1
|
You Y, Park JS, Min JH, Jeong W, Ahn HJ, In YN, Jeon SY, Lee JK, Kang C. Blood-brain barrier permeability for the first 24 hours in hypoxic-ischemic brain injury following cardiac arrest. Resuscitation 2024; 198:110150. [PMID: 38401708 DOI: 10.1016/j.resuscitation.2024.110150] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND This study aimed to explore the changes in blood-brain barrier (BBB) permeability and intracranial pressure (ICP) for the first 24 h after the return of spontaneous circulation (ROSC) and their association with injury severity of cardiac arrest. METHODS This prospective study analysed the BBB permeability assessed using the albumin quotient (Qa) and ICP every 2 h for the first 24 h after ROSC. The injury severity of cardiac arrest was assessed using Pittsburgh Cardiac Arrest Category (PCAC) scores. The primary outcome was the time course of changes in the BBB permeability and ICP for the first 24 h after ROSC and their association with injury severity (PCAC scores of 1-4). RESULTS Qa and ICP were measured 274 and 197 times, respectively, in 32 enrolled patients. Overall, the BBB permeability increased progressively over time after ROSC, and then it increased significantly at 18 h after ROSC compared with the baseline. In contrast, the ICP revealed non-significant changes for the first 24 h after ROSC. The Qa in the PCAC 2 group was < 0.01, indicating normal or mild BBB disruption at all time points, whereas the PCAC 3 and 4 groups showed a significant increase in BBB permeability at 14 and 22 h, and 12 and 14 h after ROSC, respectively. CONCLUSION BBB permeability increased progressively over time for the first 24 h after ROSC despite post-resuscitation care, whereas ICP did not change over time. BBB permeability has an individual pattern when stratified by injury severity.
Collapse
Affiliation(s)
- Yeonho You
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jung Soo Park
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jin Hong Min
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - Wonjoon Jeong
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Hong Joon Ahn
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Yong Nam In
- Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, Chungnam National University Sejong Hospital, 20, Bodeum 7-ro, Sejong, Republic of Korea
| | - So Young Jeon
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea
| | - Jae Kwang Lee
- Department of Emergency Medicine, Konyang University Hospital, College of Medicine, Daejeon 35365, Republic of Korea
| | - Changshin Kang
- Department of Emergency Medicine, Chungnam National University Hospital, 282 Munhwa-ro, Jung-gu, Daejeon, Republic of Korea; Department of Emergency Medicine, College of Medicine, Chungnam National University, 282 Mokdong-ro, Jung-gu, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Safwat A, Helmy A, Gupta A. The Role of Substance P Within Traumatic Brain Injury and Implications for Therapy. J Neurotrauma 2023; 40:1567-1583. [PMID: 37132595 DOI: 10.1089/neu.2022.0510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
This review examines the role of the neuropeptide substance P within the neuroinflammation that follows traumatic brain injury. It examines it in reference to its preferential receptor, the neurokinin-1 receptor, and explores the evidence for antagonism of this receptor in traumatic brain injury with therapeutic intent. Expression of substance P increases following traumatic brain injury. Subsequent binding to the neurokinin-1 receptor results in neurogenic inflammation, a cause of deleterious secondary effects that include an increased intracranial pressure and poor clinical outcome. In several animal models of TBI, neurokinin-1 receptor antagonism has been shown to reduce brain edema and the resultant rise in intracranial pressure. A brief overview of the history of substance P is presented, alongside an exploration into the chemistry of the neuropeptide with a relevance to its functions within the central nervous system. This review summarizes the scientific and clinical rationale for substance P antagonism as a promising therapy for human TBI.
