1
|
Subramanian S, Jain M, Misra R, Jain R. Peptide-based therapeutics targeting genetic disorders. Drug Discov Today 2024; 29:104209. [PMID: 39419376 DOI: 10.1016/j.drudis.2024.104209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/19/2024]
Abstract
Genetic disorders (GDs) are challenging to treat owing to a lack of optimal treatment regimens and intricate and often difficult-to-understand underlying biological processes. Limited therapeutic approaches, which mostly provide symptomatic relief, are available. To date, a limited number of peptide-based drugs for the treatment of GDs are available, and several candidates are under clinical study. This review provides mechanistic insights into GDs and potential target areas where peptide-based drugs are beneficial. In addition, it emphasizes the usefulness of peptides as carriers for gene delivery, biomarkers for mutation detection and peptide-based vaccines for treating GDs.
Collapse
Affiliation(s)
- Shweta Subramanian
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Meenakshi Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rajkumar Misra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India
| | - Rahul Jain
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S. A. S. Nagar, Punjab 160 062, India.
| |
Collapse
|
2
|
Kubyshkin V, Rubini M. Proline Analogues. Chem Rev 2024; 124:8130-8232. [PMID: 38941181 DOI: 10.1021/acs.chemrev.4c00007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Within the canonical repertoire of the amino acid involved in protein biogenesis, proline plays a unique role as an amino acid presenting a modified backbone rather than a side-chain. Chemical structures that mimic proline but introduce changes into its specific molecular features are defined as proline analogues. This review article summarizes the existing chemical, physicochemical, and biochemical knowledge about this peculiar family of structures. We group proline analogues from the following compounds: substituted prolines, unsaturated and fused structures, ring size homologues, heterocyclic, e.g., pseudoproline, and bridged proline-resembling structures. We overview (1) the occurrence of proline analogues in nature and their chemical synthesis, (2) physicochemical properties including ring conformation and cis/trans amide isomerization, (3) use in commercial drugs such as nirmatrelvir recently approved against COVID-19, (4) peptide and protein synthesis involving proline analogues, (5) specific opportunities created in peptide engineering, and (6) cases of protein engineering with the analogues. The review aims to provide a summary to anyone interested in using proline analogues in systems ranging from specific biochemical setups to complex biological systems.
Collapse
Affiliation(s)
| | - Marina Rubini
- School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Zorina II, Avrova NF, Zakharova IO, Shpakov AO. Prospects for the Use of Intranasally Administered Insulin and Insulin-Like Growth Factor-1 in Cerebral Ischemia. BIOCHEMISTRY (MOSCOW) 2023; 88:374-391. [PMID: 37076284 DOI: 10.1134/s0006297923030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Current approaches to the treatment of stroke have significant limitations, and neuroprotective therapy is ineffective. In view of this, searching for effective neuroprotectors and developing new neuroprotective strategies remain a pressing topic in research of cerebral ischemia. Insulin and insulin-like growth factor-1 (IGF-1) play a key role in the brain functioning by regulating the growth, differentiation, and survival of neurons, neuronal plasticity, food intake, peripheral metabolism, and endocrine functions. Insulin and IGF-1 produce multiple effects in the brain, including neuroprotective action in cerebral ischemia and stroke. Experiments in animals and cell cultures have shown that under hypoxic conditions, insulin and IGF-1 improve energy metabolism in neurons and glial cells, promote blood microcirculation in the brain, restore nerve cell functions and neurotransmission, and produce the anti-inflammatory and antiapoptotic effects on brain cells. The intranasal route of insulin and IGF-1 administration is of particular interest in the clinical practice, since it allows controlled delivery of these hormones directly to the brain, bypassing the blood-brain barrier. Intranasally administered insulin alleviated cognitive impairments in elderly people with neurodegenerative and metabolic disorders; intranasally administered insulin and IGF-1 promoted survival of animals with ischemic stroke. The review discusses the published data and results of our own studies on the mechanisms of neuroprotective action of intranasally administered insulin and IGF-1 in cerebral ischemia, as well as the prospects of using these hormones for normalization of CNS functions and reduction of neurodegenerative changes in this pathology.
