38 MAP kinase dependent. Blocking the activation of either abrogates the HPASMC growth. HPASMC from non PAH donors under quiescent conditions display negligible proliferation but divide upon exposure to growth factors such as PDGF-BB or FGF2 but not EGF. This growth does not involve the MAP kinases. Instead it routes via the tyrosine kinase receptor through mTOR and then 6SK. In the PAH cells PDGF-BB and FGF2 augment the dysregulated cell proliferation, also through mTOR/6SK. Additionally, blocking the activation of mTOR also modulates the MAP kinase promoted dysregulated growth. These results highlight key alterations in the growth of HPASMC from subjects with PAH which contribute to the etiology of the disease and can clearly be targeted at various regulatory points for future therapies.
Collapse
Affiliation(s)
- Jamie L. Wilson
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Jun Yu
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Linda Taylor
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Peter Polgar
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
8
|
Adegunsoye A, Balachandran J. Inflammatory response mechanisms exacerbating hypoxemia in coexistent pulmonary fibrosis and sleep apnea. Mediators Inflamm 2015; 2015:510105. [PMID: 25944985 PMCID: PMC4402194 DOI: 10.1155/2015/510105] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 01/02/2023] Open
Abstract
Mediators of inflammation, oxidative stress, and chemoattractants drive the hypoxemic mechanisms that accompany pulmonary fibrosis. Patients with idiopathic pulmonary fibrosis commonly have obstructive sleep apnea, which potentiates the hypoxic stimuli for oxidative stress, culminating in systemic inflammation and generalized vascular endothelial damage. Comorbidities like pulmonary hypertension, obesity, gastroesophageal reflux disease, and hypoxic pulmonary vasoconstriction contribute to chronic hypoxemia leading to the release of proinflammatory cytokines that may propagate clinical deterioration and alter the pulmonary fibrotic pathway. Tissue inhibitor of metalloproteinase (TIMP-1), interleukin- (IL-) 1α, cytokine-induced neutrophil chemoattractant (CINC-1, CINC-2α/β), lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG-1), macrophage inflammatory protein- (MIP-) 1α, MIP-3α, and nuclear factor- (NF-) κB appear to mediate disease progression. Adipocytes may induce hypoxia inducible factor (HIF) 1α production; GERD is associated with increased levels of lactate dehydrogenase (LDH), alkaline phosphatase (ALP), and tumor necrosis factor alpha (TNF-α); pulmonary artery myocytes often exhibit increased cytosolic free Ca2+. Protein kinase C (PKC) mediated upregulation of TNF-α and IL-1β also occurs in the pulmonary arteries. Increased understanding of the inflammatory mechanisms driving hypoxemia in pulmonary fibrosis and obstructive sleep apnea may potentiate the identification of appropriate therapeutic targets for developing effective therapies.
Collapse
Affiliation(s)
- Ayodeji Adegunsoye
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Jay Balachandran
- Section of Pulmonary & Critical Care, Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
9
|
Kiss T, Kovacs K, Komocsi A, Tornyos A, Zalan P, Sumegi B, Gallyas F, Kovacs K. Novel mechanisms of sildenafil in pulmonary hypertension involving cytokines/chemokines, MAP kinases and Akt. PLoS One 2014; 9:e104890. [PMID: 25133539 PMCID: PMC4136836 DOI: 10.1371/journal.pone.0104890] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 07/15/2014] [Indexed: 11/23/2022] Open
Abstract
Pulmonary arterial hypertension (PH) is associated with high mortality due to right ventricular failure and hypoxia, therefore to understand the mechanism by which pulmonary vascular remodeling initiates these processes is very important. We used a well-characterized monocrotaline (MCT)-induced rat PH model, and analyzed lung morphology, expression of cytokines, mitogen-activated protein kinase (MAPK) phosphorylation, and phosphatidylinositol 3-kinase-Akt (PI-3k-Akt) pathway and nuclear factor (NF)-κB activation in order to elucidate the mechanisms by which sildenafil's protective effect in PH is exerted. Besides its protective effect on lung morphology, sildenafil suppressed multiple cytokines involved in neutrophil and mononuclear cells recruitment including cytokine-induced neutrophil chemoattractant (CINC)-1, CINC-2α/β, tissue inhibitor of metalloproteinase (TIMP)-1, interleukin (IL)-1α, lipopolysaccharide induced CXC chemokine (LIX), monokine induced by gamma interferon (MIG), macrophage inflammatory protein (MIP)-1α, and MIP-3α. NF-κB activation and phosphorylation were also attenuated by sildenafil. Furthermore, sildenafil reduced extracellular signal-regulated kinase (ERK)1/2 and p38 MAPK activation while enhanced activation of the cytoprotective Akt pathway in PH. These data suggest a beneficial effect of sildenafil on inflammatory and kinase signaling mechanisms that substantially contribute to its protective effects, and may have potential implications in designing future therapeutic strategies in the treatment of pulmonary hypertension.