Collapse
Affiliation(s)
- Adam Safwat
- Division of Anaesthesia, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Adel Helmy
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Arun Gupta
- Neurosciences Critical Care Unit, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
3
|
Zheng G, Harms AK, Tail M, Zhang H, Nimmo A, Skutella T, Kiening K, Unterberg A, Zweckberger K, Younsi A. Effects of a neurokinin-1 receptor antagonist in the acute phase after thoracic spinal cord injury in a rat model. Front Mol Neurosci 2023; 16:1128545. [PMID: 37251648 PMCID: PMC10213275 DOI: 10.3389/fnmol.2023.1128545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Disruption of the blood-spinal cord barrier (BSCB) with subsequent edema formation and further neuroinflammation contributes to aggravation of spinal cord injury (SCI). We aimed to observe the effect of antagonizing the binding of the neuropeptide Substance-P (SP) to its neurokinin-1 (NK1) receptor in a rodent SCI model. Methods Female Wistar rats were subjected to a T9 laminectomy with or without (Sham) a T9 clip-contusion/compression SCI, followed by the implantation of an osmotic pump for the continuous, seven-day-long infusion of a NK1 receptor antagonist (NRA) or saline (vehicle) into the intrathecal space. The animals were assessed via MRI, and behavioral tests were performed during the experiment. 7 days after SCI, wet & dry weight and immunohistological analyses were conducted. Results Substance-P inhibition via NRA showed limited effects on reducing edema. However, the invasion of T-lymphocytes and the number of apoptotic cells were significantly reduced with the NRA treatment. Moreover, a trend of reduced fibrinogen leakage, endothelial and microglial activation, CS-GAG deposition, and astrogliosis was found. Nevertheless, only insignificant general locomotion recovery could be observed in the BBB open field score and the Gridwalk test. In contrast, the CatWalk gait analysis showed an early onset of recovery in several parameters. Conclusion Intrathecal administration of NRA might reinforce the integrity of the BSCB in the acute phase after SCI, potentially attenuating aspects of neurogenic inflammation, reducing edema formation, and improving functional recovery.
Collapse
Affiliation(s)
- Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Anna-Kathrin Harms
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Mohamed Tail
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Hao Zhang
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alan Nimmo
- College of Medicine and Dentistry, James Cook University, Cairns, QLD, Australia
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, University of Heidelberg, Heidelberg, Germany
| | - Karl Kiening
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Zweckberger
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
4
|
Correcting a widespread error: Neuroprotectant N-acetyl-L-tryptophan does not bind to the neurokinin-1 receptor. Mol Cell Neurosci 2022; 120:103728. [PMID: 35421568 DOI: 10.1016/j.mcn.2022.103728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 03/31/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
|
5
|
Zhou Y, Ye H, Lu W. Serum Substance P Concentration in Children With Traumatic Brain Injury: A First Report. World Neurosurg 2020; 147:e200-e205. [PMID: 33307260 DOI: 10.1016/j.wneu.2020.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE To review the clinic value and severity assessment of serum substance P (SP) concentration in children with different degrees of traumatic brain injury (TBI) through analyzing correlations with outcomes. METHODS One hundred thirty-nine children with TBI who were diagnosed and treated at Nanjing Medical University for longer than 72 hours between June 2017 and 2019 were analyzed. Blood samples were obtained within 24 hours after TBI to measure SP concentration. The endpoint was discharge mortality. Thirty healthy children composed the control group. Comparative analyses of differences in SP concentration were conducted for the different groups. Both the Sequential Organ Failure Assessment (SOFA) scores and Pediatric Clinical Illness Score (PCIS) were measured on admission and used in univariate and multivariate analyses. RESULTS The serum SP (89.10 ± 64.32) pmol/L) level in the case group was significantly higher than that in the control group (21.84 ± 2.09) pmol/L (t = 5.71, P < 0.05). The serum SP (182.81 ± 58.39) pmol/L) level in the deceased group was significantly higher than that in the survival group (59.93 ± 27.90) pmol/L (t = 16.52, P < 0.05). A negative correlation existed between serum SP concentration and Glasgow Coma Scale score in the severe, moderate, and mild groups (r = -0.72, P < 0.05). Serum SP concentration was identified as an independent risk factor for mortality (odds ratio >1, 95% confidence interval = 1.04-1.28, P < 0.01). Receiver operating characteristic curve analysis suggested that serum SP concentration had the same calibrating power as SOFA and PCIS in discriminating the risk of death of children. CONCLUSIONS Serum SP concentration was associated with severity in children with TBI, and extremely high levels indicated a poor prognosis.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Ye
