1
|
Khalid M, Chen Y, Zhou S, Asmamaw D, Mwangi J, Chen Q, Tadese DA, Michira BB, Yang J, Lv Q, Lai R, Duan Z. The derivatives of hirudin-like peptides from the Poecilobdella manillensis exhibit antithrombotic and anti-ischemic stroke effects. Int J Biol Macromol 2025; 307:141950. [PMID: 40086559 DOI: 10.1016/j.ijbiomac.2025.141950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/10/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Almost all currently approved anticoagulants interfere with hemostasis and increase the risk of bleeding complications. Thus, there is a critical need for safer anti-thrombotic drugs without bleeding risk. Hirudin has demonstrated potent antithrombotic properties, but is clinically limited due to its high bleeding risk. Hirudin variants such as bivalirudin have been developed to address this issue, yet present a similar proportional risk of bleeding. In this study, several hirudin-like peptides were identified from the salivary gland transcriptome of Poecilobdella manillensis. Guided by the structural design principles of bivalirudin, derivatives of these hirudin-like peptides were synthesized and evaluated for their antithrombotic efficacy and safety in thrombosis and ischemic stroke. Results suggested that derived peptides PM3, PM4, PM6 and PM7 can effectively inhibited the activity of thrombin in vitro. Furthermore, PM4, PM6 and PM7 exhibited robust anticoagulant activity in vivo. Importantly, PM4 and PM7 exhibited significantly lower bleeding risk compared to bivalirudin, as well as comparable efficacy in mitigating intracerebral thrombosis in a transient middle cerebral artery occlusion mouse model, without inducing intracerebral hemorrhage. These findings highlight the therapeutic potential of hirudin-like peptide derivatives as promising candidates for the treatment of thrombosis and ischemic stroke, combining efficacy with an improved safety profile.
Collapse
Affiliation(s)
- Mehwish Khalid
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Chen
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengwen Zhou
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Demeke Asmamaw
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James Mwangi
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Chen
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Dawit Adisu Tadese
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Brenda B Michira
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Qiumin Lv
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China
| | - Ren Lai
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China
| | - Zilei Duan
- Engineering Laboratory of Peptides of Chinese Academy of Sciences, Key Laboratory of Bioactive Peptides of Yunnan Province, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, National Resource Center for Non-Human Primates, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), State Key Laboratory of Genetic Evolution & Animal Models, Sino-African Joint Research Center, and New Cornerstone Science Laboratory, Kunming Institute of Zoology, the Chinese Academy of Sciences, No.17 Longxin Road, Kunming, Yunnan 650201, China.
| |
Collapse
|
2
|
Catar R, Herse-Naether M, Zhu N, Wagner P, Wischnewski O, Kusch A, Kamhieh-Milz J, Eisenreich A, Rauch U, Hegner B, Heidecke H, Kill A, Riemekasten G, Kleinau G, Scheerer P, Dragun D, Philippe A. Autoantibodies Targeting AT 1- and ET A-Receptors Link Endothelial Proliferation and Coagulation via Ets-1 Transcription Factor. Int J Mol Sci 2021; 23:244. [PMID: 35008670 PMCID: PMC8745726 DOI: 10.3390/ijms23010244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/20/2021] [Accepted: 12/23/2021] [Indexed: 12/20/2022] Open
Abstract
Scleroderma renal crisis (SRC) is an acute life-threatening manifestation of systemic sclerosis (SSc) caused by obliterative vasculopathy and thrombotic microangiopathy. Evidence suggests a pathogenic role of immunoglobulin G (IgG) targeting G-protein coupled receptors (GPCR). We therefore dissected SRC-associated vascular obliteration and investigated the specific effects of patient-derived IgG directed against angiotensin II type 1 (AT1R) and endothelin-1 type A receptors (ETAR) on downstream signaling events and endothelial cell proliferation. SRC-IgG triggered endothelial cell proliferation via activation of the mitogen-activated protein kinase (MAPK) pathway and subsequent activation of the E26 transformation-specific-1 transcription factor (Ets-1). Either AT1R or ETAR receptor inhibitors/shRNA abrogated endothelial proliferation, confirming receptor activation and Ets-1 signaling involvement. Binding of Ets-1 to the tissue factor (TF) promoter exclusively induced TF. In addition, TF inhibition prevented endothelial cell proliferation. Thus, our data revealed a thus far unknown link between SRC-IgG-induced intracellular signaling, endothelial cell proliferation and active coagulation in the context of obliterative vasculopathy and SRC. Patients' autoantibodies and their molecular effectors represent new therapeutic targets to address severe vascular complications in SSc.