Collapse
Affiliation(s)
- Inna I Zorina
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia.
| | - Natalia F Avrova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Irina O Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| | - Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences, Saint-Petersburg, 194223, Russia
| |
Collapse
|
4
|
Jurcau A, Simion A. Neuroinflammation in Cerebral Ischemia and Ischemia/Reperfusion Injuries: From Pathophysiology to Therapeutic Strategies. Int J Mol Sci 2021; 23:14. [PMID: 35008440 PMCID: PMC8744548 DOI: 10.3390/ijms23010014] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/18/2021] [Accepted: 12/18/2021] [Indexed: 02/07/2023] Open
Abstract
Its increasing incidence has led stroke to be the second leading cause of death worldwide. Despite significant advances in recanalization strategies, patients are still at risk for ischemia/reperfusion injuries in this pathophysiology, in which neuroinflammation is significantly involved. Research has shown that in the acute phase, neuroinflammatory cascades lead to apoptosis, disruption of the blood-brain barrier, cerebral edema, and hemorrhagic transformation, while in later stages, these pathways support tissue repair and functional recovery. The present review discusses the various cell types and the mechanisms through which neuroinflammation contributes to parenchymal injury and tissue repair, as well as therapeutic attempts made in vitro, in animal experiments, and in clinical trials which target neuroinflammation, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurology Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| | - Aurel Simion
- Department of Psycho-Neurosciences and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania;
- Neurorehabilitation Ward, Clinical Municipal Hospital “dr. G. Curteanu” Oradea, 410154 Oradea, Romania
| |
Collapse
|
5
|
Developing Trojan horses to induce, diagnose and suppress Alzheimer’s pathology. Pharmacol Res 2019; 149:104471. [DOI: 10.1016/j.phrs.2019.104471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/17/2019] [Accepted: 09/30/2019] [Indexed: 01/05/2023]
|
6
|
Tahsili-Fahadan P, Farrokh S, Geocadin RG. Hypothermia and brain inflammation after cardiac arrest. Brain Circ 2018; 4:1-13. [PMID: 30276330 PMCID: PMC6057700 DOI: 10.4103/bc.bc_4_18] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 03/17/2018] [Accepted: 03/18/2018] [Indexed: 12/14/2022] Open
Abstract
The cessation (ischemia) and restoration (reperfusion) of cerebral blood flow after cardiac arrest (CA) induce inflammatory processes that can result in additional brain injury. Therapeutic hypothermia (TH) has been proven as a brain protective strategy after CA. In this article, the underlying pathophysiology of ischemia-reperfusion brain injury with emphasis on the role of inflammatory mechanisms is reviewed. Potential targets for immunomodulatory treatments and relevant effects of TH are also discussed. Further studies are needed to delineate the complex pathophysiology and interactions among different components of immune response after CA and identify appropriate targets for clinical investigations.