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Weifeng Lu
- Department of Surgical Intensive Care Unit, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Second Impact Syndrome. Myth or reality? Neurochirurgie 2020; 67:265-275. [PMID: 32169407 DOI: 10.1016/j.neuchi.2019.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/21/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Second impact syndrome (SIS) is a devastating condition occurring in sport-induced mild brain injury. SIS is drastically defined by anamnestic, clinical and radiological criteria, which is unusual in the field of cranial traumatology. The purpose of this study was to provide a literature review of this syndrome. MATERIAL AND METHODS We conducted a literature review of all published studies on PubMed. The keywords were "second impact syndrome and catastrophic head injury", "second impact syndrome and sport", "repeat concussion and catastrophic brain injury", "catastrophic head injury and concussion", "catastrophic head injury", "concussion and second impact syndrome", "concussion and repetitive head injury". RESULTS Eighty-two full-text articles were assessed for eligibility. Finally, 41 studies were included in qualitative synthesis and 21 were included in quantitative synthesis. DISCUSSION The number of cases reported in the literature was extremely small compared to the population at risk, i.e., the number of athletes exposed to repeated concussions. SIS was similar to talk and die syndrome, with which it shares certain characteristics. If we consider SIS according to "talk and deteriorate tables", it opens up interesting perspectives because they are specific in children and adolescents. Taking into account the scarcity of this syndrome, one may question whether athlete-intrinsic features may be involved in at least some cases of SIS. On a pathophysiological level, many explanations remained unsatisfactory because they were unable to explain all the clinical phenomena and observed lesions. Triggering the trigeminocardiac reflex is a crucial element in explaining the sequence of clinical events. Its association with a state of neurogenic inflammation provides an almost complete explanation for this particular condition. Finally, on a practical level, a concussion occurring during the playing of a sport must be considered as any other injury before allowing a return to play.
Collapse
|
7
|
Lemmens S, Nelissen S, Dooley D, Geurts N, Peters EMJ, Hendrix S. Stress Pathway Modulation Is Detrimental or Ineffective for Functional Recovery after Spinal Cord Injury in Mice. J Neurotrauma 2019; 37:564-571. [PMID: 31210094 DOI: 10.1089/neu.2018.6211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A mounting body of evidence suggests that stress plays a major role in the injury progression after spinal cord injury (SCI). Injury activates the stress systems; this in turn may augment the generation of pro-inflammatory cytokines, stimulate pro-inflammatory immune cells, and alter the balance between the pro- and anti-inflammatory immune response. As a result, it is suggested that stress pathways may augment neuronal damage and loss after SCI. Considering these potential detrimental effects of stress after SCI, we hypothesized that inhibition of stress pathways immediately after SCI may offer protection from damage and improve recovery. To investigate the relevance of stress responses in SCI recovery, we investigated the effects of blocking three well-studied stress response axes in a mouse model of SCI. Propranolol, RU-486, and CP-99994 were administered to inhibit the sympathetic axis, the hypothalamus-pituitary-adrenal axis, and the neuropeptide axis, respectively. Surprisingly, assessing functional recovery by the Basso Mouse Scale revealed that RU-486 and CP-99994 did not affect functional outcome, indicating that these pathways are dispensable for neuroprotection or repair after SCI. Moreover, the beta-blocker propranolol worsened functional outcome in the mouse SCI model. In conclusion, immediate inhibition of three major stress axes has no beneficial effects on functional recovery after SCI in mice. These results suggest that injury-induced stress responses do not interfere with the healing process and hence, pharmacological targeting of stress responses is not a recommended treatment option for SCI. These findings are of great importance for other researchers to avoid unnecessary and potentially futile animal experiments.