Collapse
Affiliation(s)
- Rusan Catar
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Melanie Herse-Naether
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Nan Zhu
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Shanghai General Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200025, China
| | - Philine Wagner
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Oskar Wischnewski
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Angelika Kusch
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
| | - Julian Kamhieh-Milz
- Department of Transfusion Medicine, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany;
| | - Andreas Eisenreich
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.E.); (U.R.)
| | - Ursula Rauch
- Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (A.E.); (U.R.)
| | - Björn Hegner
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Vitanas Klinik für Geriatrie, 13435 Berlin, Germany
| | | | - Angela Kill
- Deutsches Rheuma-Forschungszentrum (DRFZ), A. Leibniz Institute, 10117 Berlin, Germany; (A.K.); (G.R.)
- Department of Rheumatology and Clinical Immunology, CCM, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Gabriela Riemekasten
- Deutsches Rheuma-Forschungszentrum (DRFZ), A. Leibniz Institute, 10117 Berlin, Germany; (A.K.); (G.R.)
- Department of Rheumatology and Clinical Immunology, CCM, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Priority Area Asthma & Allergy, Research Center Borstel, Airway Research Center North (ARCN), Members of the German Center for Lung Research (DZL), 23845 Borstel, Germany
| | - Gunnar Kleinau
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (G.K.); (P.S.)
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (G.K.); (P.S.)
- DZHK (Deutsches Zentrum für Herz-Kreislauf Forschung), Partner Site Berlin, 13353 Berlin, Germany
| | - Duska Dragun
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
| | - Aurelie Philippe
- Department of Nephrology and Medical Intensive Care, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; (M.H.-N.); (N.Z.); (P.W.); (O.W.); (A.K.); (B.H.)
- Center for Cardiovascular Research, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health, Charité—Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, 10117 Berlin, Germany
| |
Collapse
|
3
|
Deter HC, Orth-Gomér K, Rauch-Kröhnert U, Albus C, Ladwig KH, Söllner W, de Zwaan M, Grün AS, Ronel J, Hellmich M, Herrmann-Lingen C, Weber C. Depression, anxiety, and vital exhaustion are associated with pro-coagulant markers in depressed patients with coronary artery disease - A cross sectional and prospective secondary analysis of the SPIRR-CAD trial. J Psychosom Res 2021; 151:110659. [PMID: 34763203 DOI: 10.1016/j.jpsychores.2021.110659] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 01/08/2023]
Abstract
INTRODUCTION A hyper-coagulant state is a biological mechanism that triggers cardiac events in patients with coronary artery disease (CAD). Depressive symptoms and anxiety predict an unfavourable course of CAD. The SPIRR-CAD-RCT examined the effects of a psychological intervention and provided the opportunity to explore cross-sectional associations between indices of psychological strain and coagulation parameters, as well as prospective changes in depression scores and coagulation parameters. METHODS In this secondary analysis, we investigated 253 CAD patients (194 male; age m 58.9, SD 8.3 yrs.) with mild to moderate depression (≥8 on the HADS-D) at baseline and at follow-up 18 months later: TF, fibrinogen, D-dimer, VWF, FVII and PAI-1 and the course of depression (HAM-D), vital exhaustion (VE) and anxiety scores (HADS-A) were examined by ANOVA in the total and younger age groups (≤ 60). RESULTS HAM-D at baseline was correlated with TF (corr. R2 = 0.27; F = 9.31, p = 0.001). HADS anxiety was associated with fibrinogen (corr. R2.20; F = 7.27, p = 0.001). There was no detectable therapeutic effect on coagulation. Fibrinogen and VWF decreased within 18 months (time effect; p = 0.02; p = 0.04), as did HADS-D in both treatment groups (p < 0.001). Fibrinogen decreased more in patients ≤60 years with high VE compared to low VE (interaction time x group, p = 0.01). CONCLUSIONS This is the first study to show an association between TF and depression. Coagulation parameters as potential mediators of CAD progression correlated cross-sectionally with depression and anxiety and prospectively with VE. Further studies should replicate these correlations in depressed and non-depressed CAD patients. ISRCTN 76240576; clinicaltrials.gov.
