1
|
Servi R, Akkoç RF, Aksu F, Servi S. Therapeutic Potential of Enzymes, Neurosteroids, and Synthetic Steroids in Neurodegenerative Disorders: A Critical Review. J Steroid Biochem Mol Biol 2025; 251:106766. [PMID: 40288591 DOI: 10.1016/j.jsbmb.2025.106766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Neurodegenerative disorders present a significant challenge to healthcare systems, mainly due to the limited availability of effective treatment options to halt or reverse disease progression. Endogenous steroids synthesized in the central nervous system, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), progesterone (PROG), and allopregnanolone (ALLO), have been identified as potential therapeutic agents for neurodegenerative diseases. Neurosteroids such as ALLO, DHEA, and PROG, as well as their synthetic analogs like Ganaxolene, Fluasterone, and Olexoxime, offer promising effects for conditions such as Alzheimer's disease (AD) and depression. Moreover, Brexanolone and Ganaxolone are synthetic steroids approved for the treatment of postpartum depression and epilepsy, respectively. Neurosteroids such as ALLO are crucial in modulating GABAergic neurotransmission and reducing neuroinflammation. These compounds enhance the activity of GABA-A receptors, leading to increased inhibitory signaling in the brain, which can help regulate mood, cognition, and neuroprotection. Small clinical trials and observational studies indicate that ALLO may have cognitive benefits, but no large-scale, definitive meta-analysis confirms a 20% improvement in AD patients. Mitochondrial dysfunction plays a vital role in the pathogenesis of numerous neurological diseases due to the high-energy demand and sensitivity of neurons to oxidative stress. Reduced mitochondrial function leads to amyloid-beta plaques and tau tangles accumulation in AD. In Parkinson's disease (PD), mitochondrial dysfunction resulting from the PINK1 or Parkin genes leads to energy deficiencies and the accumulation of toxic byproducts. Mutations in genes such as SOD1, C9orf72, and TDP-43 have been associated with mitochondrial dysfunction in amyotrophic lateral sclerosis (ALS). Moreover, studies on these neurodegenerative diseases suggest that inflammation is not merely a consequence of neurodegeneration but is also an essential factor in this process. Many neurological disorders involve multifaceted interactions between genetics, the environment, and immune responses, making it difficult to pinpoint their exact causes. Future research aims to overcome these hurdles through genetic advances, regenerative medicine, and personalized therapies. Cutting-edge technologies such as artificial intelligence and high-throughput screening are expected to accelerate drug discovery and improve diagnostic accuracy. Increasing collaboration between interdisciplinary fields such as bioinformatics, neuroscience, and immunology will lead to innovative treatment strategies. This comprehensive review discusses the therapeutic effects of enzymes, neurosteroids, and synthetic steroids in different neurodegenerative diseases, particularly AD, PD, ALS, and MS. Potential challenges in the therapeutic use of neurosteroids, such as the limited bioavailability and off-target effects of synthetic steroids, are also discussed, and an up-to-date and comprehensive review of the impact of these steroids on neurodegenerative disorders is presented.
Collapse
Affiliation(s)
- Refik Servi
- Fırat University, Faculty of Medicine, Department of Anatomy, Elazığ.
| | | | - Feyza Aksu
- Fırat University, Faculty of Medicine, Department of Anatomy, Elazığ.
| | - Süleyman Servi
- Fırat University, Faculty of Science, Department of Chemistry, Elazığ.
| |
Collapse
|
2
|
Zhou W, Chen H, Chen X, Gao J, Ji W. Recent advances in research on common targets of neurological and sex hormonal influences on asthma. Clin Transl Allergy 2025; 15:e70022. [PMID: 39800672 PMCID: PMC11725405 DOI: 10.1002/clt2.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/22/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Asthma is currently one of the most common of respiratory diseases, severely affecting the lives of patients. With the in-depth study of the role of the nervous system and sex hormones on the development of asthma, it has been found that the nervous system and sex hormones are related to each other in the pathway of asthma. OBJECTIVE To investigate the effects of sex hormones and the nervous system on the development of asthma. METHODS In this review, we searched for a large number of relevant literature to elucidate the unique mechanisms of sex hormones and the nervous system on asthma development, and summarized several common targets in the pathways of sex hormones and the nervous system on asthma. CONCLUSION We summarize several common important targets in the pathways of action of sex hormones and the nervous system in asthma, provide new directions and ideas for asthma treatment, and discuss current therapeutic limitations and future possibilities. Finally, the article predicts future applications of several important targets in asthma therapy.
Collapse
Affiliation(s)
- Wenting Zhou
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Huan Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Xinyu Chen
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Jing Gao
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| | - Wenting Ji
- China Chengdu University of Traditional Chinese MedicineChengduSichuanChina
| |
Collapse
|
3
|
Scheggi S, Concas L, Corsi S, Carta M, Melis M, Frau R. Expanding the therapeutic potential of neuro(active)steroids: a promising strategy for hyperdopaminergic behavioral phenotypes. Neurosci Biobehav Rev 2024; 164:105842. [PMID: 39103066 DOI: 10.1016/j.neubiorev.2024.105842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/10/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Imbalances in dopamine activity significantly contribute to the pathophysiology of several neuropsychiatric disorders, including addiction, ADHD, schizophrenia, impulse control disorders, and Parkinson's Disease. Neuro(active)steroids, comprising endogenous steroids that finely modulate neuronal activity, are considered crucial regulators of brain function and behavior, with implications in various physiological processes and pathological conditions. Specifically, subclasses of Neuro(active)steroids belonging to the 5α reductase pathway are prominently involved in brain disorders characterized by dopaminergic signaling imbalances. This review highlights the neuromodulatory effects of Neuro(active)steroids on the dopamine system and related aberrant behavioral phenotypes. We critically appraise the role of pregnenolone, progesterone, and allopregnanolone on dopamine signaling. Additionally, we discuss the impact of pharmacological interventions targeting 5α reductase activity in neuropsychiatric conditions characterized by excessive activation of the dopaminergic system, ranging from psychotic (endo)phenotypes and motor complications to decision-making problems and addiction.
Collapse
Affiliation(s)
- Simona Scheggi
- Dept. of Molecular and Developmental Medicine, University of Siena, Italy
| | - Luca Concas
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Sara Corsi
- Dept. of Developmental and Regenerative Neurobiology, Lund University, Sweden
| | - Manolo Carta
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Miriam Melis
- Dept. Of Biomedical Sciences, University of Cagliari, Italy
| | - Roberto Frau
- Dept. Of Biomedical Sciences, University of Cagliari, Italy; Guy Everett Laboratory, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
4
|
Walton NL, Antonoudiou P, Maguire JL. Neurosteroid influence on affective tone. Neurosci Biobehav Rev 2023; 152:105327. [PMID: 37499891 PMCID: PMC10528596 DOI: 10.1016/j.neubiorev.2023.105327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 07/07/2023] [Accepted: 07/23/2023] [Indexed: 07/29/2023]
Abstract
Affective disorders such as depression and anxiety are among the most prevalent psychiatric illnesses and causes of disability worldwide. The recent FDA-approval of a novel antidepressant treatment, ZULRESSO® (Brexanolone), a synthetic neurosteroid has fueled interest into the role of neurosteroids in the pathophysiology of depression as well as the mechanisms mediating the antidepressant effects of these compounds. The majority of studies examining the impact of neurosteroids on affective states have relied on the administration of exogenous neurosteroids; however, neurosteroids can also be synthesized endogenously from cholesterol or steroid hormone precursors. Despite the well-established influence of exogenous neurosteroids on affective states, we still lack an understanding of the role of endogenous neurosteroids in modulating affective tone. This review aims to summarize the current literature supporting the influence of neurosteroids on affective states in clinical and preclinical studies, as well as recent evidence suggesting that endogenous neurosteroids may set a baseline affective tone.