Collapse
Affiliation(s)
- Stefanie Lemmens
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Sofie Nelissen
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Dearbhaile Dooley
- Health Science Centre, School of Medicine, University College Dublin, Belfield, Dublin, Ireland
| | - Nathalie Geurts
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| | - Eva Milena Johanne Peters
- Psychoneuroimmunology Laboratory, Department of Psychosomatic Medicine, Justus Liebig University and Charité Berlin, Germany
| | - Sven Hendrix
- Department of Morphology, Biomedical Research Institute, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
8
|
Machado CA, Silva ACSE, de Miranda AS, Cordeiro TME, Ferreira RN, de Souza LC, Teixeira AL, de Miranda AS. Immune-Based Therapies for Traumatic Brain Injury: Insights from Pre-Clinical Studies. Curr Med Chem 2019; 27:5374-5402. [PMID: 31291871 DOI: 10.2174/0929867326666190710173234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 04/24/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Traumatic Brain Injury (TBI) is a major public health problem. It is the leading cause of death and disability, especially among children and young adults. The neurobiology basis underlying TBI pathophysiology remains to be fully revealed. Over the past years, emerging evidence has supported the hypothesis that TBI is an inflammatory based condition, paving the way for the development of potential therapeutic targets. There is no treatment capable to prevent or minimize TBIassociated outcomes. Therefore, the search for effective therapies is a priority goal. In this context, animal models have become valuable tools to study molecular and cellular mechanisms involved in TBI pathogenesis as well as novel treatments. Herein, we discuss therapeutic strategies to treat TBI focused on immunomodulatory and/or anti-inflammatory approaches in the pre-clinical setting.
Collapse
Affiliation(s)
- Caroline Amaral Machado
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Ana Cristina Simões E Silva
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Amanda Silva de Miranda
- Departamento de Quimica, Instituto de Ciencias Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Thiago Macedo E Cordeiro
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Rodrigo Novaes Ferreira
- Laboratorio de Neurobiologia, Departamento de Morfologia, Instituto de Ciencias Biologicas, UFMG, Brazil
| | - Leonardo Cruz de Souza
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| | - Antônio Lúcio Teixeira
- Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, University of Texas Health Science Center, Houston, United States
| | - Aline Silva de Miranda
- Laboratorio Interdisciplinar de Investigacao Medica (LIIM), Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Brazil
| |
Collapse
|
9
|
Sorby-Adams AJ, Leonard AV, Elms LE, Marian OC, Hoving JW, Yassi N, Vink R, Thornton E, Turner RJ. Determining the Temporal Profile of Intracranial Pressure Changes Following Transient Stroke in an Ovine Model. Front Neurosci 2019; 13:587. [PMID: 31338013 PMCID: PMC6629870 DOI: 10.3389/fnins.2019.00587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/23/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND AND PURPOSE Cerebral edema and elevated intracranial pressure (ICP) are the leading cause of death in the first week following stroke. Despite this, current treatments are limited and fail to address the underlying mechanisms of swelling, highlighting the need for targeted treatments. When screening promising novel agents, it is essential to use clinically relevant large animal models to increase the likelihood of successful clinical translation. As such, we sought to develop a survival model of transient middle cerebral artery occlusion (tMCAO) in the sheep and subsequently characterize the temporal profile of cerebral edema and elevated ICP following stroke in this novel, clinically relevant model. METHODS Merino-sheep (27M;31F) were anesthetized and subject to 2 h tMCAO with reperfusion or sham surgery. Following surgery, animals were allowed to recover and returned to their home pens. At preselected times points ranging from 1 to 7 days post-stroke, animals were re-anesthetized, ICP measured for 4 h, followed by imaging with MRI to determine cerebral edema, midline shift and infarct volume (FLAIR, T2 and DWI). Animals were subsequently euthanized and their brain removed for immunohistochemical analysis. Serum and cerebrospinal fluid samples were also collected and analyzed for substance P (SP) using ELISA. RESULTS Intracranial pressure and MRI scans were normal in sham animals. Following stroke, ICP rose gradually over time and by 5 days was significantly (p < 0.0001) elevated above sham levels. Profound cerebral edema was observed as early as 2 days post-stroke and continued to evolve out to 6 days, resulting in significant midline shift which was most prominent at 5 days post-stroke (p < 0.01), in keeping with increasing ICP. Serum SP levels were significantly elevated (p < 0.01) by 7 days post-tMCAO. CONCLUSION We have successfully developed a survival model of ovine tMCAO and characterized the temporal profile of ICP. Peak ICP elevation, cerebral edema and midline shift occurred at days 5-6 following stroke, accompanied by an elevation in serum SP. Our findings suggest that novel therapeutic agents screened in this model targeting cerebral edema and elevated ICP would most likely be effective when administered prior to 5 days, or as early as possible following stroke onset.