Collapse
Affiliation(s)
- Hans-Christian Deter
- Medical Clinic, Psychosomatics, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, German Center for Cardiovascular Research, Partner Site Berlin, Germany.
| | | | - Ursula Rauch-Kröhnert
- Medical Clinic, Cardiology and Pulmonology, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, Germany
| | - Christian Albus
- Department of Psychosomatics and Psychotherapy, University of Cologne, Germany
| | - Karl-Heinz Ladwig
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München (TUM), German Center for Cardiovascular Research, Partner Site Munich, Germany
| | - Wolfgang Söllner
- Department of Psychosomatic Medicine and Psychotherapy, Paracelsus Medical University, Nuremberg General Hospital, Germany
| | - Martina de Zwaan
- Department of Psychosomatic Medicine and Psychotherapy, Hannover Medical School, Germany
| | - Anna-Sophia Grün
- Medical Clinic, Psychosomatics, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, German Center for Cardiovascular Research, Partner Site Berlin, Germany
| | - Joram Ronel
- Klinik Barmelweid, Switzerland; Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technische Universität München, Germany
| | - Martin Hellmich
- Clinical Trials Center Cologne, Institute for Medical Statistics, Informatic und Epidemiology (IMSIE), University of Cologne, Germany
| | - Christoph Herrmann-Lingen
- Dept. of Psychosomatic Medicine and Psychotherapy, University of Göttingen Medical Center, German Center for Cardiovascular Research, Partner Site Göttingen, Germany
| | - Cora Weber
- Medical Clinic, Psychosomatics, Charité Universitätsmedizin Berlin, Campus Benjamin Franklin, German Center for Cardiovascular Research, Partner Site Berlin, Germany
| | | |
Collapse
|
4
|
Khanna V, Shahzad A, Thayalasamy K, Kemp I, Mars C, Cooper R, Roome C, Wilson K, Harris S, Stables R, Curzen N. Comparison of the antiplatelet and antithrombotic effects of bivalirudin versus unfractionated heparin: A platelet substudy of the HEAT PPCI trial. Thromb Res 2018; 172:36-43. [DOI: 10.1016/j.thromres.2018.09.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 08/16/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
|
5
|
Abstract
Platelet-derived microvesicles (pMVs) are small, heterogeneous vesicles released from platelet membranes as a result of activation. These microvesicles possess a wide range of properties, including prothrombotic, proatherogenic, proinflammatory, immunomodulatory, and even anticoagulant activity. The elevated release of these microvesicles has been observed in various metabolic, inflammatory, thrombotic, and vascular diseases, including ischemic heart disease, stroke, hypertension, diabetes, and connective tissue disease. Modulation of both pMV generation and the expression of their surface molecules may have beneficial clinical implications and could become a novel therapeutic target. However, mechanisms by which pharmacological agents can modify pMV formation are elusive. The purpose of this review is to discuss the effects of drugs routinely used in primary and secondary prevention of vascular disease on the release of pMV and expression of their surface procoagulant and proinflammatory molecules.