Collapse
Affiliation(s)
- Pouya Tahsili-Fahadan
- Department of Medicine, Virginia Commonwealth University, Falls Church, Virginia, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Salia Farrokh
- Department of Pharmacy, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Romergryko G Geocadin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
7
|
Tang X, Chen F, Lin Q, You Y, Ke J, Zhao S. Bone marrow mesenchymal stem cells repair the hippocampal neurons and increase the expression of IGF-1 after cardiac arrest in rats. Exp Ther Med 2017; 14:4312-4320. [PMID: 29067112 PMCID: PMC5647699 DOI: 10.3892/etm.2017.5059] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
The present study aimed to investigate the beneficial effects and underlying mechanisms of bone marrow mesenchymal stem cells (BMSCs) on global ischemic hypoxic brain injury. Cells collected from the femurs and tibias of male Sprague Dawley rats were used to generate BMSCs following three culture passages. A rate model of cardiac arrest (CA) was induced by asphyxia. One hour following return of spontaneous circulation (ROSC), BMSCs were transplanted through injection into the tail vein. Neurological status was assessed using modified neurological severity score (mNSS) tests 1, 3 and 7 days following ROSC. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemical staining were used to detect insulin-like growth factor 1 (IGF-1) expression in the hippocampus. Furthermore, double-fluorescent labeling of green fluorescent protein (GFP) and IGF-1 was used to detect the IGF-1 expression in transplanted BMSCs. Serum levels of protein S100-B were examined using ELISA. GFP-labeled BMSCs were observed in the hippocampus at 1, 3 and 7 days post transplantation through fluorescent microscopy. BMSC transplantation resulted in reduced protein S100-B levels. The mNSS of the BMSC-treatment group was significantly reduced compared with that of the CA group. The RT-qPCR analysis and immunohistochemistry results demonstrated that BMSC treatment significantly increased IGF-1 expression in the hippocampus. In addition, the double-fluorescent labeling results demonstrated that transplanted BMSCs expressed IGF-1 in the hippocampus. The results of the present study suggest that BMSC treatment promotes the recovery of cerebral function following CA in rats possibly through the secretion of IGF-1.
Collapse
Affiliation(s)
- Xiahong Tang
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350009, P.R. China.,Fujian Provincial Institute of Emergency Medicien, Fuzhou, Fujian 350009, P.R. China.,Fujian Emergency Medical Center, Fuzhou, Fujian 350009, P.R. China
| | - Feng Chen
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350009, P.R. China.,Fujian Provincial Institute of Emergency Medicien, Fuzhou, Fujian 350009, P.R. China.,Fujian Emergency Medical Center, Fuzhou, Fujian 350009, P.R. China
| | - Qinming Lin
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350009, P.R. China.,Fujian Provincial Institute of Emergency Medicien, Fuzhou, Fujian 350009, P.R. China.,Fujian Emergency Medical Center, Fuzhou, Fujian 350009, P.R. China
| | - Yan You
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350009, P.R. China.,Fujian Provincial Institute of Emergency Medicien, Fuzhou, Fujian 350009, P.R. China.,Fujian Emergency Medical Center, Fuzhou, Fujian 350009, P.R. China
| | - Jun Ke
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350009, P.R. China.,Fujian Provincial Institute of Emergency Medicien, Fuzhou, Fujian 350009, P.R. China.,Fujian Emergency Medical Center, Fuzhou, Fujian 350009, P.R. China
| | - Shen Zhao
- Department of Emergency, Fujian Provincial Hospital, Fujian Medical University, Fuzhou, Fujian 350009, P.R. China.,Fujian Provincial Institute of Emergency Medicien, Fuzhou, Fujian 350009, P.R. China.,Fujian Emergency Medical Center, Fuzhou, Fujian 350009, P.R. China
| |
Collapse
|
8
|
GPE Promotes the Proliferation and Migration of Mouse Embryonic Neural Stem Cells and Their Progeny In Vitro. Int J Mol Sci 2017. [PMID: 28621713 PMCID: PMC5486102 DOI: 10.3390/ijms18061280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
This study was designed to investigate a possible role of the N-terminal tripeptide of insulin-like growth factor-1 (IGF-I), Gly-Pro-Glu (GPE), physiologically generated in neurons following IGF-I-specific cleavage, in promoting neural regeneration after an injury. Primary cultures of mouse neural stem cells (NSCs), obtained from 13.5 Days post-conception (dpc) mouse embryos, were challenged with either GPE, growth hormone (GH), or GPE + GH and the effects on cell proliferation, migration, and survival were evaluated both under basal conditions and in response to a wound healing assay. The cellular pathways activated by GPE were also investigated by using specific chemical inhibitors. The results of the study indicate that GPE treatment promotes the proliferation and the migration of neural stem cells in vitro through a mechanism that involves the activation of extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase PI3K-Akt pathways. Intriguingly, both GPE effects and the signaling pathways activated were similar to those observed after GH treatment. Based upon the results obtained from this study, GPE, as well as GH, may be useful in promoting neural protection and/or regeneration after an injury.