Collapse
Affiliation(s)
- Najah L Walton
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Pantelis Antonoudiou
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Jamie L Maguire
- Program of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA; Department of Neuroscience, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| |
Collapse
|
5
|
Song M, Liu Y, Zhou J, Shi H, Su X, Shao M, Yang Y, Wang X, Zhao J, Guo D, Liu Q, Zhang L, Zhang Y, Lv L, Li W. Potential plasma biomarker panels identification for the diagnosis of first-episode schizophrenia and monitoring antipsychotic monotherapy with the use of metabolomics analyses. Psychiatry Res 2023; 321:115070. [PMID: 36706560 DOI: 10.1016/j.psychres.2023.115070] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/17/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Schizophrenia (SCZ) is a severe mental disorder. Using liquid chromatography mass spectrometry, we performed comprehensive metabolomics analyses of plasma samples from healthy controls (HC) and first episode SCZ patients before and after an acute period of medication. Ten lipid metabolites and 27 soluble small molecules were identified as potential biomarkers associated with the diagnosis and treatment of SCZ. These metabolites were significantly reduced in SCZ, and lipids and sulfate were significantly increased after treatment. Of the metabolites identified, four showed significant correlations with the Positive and Negative Syndrome Scale total scores. A biomarker panel composed of alpha-dimorphecolic, Phosphatidylcholine (PC) (16:0/18:1(11Z)), 1-methylnicotinamide, Phosphatidylethanolamine (PE) (20:2(11Z,14Z)/18:2(9Z,12Z)), sulfate, and L-tryptophan was selected to distinguish SCZ from HC; this provided the maximum classification performance with an AUC of 0.972. A biomarker panel including C16 sphinganine, gamma-linolenic acid, linoleic acid, PC(16:0/18:1(11Z)), PE(20:2(11Z,14Z)/18:2(9Z,12Z)), and sulfate, was selected for discrimination between SCZ before and after medication, and produced the optimal classification performance with an AUC of 0.905. Disturbances in lipid metabolism, sulfation modification, tryptophan metabolism, anti-inflammatory and antioxidant systems, and unsaturated fatty acids metabolism, were identified in SCZ. Our findings could facilitate the development of objective diagnostic or drug treatment monitoring tools for schizophrenia.
Collapse
Affiliation(s)
- Meng Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Ya Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiahui Zhou
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Han Shi
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Xi Su
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Minglong Shao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yongfeng Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiujuan Wang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Jingyuan Zhao
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Dong Guo
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Qing Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Luwen Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yan Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China
| | - Luxian Lv
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China.
| | - Wenqiang Li
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Mental Hospital, Xinxiang, Henan, China; Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
6
|
Yue W, Huang H, Duan J. Potential diagnostic biomarkers for schizophrenia. MEDICAL REVIEW (BERLIN, GERMANY) 2022; 2:385-416. [PMID: 37724326 PMCID: PMC10388817 DOI: 10.1515/mr-2022-0009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/20/2022] [Indexed: 09/20/2023]
Abstract
Schizophrenia (SCH) is a complex and severe mental disorder with high prevalence, disability, mortality and carries a heavy disease burden, the lifetime prevalence of SCH is around 0.7%-1.0%, which has a profound impact on the individual and society. In the clinical practice of SCH, key problems such as subjective diagnosis, experiential treatment, and poor overall prognosis are still challenging. In recent years, some exciting discoveries have been made in the research on objective biomarkers of SCH, mainly focusing on genetic susceptibility genes, metabolic indicators, immune indices, brain imaging, electrophysiological characteristics. This review aims to summarize the biomarkers that may be used for the prediction and diagnosis of SCH.
Collapse
Affiliation(s)
- Weihua Yue
- Institute of Mental Health, Peking University Sixth Hospital, Beijing, China
- National Clinical Research Center for Mental Disorders & NHC Key Laboratory of Mental Health (Peking University) and Chinese Academy of Medical Sciences Research Unit, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Hailiang Huang
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Jubao Duan
- Center for Psychiatric Genetics, NorthShore University Health System, Evanston, IL, USA
- Department of Psychiatry and Behavioral Neurosciences, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci 2021; 11:1298. [PMID: 34679364 PMCID: PMC8533829 DOI: 10.3390/brainsci11101298] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is involved in the pathophysiology of many neuropsychiatric disorders. Increased HPA axis activity can be observed during chronic stress, which plays a key role in the pathophysiology of depression. Overactivity of the HPA axis occurs in major depressive disorder (MDD), leading to cognitive dysfunction and reduced mood. There is also a correlation between the HPA axis activation and gut microbiota, which has a significant impact on the development of MDD. It is believed that the gut microbiota can influence the HPA axis function through the activity of cytokines, prostaglandins, or bacterial antigens of various microbial species. The activity of the HPA axis in schizophrenia varies and depends mainly on the severity of the disease. This review summarizes the involvement of the HPA axis in the pathogenesis of neuropsychiatric disorders, focusing on major depression and schizophrenia, and highlights a possible correlation between these conditions. Although many effective antidepressants are available, a large proportion of patients do not respond to initial treatment. This review also discusses new therapeutic strategies that affect the HPA axis, such as glucocorticoid receptor (GR) antagonists, vasopressin V1B receptor antagonists and non-psychoactive CB1 receptor agonists in depression and/or schizophrenia.
Collapse
Affiliation(s)
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland; (J.M.); (G.J.); (M.H.)
| | | |
Collapse
|
8
|
Yaderets VV, Karpova NV, Stytsenko TS, Andryushina VA, Kurilov DV, Zavarzin IV. Study of biotransformation of cholesterol 3β-methyl ether by mycobacteria Mycobacterium sp. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Candidate metabolic biomarkers for schizophrenia in CNS and periphery: Do any possible associations exist? Schizophr Res 2020; 226:95-110. [PMID: 30935700 DOI: 10.1016/j.schres.2019.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 03/08/2019] [Accepted: 03/11/2019] [Indexed: 02/07/2023]
Abstract
Due to the limitations of analytical techniques and the complicity of schizophrenia, nowadays it is still a challenge to diagnose and stratify schizophrenia patients accurately. Many attempts have been made to identify and validate available biomarkers for schizophrenia from CSF and/or peripheral blood in clinical studies with consideration to disease stages, antipsychotic effects and even gender differences. However, conflicting results handicap the validation and application of biomarkers for schizophrenia. In view of availability and feasibility, peripheral biomarkers have superior advantages over biomarkers in CNS. Meanwhile, schizophrenia is considered to be a devastating neuropsychiatric disease mainly taking place in CNS featured by widespread defects in multiple metabolic pathways whose dynamic interactions, until recently, have been difficult to difficult to investigate. Evidence for these alterations has been collected piecemeal, limiting the potential to inform our understanding of the interactions among relevant biochemical pathways. Taken these points together, it will be interesting to investigate possible associations of biomarkers between CNS and periphery. Numerous studies have suggested putative correlations within peripheral and CNS systems especially for dopaminergic and glutamatergic metabolic biomarkers. In addition, it has been demonstrated that blood concentrations of BDNF protein can also reflect its changes in the nervous system. In turn, BDNF also interacts with glutamatergic, dopaminergic and serotonergic systems. Therefore, this review will summarize metabolic biomarkers identified both in the CNS (brain tissues and CSF) and peripheral blood. Further, more attentions will be paid to discussing possible physical and functional associations between CNS and periphery, especially with respect to BDNF.
Collapse
|
10
|
Froger N. [New therapeutic avenues for neurosteroids in psychiatric diseases]. Biol Aujourdhui 2020; 213:131-140. [PMID: 31829933 DOI: 10.1051/jbio/2019023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Indexed: 12/28/2022]
Abstract
Discovered in the eighties by Pr Baulieu and colleagues, neurosteroids are a class of neuroactive brain-born steroids, which comprises the steroid hormones, their biosynthesis precursors and their metabolites. They can act through genomic as well as non-genomic pathways. Genomic pathways, only triggered by the neurosteroid hormones, are, in the brain, the same as those largely described in the periphery: the binding of these steroid hormones to nuclear receptors leads to transcription regulations. On the other hand, their precursors and metabolites, such as pregnenolone (PREG), dehydroepiandrosterone (DHEA), their respective sulfate esters, pregnenolone sulfate (PREG-S) and DHEA sulfate (DHEA-S) and allopregnanolone (ALLOP), are defined as neurosteroids, but no corresponding nuclear receptors have been identified so far. In fact, they trigger non-genomic pathways which consist in (i) inhibitory ionotropic receptors, (ii) excitatory ionotropic receptors and (iii) the microtubular system. Hence, inhibitory neurosteroids, whose mostly studied representative is ALLOP, positively modulate, or directly activate, the ionotropic GABA-A receptors. In contrast, excitatory neurosteroids, represented by PREG-S, DHEA-S and DHEA, inhibit the GABA-A receptors, and activate, directly or indirectly, through the sigma-1 receptors, the NMDA glutamate receptors. Neurosteroids of the third group, the microtubular neurosteroids, are able to bind microtubule associated proteins, in particular MAP2, to promote microtubule assembly, neurite outgrowth and in fine structural neuroplasticity. So far, PREG, DHEA and progesterone are the three identified microtubular neurosteroids. The pharmacological properties of neurosteroids have led to specific investigations for assessing their therapeutic potentialities in psychiatric diseases, using validated animal models. In some cases, clinical trials were also performed. These studies showed that ALLOP, the main inhibitory neurosteroid, displayed clear-cut anxiolytic-like and antidepressant-like efficacy in animals. It has been subsequently developed as Brexanolone and tested with success in phase III of clinical trials for the treatment of post-partum depression. Although showing pro-cognitive properties in animals, the sulfated neurosteroids, PREG-S and DHEA-S, were, in contrast, never tested in clinical trials, probably due to their poor stability and proconvulsivant side effects. Their respective non-sulfated forms, PREG and DHEA, showed antidepressant and antipsychotic efficacies in clinical trials, but these drugs never reached the phase III of clinical development because their therapeutic uses would have led to an overproduction of active metabolites responsible for intolerable side effects. The alternative strategy which has been selected consists of the development of non-metabolizable synthetic derivatives of these natural steroids, which keep the same neuroactive properties as their parent molecules, but are devoid of any hormonal side effects. An example of such innovative drugs is MAP4343, a synthetic derivative of PREG, which exhibits potent antidepressant-like efficacy in validated animal models. It is currently tested in depressed patients.