Collapse
Affiliation(s)
- Justyna Rosińska
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznan, Poland.
| | - Maria Łukasik
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznan, Poland
| | - Wojciech Kozubski
- Department of Neurology, Poznan University of Medical Sciences, ul. Przybyszewskiego 49, 60-355, Poznan, Poland
| |
Collapse
|
6
|
Sato N, Ichikawa J, Wako M, Ohba T, Saito M, Sato H, Koyama K, Hagino T, Schoenecker JG, Ando T, Haro H. Thrombin induced by the extrinsic pathway and PAR-1 regulated inflammation at the site of fracture repair. Bone 2016; 83:23-34. [PMID: 26475502 DOI: 10.1016/j.bone.2015.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/30/2015] [Accepted: 10/11/2015] [Indexed: 02/07/2023]
Abstract
Thrombin (coagulation factor IIa) is a serine protease encoded by the F2 gene. Pro-thrombin (coagulation factor II) is cut to generate thrombin in the coagulation cascade that results in a reduction of blood loss. Procoagulant states that lead to activation of thrombin are common in bone fracture sites. However, its physiological roles and relationship with osteoblasts in bone fractures are largely unknown. We herein report various effects of thrombin on mouse osteoblastic MC3T3-E1 cells. MC3T3-E1 cells expressed proteinase-activated receptor 1 (PAR1), also known as the coagulation factor II receptor. They also produced monocyte chemoattractant protein (MCP-1), tissue factor (TF), MCSF and IL-6 upon thrombin stimulation through the PI3K-Akt and MEK-Erk1/2 pathways. Furthermore, MCP-1 obtained from thrombin-stimulated MC3T3-E1 cells induced migration by macrophage RAW264 cells. All these effects of thrombin on MC3T3-E1 cells were abolished by the selective non-peptide thrombin receptor inhibitor SCH79797. We also found that thrombin, PAR-1, MCP-1, TF as well as phosphorylated AKT and p42/44 were significantly expressed at the fracture site of mouse femoral bone. Collectively, thrombin/PAR-1 interaction regulated MCP-1, TF, MCSF and IL-6 production by MC3T3-E1 cells. Furthermore, MCP-1 induced RAW264 cell migration. Thrombin may thus be a novel cytokine that regulates several aspects of osteoblast function and fracture healing.
Collapse
Affiliation(s)
- Nobutaka Sato
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Jiro Ichikawa
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Wako
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Tetsuro Ohba
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Masanori Saito
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Hironao Sato
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Kensuke Koyama
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| | - Tetsuo Hagino
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan; The Sports Medicine and Knee Center, Kofu National Hospital, 11-35 Tenjincho, Kofu, Yamanashi 400-8533, Japan
| | - Jonathan G Schoenecker
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Orthopaedics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Center for Bone Biology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Pharmacology, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States; Department of Pediatrics, Vanderbilt University Medical Center, 2200 Children's Way, Nashville, TN 37232-9565, United States
| | - Takashi Ando
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan.