Collapse
Affiliation(s)
- Tamas Kiss
- Department of Anaesthesiology and Intensive Therapy, University of Pécs, Pécs, Hungary
| | | | | | | | - Petra Zalan
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
- MTA-PTE Nuclear-Mitochondrial Research Group, Pécs, Hungary
- Szentágothai Research Center, University of Pécs, Pécs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
| | - Krisztina Kovacs
- Department of Biochemistry and Medical Chemistry, University of Pécs, Pécs, Hungary
- * E-mail:
| |
Collapse
|
10
|
Zeng Z, Li YC, Jiao ZH, Yao J, Xue Y. The cross talk between cGMP signal pathway and PKC in pulmonary endothelial cell angiogenesis. Int J Mol Sci 2014; 15:10185-98. [PMID: 24914766 PMCID: PMC4100147 DOI: 10.3390/ijms150610185] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 05/04/2014] [Accepted: 05/14/2014] [Indexed: 11/19/2022] Open
Abstract
Angiogenic proliferation of vascular endothelial cells is believed to play an important role in pulmonary vascular remodeling in pulmonary arterial hypertension. In the present study, we found that c-GMP (cyclic guanosine monophosphate) inhibited the proliferation and tube formation of pulmonary vascular endothelial cells induced by TGF-β1, and that this process was reversed by PKG (protein kinase G) inhibitor and PKC (protein kinase C) inhibitor. In addition, small interfering RNA (siRNA) targeting ERK also reduced cellular proliferation. Furthermore, western blotting showed that cGMP down-regulated the phosphorylation level of ERK1/2, which was reversed not only by PKG inhibitor but also by PKC inhibitor. Silencing different PKC isoforms showed that PKCΔ, PKCγ and PKCα were involved in ERK phosphorylation, suggesting that PKC kinases have a permissive action. Three subtypes, PKCΔ, PKCγ and PKCα are likely to be involved the phosphorylation suppression of ERK included cGMP. Taken together, these data suggest that ERK phosphorylation mediates the proliferation of pulmonary vascular endothelial cells, and PKC kinases have a permissive action in this process.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ying-Chuan Li
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Zhi-Hua Jiao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Jun Yao
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| | - Ying Xue
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China.