Collapse
Affiliation(s)
- Nicolas Froger
- MAPREG SAS, CHU Bicêtre, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
11
|
Frau R, Traccis F, Bortolato M. Neurobehavioural complications of sleep deprivation: Shedding light on the emerging role of neuroactive steroids. J Neuroendocrinol 2020; 32:e12792. [PMID: 31505075 PMCID: PMC6982588 DOI: 10.1111/jne.12792] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/06/2019] [Accepted: 09/05/2019] [Indexed: 01/05/2023]
Abstract
Sleep deprivation (SD) is associated with a broad spectrum of cognitive and behavioural complications, including emotional lability and enhanced stress reactivity, as well as deficits in executive functions, decision making and impulse control. These impairments, which have profound negative consequences on the health and productivity of many individuals, reflect alterations of the prefrontal cortex (PFC) and its connectivity with subcortical regions. However, the molecular underpinnings of these alterations remain elusive. Our group and others have begun examining how the neurobehavioural outcomes of SD may be influenced by neuroactive steroids, a family of molecules deeply implicated in sleep regulation and the stress response. These studies have revealed that, similar to other stressors, acute SD leads to increased synthesis of the neurosteroid allopregnanolone in the PFC. Whereas this up-regulation is likely aimed at counterbalancing the detrimental impact of oxidative stress induced by SD, the increase in prefrontal allopregnanolone levels contributes to deficits in sensorimotor gating and impulse control, signalling a functional impairment of PFC. This scenario suggests that the synthesis of neuroactive steroids during acute SD may be enacted as a neuroprotective response in the PFC; however, such compensation may in turn set off neurobehavioural complications by interfering with the corticolimbic connections responsible for executive functions and emotional regulation.
Collapse
Affiliation(s)
- Roberto Frau
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
- National Institute of Neuroscience (INN), University of Cagliari, Monserrato (CA), Italy
| | - Francesco Traccis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Monserrato (CA), Italy
| | - Marco Bortolato
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Utah, Salt Lake City (UT), USA
| |
Collapse
|
12
|
Sabbi KH, Muller MN, Machanda ZP, Otali E, Fox SA, Wrangham RW, Emery Thompson M. Human-like adrenal development in wild chimpanzees: A longitudinal study of urinary dehydroepiandrosterone-sulfate and cortisol. Am J Primatol 2019; 82:e23064. [PMID: 31709585 DOI: 10.1002/ajp.23064] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/03/2019] [Accepted: 10/11/2019] [Indexed: 11/07/2022]
Abstract
The development of the adrenal cortex varies considerably across primates, being most conspicuous in humans, where a functional zona reticularis-the site of dehydroepiandrosterone-sulfate (DHEA/S) production-does not develop until middle childhood (5-8 years). Prior reports suggest that a human-like adrenarche, associated with a sharp prepubertal increase in DHEA/S, may only occur in the genus Pan. However, the timing and variability in adrenarche in chimpanzees remain poorly described, owing to the lack of longitudinal data, or data from wild populations. Here, we use urine samples from East African chimpanzees (Pan troglodytes schweinfurthii) collected over 20 years at Kanyawara in Kibale National Park, Uganda, to trace the developmental trajectories of DHEAS (n = 1,385 samples, 53 individuals) and cortisol (n = 12,726 samples, 68 individuals). We used generalized additive models (GAM) to investigate the relationship between age, sex, and hormone levels. Adrenarche began earlier in chimpanzees (~2-3 years) compared with what has been reported in humans (6-8 years) and, unlike humans, male and female chimpanzees did not differ significantly in the timing of adrenarche nor in DHEAS concentrations overall. Similar to what has been reported in humans, cortisol production decreased through early life, reaching a nadir around puberty (8-11 years), and a sex difference emerged with males exhibiting higher urinary cortisol levels compared with females by early adulthood (15-16 years). Our study establishes that wild chimpanzees exhibit a human-like pattern of cortisol production during development and corroborates prior reports from captive chimpanzees of a human-like adrenarche, accompanied by significant developmental increases in DHEAS. While the role of these developmental hormone shifts are as yet unclear, they have been implicated in stages of rapid behavioral development once thought unique to humans, especially in regard to explaining the divergence of female and male social behavior before pubertal increases in gonadal hormones.
Collapse
Affiliation(s)
- Kris H Sabbi
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico
| | - Martin N Muller
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico
- The Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Zarin P Machanda
- The Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Anthropology, Tufts University, Massachusetts
| | - Emily Otali
- The Kibale Chimpanzee Project, Fort Portal, Uganda
| | - Stephanie A Fox
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico
| | - Richard W Wrangham
- The Kibale Chimpanzee Project, Fort Portal, Uganda
- Department of Human Evolutionary Biology, Harvard University, Cambridge, Massachusetts
| | - Melissa Emery Thompson
- Department of Anthropology, University of New Mexico, Albuquerque, New Mexico
- The Kibale Chimpanzee Project, Fort Portal, Uganda
| |
Collapse
|
13
|
Gogos A, Ney LJ, Seymour N, Van Rheenen TE, Felmingham KL. Sex differences in schizophrenia, bipolar disorder, and post-traumatic stress disorder: Are gonadal hormones the link? Br J Pharmacol 2019; 176:4119-4135. [PMID: 30658014 PMCID: PMC6877792 DOI: 10.1111/bph.14584] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/13/2018] [Accepted: 11/25/2018] [Indexed: 12/30/2022] Open
Abstract
In this review, we describe the sex differences in prevalence, onset, symptom profiles, and disease outcome that are evident in schizophrenia, bipolar disorder, and post-traumatic stress disorder. Women with schizophrenia tend to exhibit less disease impairment than men. By contrast, women with post-traumatic stress disorder are more affected than men. The most likely candidates to explain these sex differences are gonadal hormones. This review details the clinical evidence that oestradiol and progesterone are dysregulated in these psychiatric disorders. Notably, existing data on oestradiol, and to a lesser extent, progesterone, suggest that low levels of these hormones may increase the risk of disease development and worsen symptom severity. We argue that future studies require a more inclusive, considered analysis of gonadal steroid hormones and the intricacies of the interactions between them, with methodological rigour applied, to enhance our understanding of the roles of steroid hormones in psychiatric disorders. LINKED ARTICLES: This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Andrea Gogos
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
| | - Luke J. Ney
- School of Medicine (Psychology)University of TasmaniaSandy BayTasmaniaAustralia
| | - Natasha Seymour
- Hormones in Psychiatry LaboratoryFlorey Institute of Neuroscience and Mental HealthParkvilleVictoriaAustralia
- Faculty of Medicine, Dentistry and Health SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| | - Tamsyn E. Van Rheenen
- Melbourne Neuropsychiatry Centre, Department of PsychiatryUniversity of MelbourneParkvilleVictoriaAustralia
- Centre for Mental Health, School of Health Sciences, Faculty of Health, Arts and DesignSwinburne UniversityMelbourneVictoriaAustralia
| | - Kim L. Felmingham
- School of Psychological SciencesUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
14
|
Knytl P, Voráčková V, Dorazilová A, Rodriguez M, Cvrčková A, Kofroňová E, Kuchař M, Kratochvílová Z, Šustová P, Čerešňáková S, Mohr P. Neuroactive Steroids and Cognitive Functions in First-Episode Psychosis Patients and Their Healthy Siblings. Front Psychiatry 2019; 10:390. [PMID: 31275177 PMCID: PMC6591670 DOI: 10.3389/fpsyt.2019.00390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/17/2019] [Indexed: 12/23/2022] Open
Abstract
Background: Neuroactive steroids (NAS) affect neurotransmitter systems and cognition; thus, they play role in etiopathogenesis of psychiatric disorders. Aims: The primary aim was to examine cognition and effects of NAS on cognitive functioning in first-episode psychosis patients and in their healthy siblings. The secondary aims were to verify whether cognitive deficit is an endophenotype of psychosis and whether higher NAS levels represent a high-risk factor for psychosis. Methods: Studied participants were 1) patients with first episode of psychosis, 2) healthy siblings of the patients, and 3) matching healthy controls. Study procedures included administration of a battery of neuropsychological tests assessing six cognitive domains and examination of NAS plasma levels [cortisol (CORT), 11-deoxycorticosterone (DOC), testosterone (TEST), dehydroepiandrostendione (DHEA), dihydrotestosterone (DHT), and progesterone (PROG)]. Results: A total of 67 subjects were analyzed (16 patients, 22 siblings, and 29 controls). Significant group differences were found in most of the cognitive domains; the patients had the lowest scores. The Kruskal-Wallis test revealed significant group differences in CORT levels (p < 0.01), TEST (p < 0.01), and DHT (p < 0.001); no difference was found in PROG, DHEA, and DOC. All cognitive domains, except for attention, were affected by the NAS levels. CORT levels of patients correlated with speed of processing (r = 0.55) and working memory (r = 0.52), while PROG levels correlated with abstraction (r = -0.63). In siblings, there was a negative correlation between TEST levels and verbal memory (r = -0.51) and PROG with attention (r = -0.47). Conclusions: Our results verified that individual domains of cognitive deficit (abstraction and verbal memory) can be considered as an endophenotype of psychosis. Higher levels of cortisol and testosterone in siblings are consistent with high-risk states for psychosis. Multiple interactions between NAS and cognitive functioning, particularly memory functions, were observed. Study limitations (small sample size and administration of antipsychotic medication) did not allow us to establish unequivocally NAS as an endophenotype.