| | - Hirotaka Haro
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Yamanashi, 1110 Shimokatou, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
7
|
Schuette C, Steffens D, Witkowski M, Stellbaum C, Bobbert P, Schultheiss HP, Rauch U. The effect of clopidogrel on platelet activity in patients with and without type-2 diabetes mellitus: a comparative study. Cardiovasc Diabetol 2015; 14:15. [PMID: 25645908 PMCID: PMC4324649 DOI: 10.1186/s12933-015-0182-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/22/2015] [Indexed: 12/11/2022] Open
Abstract
Background Although antiplatelet therapy involving clopidogrel is a standard treatment for preventing cardiovascular events after coronary stent implantation, patients can display differential responses. Here, we assessed the effectiveness of clopidogrel on platelet function inhibition in subjects with and without type-2 diabetes and stable coronary artery disease. In addition, we investigated the correlation between platelet function and routine clinical parameters. Methods A total of 64 patients with stable coronary heart disease were enrolled in the study. Among these, 32 had known type-2 diabetes, whereas the remaining 32 subjects were non-diabetics (control group). A loading dose of 300 mg clopidogrel was given to clopidogrel-naïve patients (13 patients in the diabetes group and 14 control patients). All patients were given a daily maintenance dose of 75 mg clopidogrel. In addition, all patients received 100 mg ASA per day. Agonist-induced platelet aggregation measurements were performed on hirudin-anticoagulated blood using an impedance aggregometer (Multiple Platelet Function Analyzer, Dynabyte, Munich, Germany). Blood samples were drawn from the antecubital vein 24 h after coronary angiography with percutaneous coronary intervention. The platelets were then stimulated with ADP alone or ADP and prostaglandin-E (ADP and ADP-PGE tests, respectively) in order to evaluate clopidogrel-mediated inhibition of platelet function. The effectiveness of ASA was measured by stimulation with arachidonic acid (ASPI test). In addition, maximal platelet aggregation was assessed via stimulation with thrombin receptor-activating peptide (TRAP test). Results Patients with diabetes exhibited significantly less inhibition of platelet function than patients without diabetes (ADP-PGE test p = 0.003; ASPI test p = 0.022). Administering a clopidogrel loading dose of 300 mg did not result in a lower level of ADP-PGE-induced platelet reactivity in comparison to the use of a 75 mg maintenance dose. Moreover, we observed that ADP-PGE-induced platelet inhibition was positively correlated with fasting blood glucose and HbA1c (p < 0.01). Conclusions Patients with type-2 diabetes exhibited increased platelet reactivity compared to patients without diabetes despite combined treatment with clopidogrel and ASA. Using a loading dose of clopidogrel rather than small daily doses was not sufficient for adequately overcoming increased platelet reactivity in patients with type-2 diabetes, highlighting the need for more effective anti-platelet drugs for such patients.
Collapse
Affiliation(s)
- Claudia Schuette
- Department of Internal Medicine/Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Daniel Steffens
- Department of Internal Medicine/Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Marco Witkowski
- Department of Internal Medicine/Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Caroline Stellbaum
- Department of Internal Medicine/Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Peter Bobbert
- Department of Internal Medicine/Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Heinz-Peter Schultheiss
- Department of Internal Medicine/Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| | - Ursula Rauch
- Department of Internal Medicine/Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, Hindenburgdamm 30, 12200, Berlin, Germany.
| |
Collapse
|
8
|
Malz R, Weithauser A, Tschöpe C, Schultheiss HP, Rauch U. Inhibition of coagulation factor Xa improves myocardial function during CVB3-induced myocarditis. Cardiovasc Ther 2014; 32:113-9. [PMID: 24533719 DOI: 10.1111/1755-5922.12069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Myocarditis is induced by coxsackievirus B3 (CVB3). Myocardial inflammation is tied to the activation of coagulation. Coagulation factor (F) Xa, a central player in coagulation, activates matrix metalloproteinases (MMP), which modulate the remodeling. AIMS In this study, we investigated the effects of pharmacological FXa inhibition on myocardial function, inflammation, and remodeling during a CVB3-induced myocarditis. METHODS AND RESULTS Immune cells and matrix proteins were detected by immunohistochemistry. The expression of cytokines was measured by real-time PCR and the activity of MMP-2 by zymography. Left ventricular function was analyzed using microconductance pressure catheter. Treatment with the FXa inhibitor fondaparinux led to an improved left ventricular function in CVB3-induced mice compared to saline-treated controls (dPdtmax: fondaparinux 4632 ± 499.6 vs. saline 3131 ± 374.0 [mmHg/s], P = 0.0503; SV: fondaparinux 33.19 ± 4.893 vs. saline 19.32 ± 2.236 [μL], P < 0.118; CO: fondaparinux 15124 ± 2183 vs. saline 8088 ± 1035 [μL/min], P < 0.05). Therapy with fondaparinux reduced the activity of MMP-2 (fondaparinux 1.208 ± 0.1247 vs. saline 1.565 ± 0.05476, P < 0.05). The collagen type I/III ratio as well as the expression of TIMP-1 was comparable in both infection groups postinfectionem (p.i.), despite an increased infiltration of macrophages into the hearts of mice treated with fondaparinux 8 days p.i. (CD68+: fondaparinux 494.2 ± 64.73 vs. saline 306.9 ± 43.73 [cells/mm(2) ], P < 0.05). Anti-inflammatory CD206-positive M2-type macrophages were increased in the infected hearts after fondaparinux treatment (CD206+: fondaparinux 182.1 ± 18.18 vs. saline 111.6 ± 21.07 [cells/mm(2) ], P < 0.05), whereas CD80-positive M1-type macrophages were comparable in both groups. CONCLUSION In conclusion, selective inhibition of FXa improves the left ventricular function during CVB3-induced myocarditis and seems to be associated with an improved myocardial remodeling.