Collapse
Affiliation(s)
- Annabel J. Sorby-Adams
- Adelaide Medical School, Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - Anna V. Leonard
- Adelaide Medical School, Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - Levi E. Elms
- Adelaide Medical School, Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - Oana C. Marian
- Adelaide Medical School, Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - Jan W. Hoving
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nawaf Yassi
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
- Florey Institute of Neuroscience and Mental Health, Melbourne, VIC, Australia
| | - Robert Vink
- Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Emma Thornton
- Adelaide Medical School, Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - Renée J. Turner
- Adelaide Medical School, Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
10
|
Sorby-Adams AJ, Leonard AV, Hoving JW, Yassi N, Vink R, Wells AJ, Turner RJ. NK1-r Antagonist Treatment Comparable to Decompressive Craniectomy in Reducing Intracranial Pressure Following Stroke. Front Neurosci 2019; 13:681. [PMID: 31333402 PMCID: PMC6624444 DOI: 10.3389/fnins.2019.00681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 06/13/2019] [Indexed: 12/29/2022] Open
Abstract
Background and Purpose: The morbidity and early mortality associated with stroke is largely attributable to cerebral edema and elevated intracranial pressure (ICP). Existing pharmacotherapies do not target the underlying pathophysiology and are often ineffective in sustainably lowering ICP, whilst decompressive craniectomy (DC) surgery is life-saving yet with surgical/peri-operative risk and increased morbidity in the elderly. Accordingly, there is an urgent need for therapies that directly target the mechanisms of edema genesis. Neurogenic inflammation, mediated by substance P (SP) binding to the tachykinin NK1 receptor (NK1-r), is associated with blood-brain barrier (BBB) disruption, cerebral edema and poor outcome post-stroke. NK1-r antagonist treatment ameliorates BBB dysfunction and cerebral edema in rodent stroke models. However, treatment has not been investigated in a large animal model, an important step toward clinical translation. Consequently, the current study compared the efficacy of NK1-r antagonist treatment to DC surgery in reducing ICP post-stroke in a clinically relevant ovine model. Methods: Anesthetized female Merino sheep (65 ± 6 kg, 18–24 months) underwent sham surgery (n = 4) or permanent middle cerebral artery occlusion (n = 22). Stroke animals were randomized into one of 5 treatments: 1×NK1 bolus (4 h), 2×NK1 bolus (4 h;9 h), 3×NK1 bolus (4 h;9 h;14 h), DC surgery (performed at 4 h) or saline vehicle. ICP, blood pressure and blood gasses were monitored for 24 h post-stroke. At 24 h post-stroke anesthetized animals underwent MRI followed by perfusion and brains removed and processed for histological assessment. Results: 2×NK1, 3×NK1 administration or DC surgery significantly (p < 0.05) reduced ICP compared to vehicle. 1×NK1 was ineffective in sustainably lowering ICP. On MRI, midline shift and cerebral edema were more marked in vehicles compared to NK1-r treatment groups. Conclusion: Two or three boluses of NK1-r antagonist treatment reduced ICP comparable to DC surgery, suggesting it may provide a novel alternative to invasive surgery for the management of elevated ICP.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - Anna V Leonard
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - Jan W Hoving
- Department of Medicine and Neurology, Melbourne Brain Centre at the Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia.,Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, Netherlands
| | - Nawaf Yassi
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Robert Vink
- Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - Adam J Wells
- Department of Neurosurgery, Royal Adelaide Hospital, Adelaide, SA, Australia
| | - Renée J Turner
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
11
|
Li Q, Wu X, Yang Y, Zhang Y, He F, Xu X, Zhang Z, Tao L, Luo C. Tachykinin NK1 receptor antagonist L-733,060 and substance P deletion exert neuroprotection through inhibiting oxidative stress and cell death after traumatic brain injury in mice. Int J Biochem Cell Biol 2018; 107:154-165. [PMID: 30593954 DOI: 10.1016/j.biocel.2018.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 01/16/2023]