Collapse
Affiliation(s)
- Pavel Knytl
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Veronika Voráčková
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Aneta Dorazilová
- National Institute of Mental Health, Klecany, Czechia.,Faculty of Arts, Masaryk University, Brno, Czechia
| | - Mabel Rodriguez
- National Institute of Mental Health, Klecany, Czechia.,Faculty of Arts, Charles University, Prague, Czechia
| | - Aneta Cvrčková
- National Institute of Mental Health, Klecany, Czechia.,Faculty of Social Studies, Masaryk University, Brno, Czechia
| | | | - Martin Kuchař
- National Institute of Mental Health, Klecany, Czechia.,University of Chemistry and Technology, Prague, Czechia
| | | | - Petra Šustová
- National Institute of Mental Health, Klecany, Czechia
| | - Silvie Čerešňáková
- National Institute of Mental Health, Klecany, Czechia.,First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Mohr
- National Institute of Mental Health, Klecany, Czechia.,Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
15
|
Savic D, Knezevic G, Matic G, Damjanovic S. PTSD and depressive symptoms are linked to DHEAS via personality. Psychoneuroendocrinology 2018; 92:29-33. [PMID: 29621722 DOI: 10.1016/j.psyneuen.2018.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 11/17/2022]
Abstract
BACKGROUND Research results on dehydroepiandrosterone sulfate ester (DHEAS) in post-traumatic stress disorder (PTSD) are inconsistent. We hypothesized that personality traits could be the confounders of DHEAS levels and disease symptoms, which could in part explain the discrepancy in findings. METHOD This study was a part of a broader project in which simultaneous psychological and biological investigations were carried out in hospital conditions. 380 male subjects were categorized in four groups: A) current PTSD (n = 132), B) lifetime PTSD (n = 66), C) trauma controls (n = 101), and D) healthy controls (n = 81), matched by age. RESULTS The level of DHEAS is significantly lower in the current PTSD group than in trauma controls. All groups significantly differ in personality traits Disintegration and Neuroticism (current PTSD group having the highest scores). DHEAS is related to both PTSD and depressive symptoms; however, Structural Equation Model (SEM) shows that the relations are indirect, realized via their confounder - personality trait Disintegration. CONCLUSIONS According to our project results, DHEAS is the second putative biomarker for trauma-related disorders that fails to fulfil this expectation. It appears to be more directly related to personality than to the disease symptoms (the first one being basal cortisol). Our data promote personality as a biologically based construct with seemingly important role in understanding the mental health status.
Collapse
Affiliation(s)
- Danka Savic
- University of Belgrade, Vinca Institute, Laboratory of Theoretical and Condensed Matter Physics 020/2, Mike Petrovica Alasa 12-14, 11001 Belgrade, Serbia.
| | - Goran Knezevic
- University of Belgrade, School of Psychology, Cika Ljubina 18-20, 11000 Belgrade, Serbia.
| | - Gordana Matic
- University of Belgrade, Institute for Biological Research "Sinisa Stankovic", Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetozar Damjanovic
- University of Belgrade, Clinic of Endocrinology, Diabetes and Metabolic Diseases, Doktora Subotica 13, 11000 Belgrade, Serbia.
| |
Collapse
|
16
|
Hoenders HR, Bartels-Velthuis AA, Vollbehr NK, Bruggeman R, Knegtering H, de Jong JT. Natural Medicines for Psychotic Disorders: A Systematic Review. J Nerv Ment Dis 2018; 206:81-101. [PMID: 29373456 PMCID: PMC5794244 DOI: 10.1097/nmd.0000000000000782] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Patients with psychotic disorders regularly use natural medicines, although it is unclear whether these are effective and safe. The aim of this study was to provide an overview of evidence for improved outcomes by natural medicines. A systematic literature search was performed through Medline, PsycINFO, CINAHL, and Cochrane until May 2015. In 110 randomized controlled trials, evidence was found for glycine, sarcosine, N-acetylcysteine, some Chinese and ayurvedic herbs, ginkgo biloba, estradiol, and vitamin B6 to improve psychotic symptoms when added to antipsychotics. Ginkgo biloba and vitamin B6 seemed to reduce tardive dyskinesia and akathisia. Results on other compounds were negative or inconclusive. All natural agents, except reserpine, were well tolerated. Most study samples were small, study periods were generally short, and most results need replication. However, there is some evidence for beneficial effects of certain natural medicines.
Collapse
Affiliation(s)
- H.J. Rogier Hoenders
- *Lentis, Center for Integrative Psychiatry; †University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center; ‡Lentis Mental Health Institution; §University of Groningen, University Medical Center Groningen, Neuroimaging Center; ∥University of Amsterdam, Amsterdam, the Netherlands; and ¶Boston School of Medicine, Boston, Massachusetts
| | - Agna A. Bartels-Velthuis
- *Lentis, Center for Integrative Psychiatry; †University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center; ‡Lentis Mental Health Institution; §University of Groningen, University Medical Center Groningen, Neuroimaging Center; ∥University of Amsterdam, Amsterdam, the Netherlands; and ¶Boston School of Medicine, Boston, Massachusetts
| | - Nina K. Vollbehr
- *Lentis, Center for Integrative Psychiatry; †University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center; ‡Lentis Mental Health Institution; §University of Groningen, University Medical Center Groningen, Neuroimaging Center; ∥University of Amsterdam, Amsterdam, the Netherlands; and ¶Boston School of Medicine, Boston, Massachusetts
| | - Richard Bruggeman
- *Lentis, Center for Integrative Psychiatry; †University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center; ‡Lentis Mental Health Institution; §University of Groningen, University Medical Center Groningen, Neuroimaging Center; ∥University of Amsterdam, Amsterdam, the Netherlands; and ¶Boston School of Medicine, Boston, Massachusetts
| | - Henderikus Knegtering
- *Lentis, Center for Integrative Psychiatry; †University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center; ‡Lentis Mental Health Institution; §University of Groningen, University Medical Center Groningen, Neuroimaging Center; ∥University of Amsterdam, Amsterdam, the Netherlands; and ¶Boston School of Medicine, Boston, Massachusetts
| | - Joop T.V.M. de Jong
- *Lentis, Center for Integrative Psychiatry; †University of Groningen, University Medical Center Groningen, University Center for Psychiatry, Rob Giel Research Center; ‡Lentis Mental Health Institution; §University of Groningen, University Medical Center Groningen, Neuroimaging Center; ∥University of Amsterdam, Amsterdam, the Netherlands; and ¶Boston School of Medicine, Boston, Massachusetts
| |
Collapse
|
17
|
Kashani L, Shams N, Moazen-Zadeh E, Karkhaneh-Yousefi MA, Sadighi G, Khodaie-Ardakani MR, Rezaei F, Rahiminejad F, Akhondzadeh S. Pregnenolone as an adjunct to risperidone for treatment of women with schizophrenia: A randomized double-blind placebo-controlled clinical trial. J Psychiatr Res 2017; 94:70-77. [PMID: 28688338 DOI: 10.1016/j.jpsychires.2017.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 06/21/2017] [Accepted: 06/27/2017] [Indexed: 01/13/2023]
Abstract
There have been few studies of pregnenolone therapy in schizophrenia and those that exist have been subject to several critical limitations, thus yielding inconsistent results. We attempted to assess the therapeutic effect of pregnenolone in a patient sample as homogeneous as possible. In this randomized double-blind clinical trial, 82 female inpatients with chronic schizophrenia, who had discontinued their antipsychotic medications for at least one week in case of any oral antipsychotic medication or a month for any depot antipsychotic medication, received risperidone plus either pregnenolone (50 mg/day) or placebo for 8 weeks. Inclusion criteria were acute illness with a baseline Positive and Negative Syndrome Scale (PANSS) negative subscale score of ≥20. Exclusion criteria were the presence of severe depression or other concomitant psychiatric disorders. Primary outcome was defined as the difference in the PANSS total score change from baseline to week 8 in the pregnenolone group compared to the placebo group. No significant difference was found in the PANSS total score changes between the two arms (mean difference (CI 95%) = -9.41 (-20.24 to 1.41); p = 0.087). Significant differences were initially found for PANSS negative change scores (mean difference (CI 95%) = -2.61 (-5.03 to -0.19); p = 0.035) and general psychopathology change scores (mean difference (CI 95%) = -5.93 (-11.37 to -0.48); p = 0.033). However, these findings did not survive Bonferroni correction for multiple testing. While this trial may suggest a potential effect of pregnenolone on schizophrenia symptoms, further studies are warranted.