Collapse
|
9
|
Burgdorf J, Colechio EM, Ghoreishi-Haack N, Gross AL, Rex CS, Zhang XL, Stanton PK, Kroes RA, Moskal JR. IGFBP2 Produces Rapid-Acting and Long-Lasting Effects in Rat Models of Posttraumatic Stress Disorder via a Novel Mechanism Associated with Structural Plasticity. Int J Neuropsychopharmacol 2017; 20:476-484. [PMID: 28158790 PMCID: PMC5458343 DOI: 10.1093/ijnp/pyx007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/18/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Posttraumatic stress disorder is an anxiety disorder characterized by deficits in the extinction of aversive memories. Insulin-like growth factor 1 (IGF1) is the only growth factor that has shown anxiolytic and antidepressant properties in human clinical trials. In animal studies, insulin-like growth factor binding protein 2 (IGFBP2) shows both IGF1-dependent and IGF1-independent pharmacological effects, and IGFBP2 expression is upregulated by rough-and-tumble play that induces resilience to stress. METHODS IGFBP2 was evaluated in Porsolt, contextual fear conditioning, and chronic unpredictable stress models of posttraumatic stress disorder. The dependence of IGFBP2 effects on IGF1- and AMPA-receptor activation was tested using selective receptor antagonists. Dendritic spine morphology was measured in the dentate gyrus and the medial prefrontal cortex 24 hours after in vivo dosing. RESULTS IGFBP2 was 100 times more potent than IGF1 in the Porsolt test. Unlike IGF1, effects of IGFBP2 were not blocked by the IGF1-receptor antagonist JB1, or by the AMPA-receptor antagonist 2,3-Dioxo-6-nitro-1,2,3,4 tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX) in the Porsolt test. IGFBP2 (1 µg/kg) and IGF1 (100 µg/kg i.v.) each facilitated contextual fear extinction and consolidation. Using a chronic unpredictable stress paradigm, IGFBP2 reversed stress-induced effects in the Porsolt, novelty-induced hypophagia, sucrose preference, and ultrasonic vocalization assays. IGFBP2 also increased mature dendritic spine densities in the medial prefrontal cortex and hippocampus 24 hours postdosing. CONCLUSIONS These data suggest that IGFBP2 has therapeutic-like effects in multiple rat models of posttraumatic stress disorder via a novel IGF1 receptor-independent mechanism. These data also suggest that the long-lasting effects of IGFBP2 may be due to facilitation of structural plasticity at the dendritic spine level. IGFBP2 and mimetics may have therapeutic potential for the treatment of posttraumatic stress disorder.
