1
|
Türk Y, Devecioğlu İ, Küskün A, Öge C, Beyazyüz E, Albayrak Y. ROI-based analysis of diffusion indices in healthy subjects and subjects with deficit or non-deficit syndrome schizophrenia. Psychiatry Res Neuroimaging 2023; 336:111726. [PMID: 37925764 DOI: 10.1016/j.pscychresns.2023.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/29/2023] [Accepted: 10/14/2023] [Indexed: 11/07/2023]
Abstract
We analyzed DTI data involving 22 healthy subjects (HC), 15 patients with deficit syndrome schizophrenia (DSZ), and 25 patients with non-deficit syndrome schizophrenia (NDSZ). We used a 1.5-T MRI scanner to collect diffusion-weighted images and T1 images, which were employed to correct distortions and deformations within the diffusion-weighted images. For 156 regions of interest (ROI), we calculated the average fractional anisotropy (FA), mean diffusion (MD), and radial diffusion (RD). Each ROI underwent a group-wise comparison using permutation F-test, followed by post hoc pairwise comparisons with Bonferroni correction. In general, we observed lower FA in both schizophrenia groups compared to HC (i.e., HC>(DSZ=NDSZ)), while MD and RD showed the opposite pattern. Notably, specific ROIs with reduced FA in schizophrenia patients included bilateral nucleus accumbens, left fusiform area, brain stem, anterior corpus callosum, left rostral and caudal anterior cingulate, right posterior cingulate, left thalamus, left hippocampus, left inferior temporal cortex, right superior temporal cortex, left pars triangularis and right lingual gyrus. Significantly, the right cuneus exhibited lower FA in the DSZ group compared to other groups ((HC=NDSZ)>DSZ), without affecting MD and RD. These results indicate that compromised neural integrity in the cuneus may contribute to the pathophysiological distinctions between DSZ and NDSZ.
Collapse
Affiliation(s)
- Yaşar Türk
- Radiology Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey; Radiology Department, İstanbul Health and Technology University Hospital, Kaptanpasa Mh., Darulaceze Cd., Sisli, İstanbul 34384, Turkey
| | - İsmail Devecioğlu
- Biomedical Engineering Department, Çorlu Faculty of Engineering, Tekirdağ Namık Kemal University, NKU Corlu Muhendislik Fakultesi, Silahtaraga Mh., Çorlu, Tekirdağ 59860, Turkey.
| | - Atakan Küskün
- Radiology Department, Medical Faculty, Kırklareli University, Cumhuriyet Mh., Kofcaz Yolu, Kayali Yerleskesi, Merkezi Derslikler 2, No 39/L, Merkez, Kırklareli, Turkey
| | - Cem Öge
- Psychiatry Department, Çorlu State Hospital, Zafer, Mah. Bülent Ecevit Blv. No:33, Çorlu, Tekirdağ 59850, Turkey
| | - Elmas Beyazyüz
- Psychiatry Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey
| | - Yakup Albayrak
- Psychiatry Department, Medical Faculty, Tekirdağ Namık Kemal University. Namik Kemal Mh., Kampus Cd., Suleymanpasa, Tekirdag 59100, Turkey
| |
Collapse
|
2
|
Amphetamine Exerts Dose-Dependent Changes in Prefrontal Cortex Attractor Dynamics during Working Memory. J Neurosci 2015; 35:10172-87. [PMID: 26180194 DOI: 10.1523/jneurosci.2421-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modulation of neural activity by monoamine neurotransmitters is thought to play an essential role in shaping computational neurodynamics in the neocortex, especially in prefrontal regions. Computational theories propose that monoamines may exert bidirectional (concentration-dependent) effects on cognition by altering prefrontal cortical attractor dynamics according to an inverted U-shaped function. To date, this hypothesis has not been addressed directly, in part because of the absence of appropriate statistical methods required to assess attractor-like behavior in vivo. The present study used a combination of advanced multivariate statistical, time series analysis, and machine learning methods to assess dynamic changes in network activity from multiple single-unit recordings from the medial prefrontal cortex (mPFC) of rats while the animals performed a foraging task guided by working memory after pretreatment with different doses of d-amphetamine (AMPH), which increases monoamine efflux in the mPFC. A dose-dependent, bidirectional effect of AMPH on neural dynamics in the mPFC was observed. Specifically, a 1.0 mg/kg dose of AMPH accentuated separation between task-epoch-specific population states and convergence toward these states. In contrast, a 3.3 mg/kg dose diminished separation and convergence toward task-epoch-specific population states, which was paralleled by deficits in cognitive performance. These results support the computationally derived hypothesis that moderate increases in monoamine efflux would enhance attractor stability, whereas high frontal monoamine levels would severely diminish it. Furthermore, they are consistent with the proposed inverted U-shaped and concentration-dependent modulation of cortical efficiency by monoamines.
Collapse
|