Collapse
Affiliation(s)
- Ladan Kashani
- Arash Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Nazila Shams
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Moazen-Zadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Gita Sadighi
- Razi Hospital, University of Social Welfare and Rehabilitation, Tehran, Iran
| | | | - Farzin Rezaei
- Qods Hospital, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatemeh Rahiminejad
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahin Akhondzadeh
- Psychiatric Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Huang YC, Hung CF, Lin PY, Lee Y, Wu CC, Hsu ST, Chen CC, Chong MY, Lin CH, Wang LJ. Gender differences in susceptibility to schizophrenia: Potential implication of neurosteroids. Psychoneuroendocrinology 2017; 84:87-93. [PMID: 28686904 DOI: 10.1016/j.psyneuen.2017.06.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/21/2017] [Accepted: 06/23/2017] [Indexed: 11/28/2022]
Abstract
Past research has indicated gender differences in the clinical characteristics and course of schizophrenia. In this study, we investigated whether gender differences in the manifestation of schizophrenia are correlated with neurosteroids, including dehydroepiandrosterone (DHEA), dehydroepiandrosterone sulfate (DHEA-S), and pregnenolone. We further explored the potential relationship between the aforementioned neurosteroids and psychopathology. We recruited 65 schizophrenic patients (36 males and 29 females) and 103 healthy control subjects (47 males and 56 females) and obtained blood samples from the subjects in the morning while in a fasting state to determine the serum levels of DHEA, DHEA-S, and pregnenolone. The psychopathology and mood symptoms of patients with schizophrenia were evaluated using the Positive and Negative Syndrome Scale (PANSS) and 17-item Hamilton Depression Rating Scale, respectively. Compared to the male control subjects, male patients with schizophrenia had significantly lower serum levels of DHEA and pregnenolone. In males with schizophrenia, the serum levels of DHEA and DHEA-S were associated with the age of onset and the duration of illness, while pregnenolone levels were associated with general symptoms of the PANSS. However, none of the neurosteroid levels were different between the female patients with schizophrenia and the female controls, and no significant correlation between neurosteroid levels and psychopathology evaluations was found among the schizophrenic females. Neurosteroids, including DHEA, DHEA-S, and pregnenolone, are involved in the pathophysiology of schizophrenia in male patients, but not in female ones. Therefore, our findings suggest that neurosteroids may be associated with gender differences in susceptibility to schizophrenia.
Collapse
Affiliation(s)
- Yu-Chi Huang
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Chung Shan Medical University School of Medicine, Taichung, Taiwan
| | - Chi-Fa Hung
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Yen Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Institute for Translational Research in Biomedical Sciences, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yu Lee
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chih-Ching Wu
- Molecular Medicine Research Center, Chang Gung University, Tao-Yuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, Chang Gung University, Tao-Yuan, Taiwan
| | - Su-Ting Hsu
- Kaohsiung Municipal Kai-Syuan Psychiatric Hospital, Kaohsiung, Taiwan
| | - Chien-Chih Chen
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Mian-Yoon Chong
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chieh-Hsin Lin
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan.
| |
Collapse
|
19
|
Melbourne JK, Feiner B, Rosen C, Sharma RP. Targeting the Immune System with Pharmacotherapy in Schizophrenia. CURRENT TREATMENT OPTIONS IN PSYCHIATRY 2017; 4:139-151. [PMID: 28674674 PMCID: PMC5493152 DOI: 10.1007/s40501-017-0114-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jennifer K. Melbourne
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Benjamin Feiner
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Cherise Rosen
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
| | - Rajiv P. Sharma
- The Psychiatric Institute, University of Illinois at Chicago, 1601 W. Taylor St., Chicago, IL, USA, 60612
- Jesse Brown Veterans Affairs Medical Center, 820 South Damen Avenue (M/C 151), Chicago, IL, USA, 60612
| |
Collapse
|
20
|
Buoli M, Caldiroli A, Serati M, Grassi S, Altamura AC. Sex Steroids and Major Psychoses: Which Role for DHEA-S and Progesterone. Neuropsychobiology 2017; 73:178-83. [PMID: 27100685 DOI: 10.1159/000444922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 02/23/2016] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Endocrine pathways seem to play a role in the etiology of major psychoses. The identification of biomarkers associated with psychotic symptoms in schizophrenia (SKZ) and mood disorders would allow the identification of high-risk subjects for delusions and hallucinations. The aim of this study was to evaluate dehydroepiandrosterone sulfate (DHEA-S) and progesterone plasma levels in drug-free patients with major psychoses and their relation with the diagnosis and history of psychotic symptoms. METHODS Eighty-nine consecutive drug-free male inpatients with SKZ or mood disorders were recruited, and DHEA-S and progesterone plasma levels were measured. The groups, divided according to pathological/normal-range hormone levels, were compared in terms of clinical variables using x03C7;2 tests with Bonferroni's corrections or multivariate analyses of variance. The same analyses were performed for groups divided according to the presence/absence of lifetime psychotic symptoms. Binary logistic regression analysis was performed using hormone levels as independent variables and history of lifetime psychotic symptoms as a dependent one. RESULTS A higher number of patients with abnormal DHEA-S levels was found to have a family history of major depressive disorder (p < 0.05). Higher DHEA-S levels (F = 8.31; p = 0.005) were found in patients with a history of psychotic symptoms. In addition, binary logistic regression confirmed that DHEA-S levels were associated with a higher probability of lifetime psychotic symptoms (p = 0.037). CONCLUSIONS Our results confirm previous data about the role of endocrine factors in the etiology of major psychoses. A high DHEA-S level might be a risk factor for psychotic symptoms. Studies with larger samples are needed to confirm these data.
Collapse
Affiliation(s)
- Massimiliano Buoli
- Department of Psychiatry, University of Milan, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | | | | | | | |
Collapse
|
21
|
Towards Using Microstate-Neurofeedback for the Treatment of Psychotic Symptoms in Schizophrenia. A Feasibility Study in Healthy Participants. Brain Topogr 2015; 29:308-21. [PMID: 26582260 DOI: 10.1007/s10548-015-0460-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
Spontaneous EEG signal can be parsed into sub-second periods of stable functional states (microstates) that assumingly correspond to brief large scale synchronization events. In schizophrenia, a specific class of microstate (class "D") has been found to be shorter than in healthy controls and to be correlated with positive symptoms. To explore potential new treatment options in schizophrenia, we tested in healthy controls if neurofeedback training to self-regulate microstate D presence is feasible and what learning patterns are observed. Twenty subjects underwent EEG-neurofeedback training to up-regulate microstate D presence. The protocol included 20 training sessions, consisting of baseline trials (resting state), regulation trials with auditory feedback contingent on microstate D presence, and a transfer trial. Response to neurofeedback was assessed with mixed effects modelling. All participants increased the percentage of time spent producing microstate D in at least one of the three conditions (p < 0.05). Significant between-subjects across-sessions results showed an increase of 0.42 % of time spent producing microstate D in baseline (reflecting a sustained change in the resting state), 1.93 % of increase during regulation and 1.83 % during transfer. Within-session analysis (performed in baseline and regulation trials only) showed a significant 1.65 % increase in baseline and 0.53 % increase in regulation. These values are in a range that is expected to have an impact upon psychotic experiences. Additionally, we found a negative correlation between alpha power and microstate D contribution during neurofeedback training. Given that microstate D has been related to attentional processes, this result provides further evidence that the training was to some degree specific for the attentional network. We conclude that microstate-neurofeedback training proved feasible in healthy subjects. The implementation of the same protocol in schizophrenia patients may promote skills useful to reduce positive symptoms by means of EEG-neurofeedback.