Collapse
Affiliation(s)
- Jeffrey Burgdorf
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Elizabeth M. Colechio
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Nayereh Ghoreishi-Haack
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Amanda L. Gross
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Christopher S. Rex
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Xiao-lei Zhang
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Patric K. Stanton
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Roger A. Kroes
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| | - Joseph R. Moskal
- Falk Center for Molecular Therapeutics, Department of Biomedical Engineering, Northwestern University, Evanston, Illinois (Drs Burgdorf and Moskal); Aptinyx Inc., Evanston, Illinois (Dr Colechio, Ms Ghoreishi-Haack, and Drs Gross, Kroes, and Moskal); Afraxis Inc., La Jolla, California (Dr Rex); Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York (Drs Zhang and Stanton)
| |
Collapse
|
10
|
Development of glycine-α-methyl-proline-containing tripeptides with neuroprotective properties. Eur J Med Chem 2016; 108:553-563. [DOI: 10.1016/j.ejmech.2015.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 11/23/2015] [Accepted: 12/02/2015] [Indexed: 11/21/2022]
|
11
|
Stein DG, Geddes RI, Sribnick EA. Recent developments in clinical trials for the treatment of traumatic brain injury. HANDBOOK OF CLINICAL NEUROLOGY 2015; 127:433-51. [PMID: 25702233 DOI: 10.1016/b978-0-444-52892-6.00028-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The clinical understanding of traumatic brain injury (TBI) and its manifestations is beginning to change. Both clinicians and research scientists are recognizing that TBI and related disorders such as stroke are complex, systemic inflammatory and degenerative diseases that require an approach to treatment more sophisticated than targeting a single gene, receptor, or signaling pathway. It is becoming increasingly clear that TBI is a form of degenerative disorder affecting the brain and other organs, and that its manifestations can unfold days, weeks, and years after the initial damage. Until recently, and despite numerous industry- and government-sponsored clinical trials, attempts to find a safe and effective neuroprotective agent have all failed - probably because the research and development strategies have been based on an outdated early 20th century paradigm seeking a magic bullet that will affect a narrowly circumscribed target. We propose that more attention be given to the development of drugs, given alone or in combination, that are pleiotropic in their actions and that have systemic as well as central nervous system effects. We review current Phase II and Phase III trials for acute pharmacologic treatments for TBI and report on their aims, methods, status, and important associated research issues.
Collapse
Affiliation(s)
- Donald G Stein
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Rastafa I Geddes
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eric A Sribnick
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
12
|
Vaaga CE, Tovar KR, Westbrook GL. The IGF-derived tripeptide Gly-Pro-Glu is a weak NMDA receptor agonist. J Neurophysiol 2014; 112:1241-5. [PMID: 24944213 DOI: 10.1152/jn.00290.2014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate acts as the universal agonist at ionotropic glutamate receptors in part because of its high degree of conformational flexibility. Other amino acids and small peptides, however, can activate N-methyl-d-aspartate (NMDA) receptors, albeit usually with lower affinity and efficacy. Here, we examined the action of glycine-proline-glutamate (GPE), a naturally occurring tripeptide formed in the brain following cleavage of IGF-I. GPE is thought to have biological activity in the brain, but its mechanism of action remains unclear. With its flanking glutamate and glycine residues, GPE could bind to either the agonist or coagonist sites on NMDA receptors, however, this has not been directly tested. Using whole cell patch-clamp recordings in combination with rapid solution exchange, we examined both steady-state currents induced by GPE as well as the effects of GPE on synaptically evoked currents. High concentrations of GPE evoked inward currents, which were blocked either by NMDA receptor competitive antagonists or the voltage-dependent channel blocker Mg(2+). GPE also produced a slight attenuation in the NMDA- and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-mediated excitatory postsynaptic currents without altering the paired-pulse ratio. Our results suggest that GPE can activate NMDA receptors but at concentrations well above the expected concentration of GPE in the brain. Therefore, it is unlikely that endogenous GPE interacts with glutamate receptors under normal conditions.