| |
Collapse
|
11
|
Elias-Al-Mamun M, Satoh K, Tanaka SI, Shimizu T, Nergui S, Miyata S, Fukumoto Y, Shimokawa H. Combination Therapy With Fasudil and Sildenafil Ameliorates Monocrotaline-Induced Pulmonary Hypertension and Survival in Rats. Circ J 2014; 78:967-76. [DOI: 10.1253/circj.cj-13-1174] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Md. Elias-Al-Mamun
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Kimio Satoh
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Shin-ichi Tanaka
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Toru Shimizu
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Suvd Nergui
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Satoshi Miyata
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Yoshihiro Fukumoto
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| | - Hiroaki Shimokawa
- Department of Cardiovascular Medicine, Tohoku University Graduate School of Medicine
| |
Collapse
|
12
|
Ogo T, Chowdhury HM, Yang J, Long L, Li X, Torres Cleuren YN, Morrell NW, Schermuly RT, Trembath RC, Nasim MT. Inhibition of overactive transforming growth factor-β signaling by prostacyclin analogs in pulmonary arterial hypertension. Am J Respir Cell Mol Biol 2013; 48:733-41. [PMID: 23418342 DOI: 10.1165/rcmb.2012-0049oc] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The heterozygous loss of function mutations in the Type II bone morphogenetic protein receptor (BMPR-II), a member of the transforming growth factor (TGF-β) receptor family, underlies the majority of familial cases of pulmonary arterial hypertension (PAH). The TGF-β1 pathway is activated in PAH, and inhibitors of TGF-β1 signaling prevent the development and progression of PAH in experimental models. However, the effects of currently used therapies on the TGF-β pathway remain unknown. Prostacyclin analogs comprise the first line of treatment for clinical PAH. We hypothesized that these agents effectively decrease the activity of the TGF-β1 pathway. Beraprost sodium (BPS), a prostacyclin analog, selectively inhibits proliferation in a dose-dependent manner in murine primary pulmonary arterial smooth muscle cells (PASMCs) harboring a pathogenic BMPR2 nonsense mutation in both the presence and absence of TGF-β1 stimulation. Our study demonstrates that this agent inhibits TGF-β1-induced SMAD-dependent and SMAD-independent signaling via a protein kinase A-dependent pathway by reducing the phosphorylation of SMADs 2 and 3 and p38 mitogen-activated protein kinase proteins. Finally, in a monocrotaline-induced rat model of PAH, which is associated with increased TGF-β signaling, this study confirms that treprostinil, a stable prostacyclin analog, inhibits the TGF-β pathway by reducing SMAD3 phosphorylation. Taken together, these data suggest that prostacyclin analogs inhibit dysregulated TGF-β signaling in vitro and in vivo, and reduce BMPR-II-mediated proliferation defects in mutant mice PASMCs.
Collapse
Affiliation(s)
- Takeshi Ogo
- Department of Medical and Molecular Genetics, School of Medicine, King's College London, London, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Chaumais MC, Perrin S, Sitbon O, Simonneau G, Humbert M, Montani D. Pharmacokinetic evaluation of sildenafil as a pulmonary hypertension treatment. Expert Opin Drug Metab Toxicol 2013; 9:1193-205. [DOI: 10.1517/17425255.2013.804063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Marie-Camille Chaumais
- Université Paris-Sud, Faculté de Pharmacie,
Chatenay-Malabry, France
- AP-HP, Service de Pharmacie, DHU Thorax Innovation, Hôpital Antoine Béclère,
Clamart, France
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
| | - Swanny Perrin
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - Olivier Sitbon
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - Gérald Simonneau
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - Marc Humbert
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| | - David Montani
- INSERM UMR 999, LabEx LERMIT, DHU Thorax Innovation, Centre Chirurgical Marie Lannelongue,
Le Plessis Robinson, France
- Université Paris-Sud, Faculté de Médecine,
Kremlin-Bicêtre, France
- AP-HP, Centre de Référence de l’Hypertension Pulmonaire Sévère, Service de Pneumologie et Réanimation Respiratoire, DHU Thorax Innovation, Hôpital de Bicêtre,
78, rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France .