Collapse
|
22
|
Sex hormones and oxytocin augmentation strategies in schizophrenia: A quantitative review. Schizophr Res 2015; 168:603-13. [PMID: 25914107 DOI: 10.1016/j.schres.2015.04.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/05/2015] [Accepted: 04/01/2015] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Sex differences in incidence, onset and course of schizophrenia suggest sex hormones play a protective role in the pathophysiology. Such a role is also proposed for oxytocin, another important regulator of reproduction function. Evidence on the efficacy of sex hormones and oxytocin in the treatment of schizophrenia is summarized. METHODS Double-blind, placebo-controlled, randomized studies were included, examining augmentation with estrogens, selective estrogen receptor modulators (SERMs), testosterone, dehydroepiandrosterone (DHEA), pregnenolone, and oxytocin. Outcome measures were total symptom severity, positive and negative symptom subscores, and cognition. In meta-analyses, combined weighted effect sizes (Hedges' g) per hormone were calculated. RESULTS Twenty-four studies were included, examining 1149 patients. Significant effects were found for estrogen action (k=10), regarding total symptoms (Hedges' g=0.63, p=0.001), positive (Hedges' g=0.42, p<0.001), and negative symptoms (Hedges' g=0.35, p=0.001). Subgroup analyses yielded significant results for estrogens in premenopausal women (k=6) for total, positive, and negative symptoms, and for the SERM raloxifene in postmenopausal women (k=3) for total and negative, but not positive symptoms. Testosterone augmentation in males (k=1) was beneficial only for negative symptoms (Hedges' g=0.82, p=0.027). No overall effects were found for DHEA (k=4), pregnenolone (k=4), and oxytocin (k=6). Results for cognition (k=12) were too diverse for meta-analyses, and inspection of these data showed no consistent benefit. CONCLUSIONS Estrogens and SERMs could be effective augmentation strategies in the treatment of women with schizophrenia, although potential side effects, partially associated with longer duration use, should be taken into account. Future trials are needed to study long-term effects and effects on cognition.
Collapse
|
23
|
Babinkostova Z, Stefanovski B, Janicevic-Ivanovska D, Samardziska V. Association between Serum Cortisol and DHEA-S Levels and Response to Antipsychotic Treatment in Schizophrenia. Open Access Maced J Med Sci 2015; 3:124-8. [PMID: 27275208 PMCID: PMC4877770 DOI: 10.3889/oamjms.2015.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND Previous studies suggested that alterations in serum cortisol and DHEA-S levels may play a role in the pathophysiology of schizophrenia. AIM To compare serum cortisol and DHEA-S levels between patients with schizophrenia and healthy controls and to evaluate their association with the response to antipsychotic treatment. MATERIAL AND METHODS In this clinical prospective study were included 60 patients with schizophrenia and 40 healthy age and sex matched control subjects. Clinical evaluation of patients was performed using the Positive and Negative Symptom Scale. A questionnaire for socio-demographic and clinical data collection was used. For the purposes of the study, the examined group was divided in two subgroups: responders and nonresponders. Serum cortisol and DHEA-S levels were measured at baseline in all participants and after 3 and 6 weeks of the antipsychotic treatment in patients with schizophrenia. RESULTS Patients with schizophrenia had significantly higher serum cortisol and DHEA-S levels in comparison to the control group. Responders had significantly higher serum cortisol and DHEA-S levels compared with nonresponders. CONCLUSION Elevated serum cortisol and DHEA-S levels may play a role in the pathophysiology of schizophrenia and they may be related to positive response to antipsychotic treatment in patients with schizophrenia.
Collapse
Affiliation(s)
- Zoja Babinkostova
- University Clinic of Psychiatry, Biological Psychiatry, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Branislav Stefanovski
- University Clinic of Psychiatry, Biological Psychiatry, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Danijela Janicevic-Ivanovska
- Institute of Clinical Biochemistry, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| | - Valentina Samardziska
- University Clinic of Psychiatry, Biological Psychiatry, Faculty of Medicine, Ss Cyril and Methodius University of Skopje, Skopje, Republic of Macedonia
| |
Collapse
|
24
|
Ritsner MS, Bawakny H, Kreinin A. Pregnenolone treatment reduces severity of negative symptoms in recent-onset schizophrenia: an 8-week, double-blind, randomized add-on two-center trial. Psychiatry Clin Neurosci 2014; 68:432-40. [PMID: 24548129 DOI: 10.1111/pcn.12150] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 12/05/2013] [Accepted: 12/12/2013] [Indexed: 11/26/2022]
Abstract
AIMS Management of recent-onset schizophrenia (SZ) and schizoaffective disorder (SA) is challenging owing to frequent insufficient response to antipsychotic agents. This study aimed to test the efficacy and safety of the neurosteroid pregnenolone in patients with recent-onset SZ/SA. METHODS Sixty out- and inpatients who met DSM-IV criteria for SZ/SA, with suboptimal response to antipsychotics were recruited for an 8-week, double-blind, randomized, placebo-controlled, two-center add-on trial, that was conducted between 2008 and 2011. Participants were randomized to receive either pregnenolone (50 mg/day) or placebo added on to antipsychotic medications. The primary outcome measures were the Positive and Negative Symptoms Scale and the Assessment of Negative Symptoms scores. Secondary outcomes included assessments of functioning, and side-effects. RESULTS Analysis was by linear mixed model. Fifty-two participants (86.7%) completed the trial. Compared to placebo, adjunctive pregnenolone significantly reduced Positive and Negative Symptoms Scale negative symptom scores with moderate effect sizes (d = 0.79). Significant improvement was observed in weeks 6 and 8 of pregnenolone therapy among patients who were not treated with concomitant mood stabilizers (arms × visit × mood stabilizers; P = 0.010). Likewise, pregnenolone significantly reduced Assessment of Negative Symptoms scores compared to placebo (d = 0.57), especially on blunted affect, avolition and anhedonia domain scores. Other symptoms, functioning, and side-effects were not significantly affected by adjunctive pregnenolone. Antipsychotic agents, benzodiazepines and sex did not associate with pregnenolone augmentation. Pregnenolone was well tolerated. CONCLUSIONS Thus, add-on pregnenolone reduces the severity of negative symptoms in recent-onset schizophrenia and schizoaffective disorder, especially among patients who are not treated with concomitant mood stabilizers. Further studies are warranted.
Collapse
Affiliation(s)
- Michael S Ritsner
- Sha'ar Menashe Mental Health Center, Hadera, Israel; The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | | | | |
Collapse
|
25
|
Beyazyüz M, Albayrak Y, Beyazyüz E, Unsal C, Göka E. Increased serum dehydroepiandrosterone sulfate in the first episode but not in subsequent episodes in male patients with schizophrenia. Neuropsychiatr Dis Treat 2014; 10:687-93. [PMID: 24812513 PMCID: PMC4011925 DOI: 10.2147/ndt.s61406] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Many studies have investigated the relationship between blood levels of dehydroepiandrosterone (DHEA) and its sulfate ester (DHEA-S), cortisol, progesterone, and testosterone and the onset, prognosis, symptom severity, and treatment response of schizophrenia. In the present study, we assessed potential differences in blood levels of neurosteroids between drug-naïve first-episode patients with schizophrenia (FES), and drug-free patients with schizophrenia who were not in the first episode but were in a phase of acute exacerbation (DFP). MATERIALS AND METHODS The present study included 32 male FES, 28 male DFP, and 24 male healthy controls (HC). Groups were compared in terms of blood levels of adrenocorticotropic hormone (ACTH), cortisol, testosterone, progesterone, and DHEA-S. RESULTS Blood levels of ACTH, cortisol, testosterone, and progesterone were similar among the groups. The mean value of serum DHEA-S was significantly different among the groups (P<0.001). The value of serum DHEA-S was higher in the FES group than in the DFP and HC groups (both P<0.001). The mean values of serum DHEA-S in the HC and DFP groups were found to be similar (P=0.33). CONCLUSION We suggest that higher values of DHEA-S in the FES group compared with both the DFP and HC groups indicate that this neurosteroid response is unique to first-episode schizophrenia patients. Further studies are needed to investigate the difference in blood levels of neurosteroids in different groups in terms of age of diagnosis.