Collapse
Affiliation(s)
- Ronny Malz
- Centrum für Herz- und Kreislaufmedizin, Medizinische Klinik II, Charité - Universitätsmedizin Berlin Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | |
Collapse
|
9
|
Vergallo R, Joye R, Barlis P, Jia H, Tian J, Soeda T, Minami Y, Hu S, Dauerman HL, Toma C, Chan J, Lee H, Biasucci LM, Crea F, Jang IK. Bivalirudin versus unfractionated heparin for residual thrombus burden: A frequency-domain optical coherence tomography study. Catheter Cardiovasc Interv 2014; 85:575-82. [DOI: 10.1002/ccd.25631] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/23/2014] [Accepted: 08/11/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Rocco Vergallo
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Russell Joye
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Peter Barlis
- Melbourne Medical School, The University of Melbourne; Victoria Australia
| | - Haibo Jia
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Jinwei Tian
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Tsunenari Soeda
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Yoshiyasu Minami
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Sining Hu
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Harold L. Dauerman
- Division of Cardiology; University of Vermont College of Medicine; Burlington Vermont
| | - Catalin Toma
- University of Pittsburgh Medical Center; Pittsburgh Pennsylvania
| | - James Chan
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Hang Lee
- Biostatistics Center; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| | - Luigi Marzio Biasucci
- Department of Cardiovascular Medicine; Catholic University of the Sacred Heart; Rome Italy
| | - Filippo Crea
- Department of Cardiovascular Medicine; Catholic University of the Sacred Heart; Rome Italy
| | - Ik-Kyung Jang
- Cardiology Division; Massachusetts General Hospital, Harvard Medical School; Boston Massachusetts
| |
Collapse
|
10
|
Leppert U, Eisenreich A. The role of tissue factor isoforms in cancer biology. Int J Cancer 2014; 137:497-503. [PMID: 24806794 DOI: 10.1002/ijc.28959] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 05/02/2014] [Indexed: 12/17/2022]
Abstract
Tissue Factor (TF) is an evolutionary conserved glycoprotein, which is of immense importance for a variety of biologic processes. TF is expressed in two naturally occurring protein isoforms, membrane-bound "full-length" (fl)TF and soluble alternatively spliced (as)TF. The TF isoform expression is differentially modulated on post-transcriptional level via regulatory factors, such as serine/arginine-rich (SR) proteins, SR protein kinases and micro (mi)RNAs. Both isoforms mediate a variety of physiologic- and pathophysiologic-relevant functions, such as thrombogenicity, angiogenesis, cell signaling, tumor cell proliferation and metastasis. In this review, we will depict the main mechanisms regulating the TF isoform expression in cancer and under other pathophysiologic-relevant conditions. Moreover, we will summarize and discuss the latest findings regarding the role of TF and its isoforms in cancer biology.