Collapse
Affiliation(s)
- Christopher E Vaaga
- Neuroscience Graduate Program, Oregon Health and Science University, Portland, Oregon; and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Kenneth R Tovar
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
13
|
Huang L, Applegate PM, Gatling JW, Mangus DB, Zhang J, Applegate RL. A systematic review of neuroprotective strategies after cardiac arrest: from bench to bedside (part II-comprehensive protection). Med Gas Res 2014; 4:10. [PMID: 25671079 PMCID: PMC4322492 DOI: 10.1186/2045-9912-4-10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/20/2014] [Indexed: 11/10/2022] Open
Abstract
Neurocognitive deficits remain a significant source of morbidity in survivors of cardiac arrest. We conducted a literature review of treatment protocols designed to evaluate neurologic outcome and survival following global cerebral ischemia associated with cardiac arrest. The search was limited to investigational therapies that were implemented either during cardiopulmonary resuscitation or after return of spontaneous circulation in studies that included assessment of impact on neurologic outcome. Given that complex pathophysiology underlies global brain hypoxic ischemia following cardiac arrest, neuroprotective strategies targeting multiple stages of neuropathologic cascades should promise to improve survival and neurologic outcomes in cardiac arrest victims. In Part II of this review, we discuss several approaches that can provide comprehensive protection against global brain injury associated with cardiac arrest, by modulating multiple targets of neuropathologic cascades. Pharmaceutical approaches include adenosine and growth factors/hormones including brain-derived neurotrophic factor, insulin-like growth factor-1 and glycine-proline-glutamate, granulocyte colony stimulating factor and estrogen. Preclinical studies of these showed some benefit but were inconclusive in models of global brain injury involving systemic ischemia. Several medical gases that can mediate neuroprotection have been evaluated in experimental settings. These include hydrogen sulfide, hyperbaric oxygen and molecular hydrogen. Hyperbaric oxygen and molecular hydrogen showed promising results; however, further investigation is required prior to clinical application of these agents in cardiac arrest patients.
Collapse
Affiliation(s)
- Lei Huang
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA ; Department of Basic Sciences, Division of Physiology and Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA
| | - Patricia M Applegate
- Department of Cardiology, Loma Linda University School of Medicine, 11201 Benton St, Loma Linda, CA 92354, USA
| | - Jason W Gatling
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| | - Dustin B Mangus
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| | - John Zhang
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA ; Department of Basic Sciences, Division of Physiology and Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA ; Department of Neurosurgery, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA 92354, USA
| | - Richard L Applegate
- Department of Anesthesiology, Loma Linda University School of Medicine, 11041 Campus Street, Loma Linda, CA, USA
| |
Collapse
|
14
|
Park SE, Lawson M, Dantzer R, Kelley KW, McCusker RH. Insulin-like growth factor-I peptides act centrally to decrease depression-like behavior of mice treated intraperitoneally with lipopolysaccharide. J Neuroinflammation 2011; 8:179. [PMID: 22189158 PMCID: PMC3264674 DOI: 10.1186/1742-2094-8-179] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 12/21/2011] [Indexed: 12/17/2022] Open
Abstract
Centrally administered insulin-like growth factor (IGF)-I has anti-depressant activity in several rodent models, including lipopolysaccharide (LPS)-induced depression. In this study we tested the ability of IGF-I and GPE (the N-terminal tri-peptide derived from IGF-I) to alter depression-like behavior induced by intraperitoneal (i.p.) administration of LPS in a preventive and curative manner. In the first case, IGF-I (1 μg) or GPE (5 μg) was administered i.c.v. to CD-1 mice followed 30 min later by 330 μg/kg body weight i.p. LPS. In the second case, 830 μg/kg body weight LPS was given 24 h prior to either IGF-I or GPE. When administered i.p., LPS induced full-blown sickness assessed as a loss of body weight, decrease in food intake and sickness behavior. None of these indices were affected by IGF-I or GPE. LPS also induced depression-like behavior; assessed as an increased duration of immobility in the tail suspension and forced swim tests. When administered before or after LPS, IGF-I and GPE abrogated the LPS response; attenuating induction of depression-like behaviors and blocking preexistent depression-like behaviors. Similar to previous work with IGF-I, GPE decreased brain expression of cytokines in response to LPS although unlike IGF-I, GPE did not induce the expression of brain-derived neurotrophic factor (BDNF). LPS induced expression of tryptophan dioxygenases, IDO1, IDO2 and TDO2, but expression of these enzymes was not altered by GPE. Thus, both IGF-I and GPE elicit specific improvement in depression-like behavior independent of sickness, an action that could be due to their anti-inflammatory properties.
Collapse
Affiliation(s)
- Sook-Eun Park
- Integrated Immunology and Behavior Program, University of Illinois at Urbana-Champaign, Illinois 61801-3873, USA
| | | | | | | | | |
Collapse
|