Collapse
Affiliation(s)
- Murat Beyazyüz
- Department of Psychiatry, Gölbaşı Hasvak State Hospital, Ankara, Turkey
| | - Yakup Albayrak
- Department of Psychiatry, School of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Elmas Beyazyüz
- Department of Psychiatry, Ankara Numune Education and Research Hospital, Ankara, Turkey
| | - Cüneyt Unsal
- Department of Psychiatry, School of Medicine, Namık Kemal University, Tekirdağ, Turkey
| | - Erol Göka
- Department of Psychiatry, Ankara Numune Education and Research Hospital, Ankara, Turkey
| |
Collapse
|
26
|
Bicikova M, Hill M, Ripova D, Mohr P, Hampl R. Determination of steroid metabolome as a possible tool for laboratory diagnosis of schizophrenia. J Steroid Biochem Mol Biol 2013; 133:77-83. [PMID: 22944140 DOI: 10.1016/j.jsbmb.2012.08.009] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/13/2012] [Accepted: 08/16/2012] [Indexed: 02/07/2023]
Abstract
Metabolomic studies represent a promising tool for early diagnosis of schizophrenia. The aim of this study was to find differences in the steroid spectrum in patients and controls, and to assess the diagnosis of schizophrenia by building a predictive model based on steroid data. Thirty-nine serum steroids (22 neuroactive steroids and their metabolites and 17 polar conjugates) representing steroid metabolome were measured by gas chromatography-mass spectrometry in 22 drug-naive (first episode) schizophrenia patients (13 men and 9 women) before and after six-month treatment with atypical antipsychotics. The results were compared to the data from healthy subjects (22 males, 25 females). In summary the following significant differences were found: (1) In both sexes higher levels of pregnenolone sulfate and sulfated 5α- as well as 5β-saturated metabolites of C21-steroids in progesterone metabolic pathway were found in patients, pointing to decreased activity of sulfatase. (2) In a few instances decreased levels of the respective 5α-metabolites of C21 steroids were found in patients. (3) As C19 steroids concern, in both sexes there were considerably lowered levels of 5β-reduced metabolites in patients. On the other hand, with only a few exceptions, the treatment did not significantly influence most steroid levels. Further, to assess the relationships between schizophrenia status and steroid levels and to build the predictive model of schizophrenia, multivariate regression with reduction of dimensionality (the method of orthogonal projections to latent structures, OPLS) was applied. Irrespective of the small number of patients, use of this model enabled us to state the diagnosis of schizophrenia with almost 100% sensitivity. Our findings suggest that the assessment of steroid levels may become a valid and accurate laboratory test in psychiatry. A limitation of our study is the absence of subjects with a diagnosis other than schizophrenia, so we cannot conclude whether the results are specific for schizophrenia. On the other hand, steroid metabolome model may be used as a diagnostic tool for further studies.
Collapse
|
27
|
Niitsu T, Fujisaki M, Shiina A, Yoshida T, Hasegawa T, Kanahara N, Hashimoto T, Shiraishi T, Fukami G, Nakazato M, Shirayama Y, Hashimoto K, Iyo M. A randomized, double-blind, placebo-controlled trial of fluvoxamine in patients with schizophrenia: a preliminary study. J Clin Psychopharmacol 2012; 32:593-601. [PMID: 22926591 DOI: 10.1097/jcp.0b013e3182664cfc] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Cognitive impairments in schizophrenia are associated with suboptimal psychosocial performance. Several lines of evidence have suggested that endoplasmic reticulum protein sigma-1 receptors were involved in cognitive impairments in patients with schizophrenia and that the sigma-1 receptor agonist fluvoxamine was effective in treating cognitive impairments in animal models of schizophrenia and in some patients with schizophrenia. A randomized, double-blind, placebo-controlled, parallel trial of fluvoxamine adjunctive therapy in patients with schizophrenia was performed. A total of 48 patients with chronic schizophrenia were enrolled. Subjects were randomly assigned to an 8-week administration of add-on fluvoxamine (n = 24, titrated up to 150 mg/d) or placebo (n =24) in a total 12-week double-blind trial. The primary outcome measure was the Cambridge Neuropsychological Test Automated Battery (CANTAB), assessing visual memory, working memory, attention, and executive function. The secondary outcome measures were the Positive and Negative Syndrome Scale, the Scale for the Assessment of Negative Symptoms, the Quality of Life Scale, and the Montgomery-Åsberg Depression Rating Scale. Fluvoxamine was well tolerated. No significant time × group interaction effects were observed in the scores of the CANTAB, Positive and Negative Syndrome Scale, Scale for the Assessment of Negative Symptoms, Quality of Life Scale, or the Montgomery-Åsberg Depression Rating Scale. However, in secondary analyses, the change from baseline to end point on the Spatial Working Memory strategy score (executive function) of CANTAB improved in the fluvoxamine group. This study suggests no major benefit of fluvoxamine adjunctive therapy to improve cognitive impairments in patients with schizophrenia. Nevertheless, a further study using a large sample size will be needed to confirm the secondary analyses findings.
Collapse
Affiliation(s)
- Tomihisa Niitsu
- Department of Psychiatry, Chiba University Graduate School of Medicine, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Belvederi Murri M, Pariante CM, Dazzan P, Hepgul N, Papadopoulos AS, Zunszain P, Di Forti M, Murray RM, Mondelli V. Hypothalamic-pituitary-adrenal axis and clinical symptoms in first-episode psychosis. Psychoneuroendocrinology 2012; 37:629-44. [PMID: 21930345 DOI: 10.1016/j.psyneuen.2011.08.013] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/27/2011] [Accepted: 08/24/2011] [Indexed: 11/26/2022]
Abstract
BACKGROUND Abnormalities in hypothalamic-pituitary-adrenal (HPA) axis activity have been reported in patients with psychosis, but it is still unclear how these are related to the clinical symptomatology. Inconsistent findings have emerged from previous studies on the association between cortisol levels and clinical symptoms. Methodological and/or clinical factors, such as patients' diagnosis or illness phase, might partially account for these inconsistencies. The aim of this study was to investigate the association between HPA axis activity and clinical symptoms in first-episode psychosis, taking into account diagnosis and illness phase. METHOD Saliva samples were collected in 55 subjects with first-episode psychosis to assess the Cortisol Awakening Response (CAR) and diurnal cortisol levels (AUC-DAY). Severity of symptoms was assessed with the Positive and Negative Syndrome Scale (PANSS). Scores for subscales and symptom dimensions were used as predictors in multivariate analyses in different diagnostic subgroups and in clinically remitted patients. In addition, a systematic review of the literature on this topic was conducted. RESULTS In subjects with schizophrenia (n=36), the CAR was predicted by the severity of positive symptoms (beta=0.47, p=0.04); in subjects with depressive psychoses (n=8) the CAR was predicted by excitement (beta=0.58, p=0.005), disorganization (beta=0.39, p=0.007) and depressive symptoms (beta=0.32, p=0.005). In patients with bipolar psychoses (n=11) AUC-DAY was predicted negatively by disorganization (beta=-2.82, p=0.009) and positively by excitement (beta=2.06, p=0.009) and positive symptoms (beta=1.28, p=0.02). In the sample in clinical remission (n=9), the CAR was associated with the severity of positive symptoms (beta=1.34, p=0.009) and, negatively, with excitement (beta=-1.05, p=0.04). The systematic review (on a total of 28 papers, including n=1022 patients), found that in patients with psychosis cortisol levels have been associated with the severity of multiple symptom dimensions. CONCLUSIONS HPA axis activity is associated with the severity of multiple types of symptoms in first-episode psychosis. Patients' diagnosis and clinical phase partially influence these associations.