Collapse
Affiliation(s)
- Ulrike Leppert
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charite Centrum 04/13, Berlin, Germany
| | - Andreas Eisenreich
- Charité - Universitätsmedizin Berlin, Campus Mitte, Charite Centrum 04/13, Berlin, Germany
| |
Collapse
|
11
|
Regulation of vascular function on posttranscriptional level. THROMBOSIS 2013; 2013:948765. [PMID: 24288605 PMCID: PMC3833109 DOI: 10.1155/2013/948765] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/17/2013] [Indexed: 11/17/2022]
Abstract
Posttranscriptional control of gene expression is crucial for regulating plurality of proteins and functional plasticity of the proteome under (patho)physiologic conditions. Alternative splicing as well as micro (mi)RNA-mediated mechanisms play an important role for the regulation of protein expression on posttranscriptional level. Both alternative splicing and miRNAs were shown to influence cardiovascular functions, such as endothelial thrombogenicity and the vascular tone, by regulating the expression of several vascular proteins and their isoforms, such as Tissue Factor (TF) or the endothelial nitric oxide synthase (eNOS). This review will summarize and discuss the latest findings on the (patho)physiologic role of alternative splicing processes as well as of miRNAs on modulation of vascular functions, such as coagulation, thrombosis, and regulation of the vascular tone.
Collapse
|
12
|
Eisenreich A, Leppert U. The impact of microRNAs on the regulation of tissue factor biology. Trends Cardiovasc Med 2013; 24:128-32. [PMID: 24120358 DOI: 10.1016/j.tcm.2013.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/16/2022]
Abstract
Tissue factor (TF) and its isoforms play an important role in a variety of physiologic and pathophysiologic functions, such as initiation of blood coagulation, vessel wall hemostasis, angiogenesis, and tumorigenesis. Micro(mi)RNAs are crucial for post-transcriptional control of protein generation by regulating the expression of one-third of all human genes. In recent years, miRNAs were shown to modulate the expression and biologic function of TF in different physiologic- and pathophysiologic-relevant settings, such as in autoimmune diseases and in different types of cancer. In the present review, we will summarize and discuss the latest findings regarding the impact of miRNAs on the generation of TF and its isoforms as well as on regulation of TF biology under normal and pathophysiologic conditions.
Collapse
Affiliation(s)
- Andreas Eisenreich
- Charité-Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany.
| | - Ulrike Leppert
- Charité-Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany
| |
Collapse
|
13
|
Stephenne X, Nicastro E, Eeckhoudt S, Hermans C, Nyabi O, Lombard C, Najimi M, Sokal E. Bivalirudin in combination with heparin to control mesenchymal cell procoagulant activity. PLoS One 2012; 7:e42819. [PMID: 22900053 PMCID: PMC3416788 DOI: 10.1371/journal.pone.0042819] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 07/12/2012] [Indexed: 12/11/2022] Open
Abstract
Islet and hepatocyte transplantation are associated with tissue factor-dependent activation of coagulation which elicits instant blood mediated inflammatory reaction, thereby contributing to a low rate of engraftment. The aim of this study was i) to evaluate the procoagulant activity of human adult liver-derived mesenchymal progenitor cells (hALPCs), ii) to compare it to other mesenchymal cells of extra-hepatic (bone marrow mesenchymal stem cells and skin fibroblasts) or liver origin (liver myofibroblasts), and iii) to determine the ways this activity could be modulated. Using a whole blood coagulation test (thromboelastometry), we demonstrated that all analyzed cell types exhibit procoagulant activity. The hALPCs pronounced procoagulant activity was associated with an increased tissue factor and a decreased tissue factor pathway inhibitor expression as compared with hepatocytes. At therapeutic doses, the procoagulant effect of hALPCs was inhibited by neither antithrombin activators nor direct factor Xa inhibitor or direct thrombin inhibitors individually. However, concomitant administration of an antithrombin activator or direct factor Xa inhibitor and direct thrombin inhibitor proved to be a particularly effective combination for controlling the procoagulant effects of hALPCs both in vitro and in vivo. The results suggest that this dual antithrombotic therapy should also improve the efficacy of cell transplantation in humans.
Collapse
Affiliation(s)
- Xavier Stephenne
- Université Catholique de Louvain, Institut de Recherche Expérimentale et Clinique, Unité de Recherche PEDI, Brussels, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|