| |
Collapse
|
14
|
Nasim MT, Ogo T, Chowdhury HM, Zhao L, Chen CN, Rhodes C, Trembath RC. BMPR-II deficiency elicits pro-proliferative and anti-apoptotic responses through the activation of TGFβ-TAK1-MAPK pathways in PAH. Hum Mol Genet 2012; 21:2548-58. [PMID: 22388934 DOI: 10.1093/hmg/dds073] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a cardiovascular disorder associated with enhanced proliferation and suppressed apoptosis of pulmonary arterial smooth muscle cells (PASMCs). Heterozygous mutations in the type II receptor for bone morphogenetic protein (BMPR2) underlie the majority of the inherited and familial forms of PAH. The transforming growth factor β (TGFβ) pathway is activated in both human and experimental models of PAH. However, how these factors exert pro-proliferative and anti-apoptotic responses in PAH remains unclear. Using mouse primary PASMCs derived from knock-in mice, we demonstrated that BMPR-II dysfunction promotes the activation of small mothers against decapentaplegia-independent mitogen-activated protein kinase (MAPK) pathways via TGFβ-associated kinase 1 (TAK1), resulting in a pro-proliferative and anti-apoptotic response. Inhibition of the TAK1-MAPK axis rescues abnormal proliferation and apoptosis in these cells. In both hypoxia and monocrotaline-induced PAH rat models, which display reduced levels of bmpr2 transcripts, this study further indicates that the TGFβ-MAPK axis is activated in lungs following elevation of both expression and phosphorylation of the TAK1 protein. In ex vivo cell-based assays, TAK1 inhibits BMP-responsive reporter activity and interacts with BMPR-II receptor. In the presence of pathogenic BMPR2 mutations observed in PAH patients, this interaction is greatly reduced. Taken together, these data suggest dysfunctional BMPR-II responsiveness intensifies TGFβ-TAK1-MAPK signalling and thus alters the ratio of apoptosis to proliferation. This axis may be a potential therapeutic target in PAH.
Collapse
Affiliation(s)
- Md Talat Nasim
- Department of Medical and Molecular Genetics, King’s College London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
15
|
Paffett ML, Lucas SN, Campen MJ. Resveratrol reverses monocrotaline-induced pulmonary vascular and cardiac dysfunction: a potential role for atrogin-1 in smooth muscle. Vascul Pharmacol 2011; 56:64-73. [PMID: 22146233 DOI: 10.1016/j.vph.2011.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/31/2011] [Accepted: 11/20/2011] [Indexed: 12/19/2022]
Abstract
Arterial remodeling contributes to elevated pulmonary artery (PA) pressures and right ventricular hypertrophy seen in pulmonary hypertension (PH). Resveratrol, a sirtuin-1 (SIRT1) pathway activator, can prevent the development of PH in a commonly used animal model, but it is unclear whether it can reverse established PH pathophysiology. Furthermore, atrophic ubiquitin ligases, such as atrogin-1 and MuRF-1, are known to be induced by SIRT1 activators but have not been characterized in hypertrophic vascular disease. Therefore, we hypothesized that monocrotaline (MCT)-induced PH would attenuate atrophy pathways in the PA while, conversely, SIRT1 activation (resveratrol) would reverse indices of PH and restore atrophic gene expression. Thus, we injected Sprague-Dawley rats with MCT (50 mg/kg i.p.) or saline at Day 0, and then treated with oral resveratrol or sildenafil from days 28-42 post-MCT injection. Oral resveratrol attenuated established MCT-induced PH indices, including right ventricular systolic pressure, right ventricular hypertrophy, and medial thickening of intrapulmonary arteries. Resveratrol also normalized PA atrogin-1 mRNA expression, which was significantly reduced by MCT. In cultured human PA smooth muscle cells (hPASMC), resveratrol significantly inhibited PDGF-stimulated proliferation and cellular hypertrophy, which was also associated with improvements in atrogin-1 levels. In addition, SIRT1 inhibition augmented hPASMC proliferation, as assessed by DNA mass, and suppressed atrogin mRNA expression. These findings demonstrate an inverse relationship between indices of PH and PA atrogin expression that is SIRT1 dependent and may reflect a novel role for SIRT1 in PASMCs opposing cellular hypertrophy and proliferation.
Collapse
Affiliation(s)
- Michael L Paffett
- College of Pharmacy, Division of Pharmaceutical Sciences, University of New Mexico Health Sciences Center, Albuquerque, NM 87131-0001, USA
| | | | | |
Collapse
|