Collapse
Affiliation(s)
- Martino Belvederi Murri
- Institute of Psychiatry, King's College London, Department of Psychological Medicine, London, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Moghaddam B, Javitt D. From revolution to evolution: the glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology 2012; 37:4-15. [PMID: 21956446 PMCID: PMC3238069 DOI: 10.1038/npp.2011.181] [Citation(s) in RCA: 728] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 07/21/2011] [Accepted: 07/21/2011] [Indexed: 12/12/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in mammalian brain. Disturbances in glutamate-mediated neurotransmission have been increasingly documented in a range of neuropsychiatric disorders including schizophrenia, substance abuse, mood disorders, Alzheimer's disease, and autism-spectrum disorders. Glutamatergic theories of schizophrenia are based on the ability of N-methyl-D-aspartate receptor (NMDAR) antagonists to induce schizophrenia-like symptoms, as well as emergent literature documenting disturbances of NMDAR-related gene expression and metabolic pathways in schizophrenia. Research over the past two decades has highlighted promising new targets for drug development based on potential pre- and postsynaptic, and glial mechanisms leading to NMDAR dysfunction. Reduced NMDAR activity on inhibitory neurons leads to disinhibition of glutamate neurons increasing synaptic activity of glutamate, especially in the prefrontal cortex. Based on this mechanism, normalizing excess glutamate levels by metabotropic glutamate group 2/3 receptor agonists has led to potential identification of the first non-monoaminergic target with comparable efficacy as conventional antipsychotic drugs for treating positive and negative symptoms of schizophrenia. In addition, NMDAR has intrinsic modulatory sites that are active targets for drug development, several of which show promise in preclinical/early clinical trials targeting both symptoms and cognition. To date, most studies have been done with orthosteric agonists and/or antagonists at specific sites. However, allosteric modulators, both positive and negative, may offer superior efficacy with less danger of downregulation.
Collapse
Affiliation(s)
- Bita Moghaddam
- Department of Neuroscience and Psychiatry, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | | |
Collapse
|
30
|
Remington G, Agid O, Foussias G. Schizophrenia as a disorder of too little dopamine: implications for symptoms and treatment. Expert Rev Neurother 2011; 11:589-607. [PMID: 21469931 DOI: 10.1586/ern.10.191] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Antipsychotics represent the first effective therapy for schizophrenia, with their benefits linked to dopamine D2 blockade. Schizophrenia was soon identified as a hyperdopaminergic disorder, and antipsychotics proved to be reasonably effective in controlling positive symptoms. However, over the years, schizophrenia has been reconceptualized more broadly, now defined as a heterogeneous disorder with multiple symptom domains. Negative and cognitive features, not particularly responsive to antipsychotic therapy, have taken on increased importance--current thinking suggests that these domains predate the onset of positive symptoms and are more closely tied to functional outcome. That they are better understood in the context of decreased dopamine activity suggests that schizophrenia may fundamentally represent a hypodopaminergic disorder. This shift in thinking has important theoretical implications from the standpoint of etiology and pathophysiology, but also clinically in terms of treatment and drug development.
Collapse
|
31
|
Ivanova SA, Semke AV, Fedorenko OY. The correlation between schizophrenia duration and the serum concentration of dehydroepiandrosterone sulfate. NEUROCHEM J+ 2011. [DOI: 10.1134/s1819712411040076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Mendrek A, Stip E. Sexual dimorphism in schizophrenia: is there a need for gender-based protocols? Expert Rev Neurother 2011; 11:951-9. [PMID: 21721913 DOI: 10.1586/ern.11.78] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Gender differences have been reported in various aspects of schizophrenia, including its epidemiology, clinical course and the response to antipsychotic medications. Over the past few years the authors have been investigating sex differences in brain function in individuals with schizophrenia and have found an intriguing disturbance of normal sexual dimorphism during emotional and cognitive processing. These results can be partly accounted for by altered levels of sex steroid hormones (i.e., estrogen and testosterone) in patients. A handful of clinical research groups have tried low doses of estrogen, testosterone or their precursors as adjunct therapies to the currently available antipsychotic medications in women and men with schizophrenia. The results have been promising, but further investigation is warranted. In the future, new more specific steroidal compounds will be developed and we will see more studies examining sex differences in the brain, behavior and mental health problems. This research will help to identify individuals who may benefit greatest from adjunct hormonal therapies and will further our understanding of the etiology of schizophrenia and other psychiatric disorders.
Collapse
Affiliation(s)
- Adrianna Mendrek
- Department of Psychiatry, Université de Montréal, Centre de recherche Fernand-Seguin, 7331 Hochelaga, Montreal (QC), H1N 3V2, Canada.
| | | |
Collapse
|
33
|
Kuroda K, Yamada S, Tanaka M, Iizuka M, Yano H, Mori D, Tsuboi D, Nishioka T, Namba T, Iizuka Y, Kubota S, Nagai T, Ibi D, Wang R, Enomoto A, Isotani-Sakakibara M, Asai N, Kimura K, Kiyonari H, Abe T, Mizoguchi A, Sokabe M, Takahashi M, Yamada K, Kaibuchi K. Behavioral alterations associated with targeted disruption of exons 2 and 3 of the Disc1 gene in the mouse. Hum Mol Genet 2011; 20:4666-83. [PMID: 21903668 DOI: 10.1093/hmg/ddr400] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Disrupted-In-Schizophrenia 1 (DISC1) is a promising candidate gene for susceptibility to psychiatric disorders, including schizophrenia. DISC1 appears to be involved in neurogenesis, neuronal migration, axon/dendrite formation and synapse formation; during these processes, DISC1 acts as a scaffold protein by interacting with various partners. However, the lack of Disc1 knockout mice and a well-characterized antibody to DISC1 has made it difficult to determine the exact role of DISC1 in vivo. In this study, we generated mice lacking exons 2 and 3 of the Disc1 gene and prepared specific antibodies to the N- and C-termini of DISC1. The Disc1 mutant mice are viable and fertile, and no gross phenotypes, such as disorganization of the brain's cytoarchitecture, were observed. Western blot analysis revealed that the DISC1-specific antibodies recognize a protein with an apparent molecular mass of ~100 kDa in brain extracts from wild-type mice but not in brain extracts from DISC1 mutant mice. Immunochemical studies demonstrated that DISC1 is mainly localized to the vicinity of the Golgi apparatus in hippocampal neurons and astrocytes. A deficiency of full-length Disc1 induced a threshold shift in the induction of long-term potentiation in the dentate gyrus. The Disc1 mutant mice displayed abnormal emotional behavior as assessed by the elevated plus-maze and cliff-avoidance tests, thereby suggesting that a deficiency of full-length DISC1 may result in lower anxiety and/or higher impulsivity. Based on these results, we suggest that full-length Disc1-deficient mice and DISC1-specific antibodies are powerful tools for dissecting the pathophysiological functions of DISC1.
Collapse
Affiliation(s)
- Keisuke Kuroda
- Department of Cell Pharmacology, Nagoya University Graduate School of Medicine, Nagoya, Aichi 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Ritsner M. The clinical and therapeutic potentials of dehydroepiandrosterone and pregnenolone in schizophrenia. Neuroscience 2011; 191:91-100. [DOI: 10.1016/j.neuroscience.2011.04.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 04/04/2011] [Accepted: 04/05/2011] [Indexed: 01/08/2023]
|
35
|
Piper T, Schlug C, Mareck U, Schänzer W. Investigations on changes in 13C/12C ratios of endogenous urinary steroids after pregnenolone administration. Drug Test Anal 2011; 3:283-90. [DOI: 10.1002/dta.281] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/17/2011] [Accepted: 02/20/2011] [Indexed: 11/08/2022]
|
36
|
Schizophrenia, "just the facts" 5. Treatment and prevention. Past, present, and future. Schizophr Res 2010; 122:1-23. [PMID: 20655178 DOI: 10.1016/j.schres.2010.05.025] [Citation(s) in RCA: 238] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/22/2010] [Accepted: 05/25/2010] [Indexed: 12/20/2022]
Abstract
The introduction of second-generation antipsychotics and cognitive therapies for schizophrenia over the past two decades generated considerable optimism about possibilities for recovery. To what extent have these developments resulted in better outcomes for affected individuals? What is the current state of our science and how might we address the many unmet needs in the prevention and treatment of schizophrenia? We trace the evolution of various treatments for schizophrenia and summarize current knowledge about available pharmacological and psychosocial treatments. We consider the widely prevalent efficacy-effectiveness gap in the application of available treatments and note the significant variability in individual treatment response and outcome. We outline an individualized treatment approach which emphasizes careful monitoring and collaborative decision-making in the context of ongoing benefit-risk assessment. We note that the evolution of both pharmacological and psychosocial treatments thus far has been based principally on serendipity and intuition. In view of our improved understanding of the etiology and pathophysiology of schizophrenia, there is an opportunity to develop prevention strategies and treatments based on this enhanced knowledge. In this context, we discuss potential psychopathological treatment targets and enumerate current pharmacological and psychosocial development efforts directed at them. Considering the stages of schizophrenic illness, we review approaches to prevent progression from the pre-symptomatic high-risk to the prodrome to the initial psychotic phase to chronicity. In view of the heterogeneity of risk factors, we summarize approaches towards targeted prevention. We evaluate the potential contribution of pharmacogenomics and other biological markers in optimizing individual treatment and outcome in the future.
Collapse
|