Abstract
Substance P (SP) is believed to play a role in traumatic brain injury (TBI), and the inhibition of binding of SP to the tachykinin neurokinin-1 receptor (NK1R) using NK1R antagonists had made favorable effects on TBI. Our current study addresses the functional roles and underlying mechanisms of SP and NK1R antagonist L-733,060 following TBI. Adult male wild type C57BL/6 J and SP knock out (SPKO) mice received a controlled cortical impact and outcome parameters were assessed. The results showed that TBI-induced motor and spatial memory deficits, lesion volume, brain water content and blood-brain barrier disruption were alleviated both in L-733,060-treated C57BL/6 J mice and vehicle-treated SPKO mice. L-733,060 treatment and SP deletion inhibited TBI-induced the release of cytochrome c from mitochondria to cytoplasm, activation of caspase-3, oxidative stress and neuroinflammation. Higher SP levels in serum and cortex were observed in wild type mice undergoing TBI relative to wild type sham group, but very little expression of cortical SP was detected in the SP-/- mice either TBI or not. Upregulation of NK1R expression after TBI was observed, and there was no significant difference between wild type and SPKO groups. in vitro, L-733,060 and SP deletion inhibited scratch injury-induced cell death, loss of mitochondrial membrane potential and reactive oxygen species (ROS) production following TBI. Together, the results of this study implicate a functional role for NK1-R antagonist L-733,060 and deletion of SP in TBI-induced neurological outcome, oxidative damage, neuroinflammation and cell death. Upregulation of NK1R maybe a consequence of TBI, independent of the levels of substance P. This study raises the possibility that targeting SP through its receptor NK1R or genetic deletion may have therapeutic efficacy in TBI.
Collapse
Affiliation(s)
- Qianqian Li
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Xiao Wu
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yanyan Yang
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Yue Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Fang He
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Xiang Xu
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Ziwei Zhang
- School of Forensic Medicine, Wannan Medical College, Wuhu, 241002, Anhui, China
| | - Luyang Tao
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China
| | - Chengliang Luo
- Department of Forensic Medicine, Medical College of Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|
12
|
Pathophysiology and treatment of cerebral edema in traumatic brain injury. Neuropharmacology 2018; 145:230-246. [PMID: 30086289 DOI: 10.1016/j.neuropharm.2018.08.004] [Citation(s) in RCA: 287] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 07/24/2018] [Accepted: 08/03/2018] [Indexed: 12/30/2022]
Abstract
Cerebral edema (CE) and resultant intracranial hypertension are associated with unfavorable prognosis in traumatic brain injury (TBI). CE is a leading cause of in-hospital mortality, occurring in >60% of patients with mass lesions, and ∼15% of those with normal initial computed tomography scans. After treatment of mass lesions in severe TBI, an important focus of acute neurocritical care is evaluating and managing the secondary injury process of CE and resultant intracranial hypertension. This review focuses on a contemporary understanding of various pathophysiologic pathways contributing to CE, with a subsequent description of potential targeted therapies. There is a discussion of identified cellular/cytotoxic contributors to CE, as well as mechanisms that influence blood-brain-barrier (BBB) disruption/vasogenic edema, with the caveat that this distinction may be somewhat artificial since molecular processes contributing to these pathways are interrelated. While an exhaustive discussion of all pathways with putative contributions to CE is beyond the scope of this review, the roles of some key contributors are highlighted, and references are provided for further details. Potential future molecular targets for treating CE are presented based on pathophysiologic mechanisms. We thus aim to provide a translational synopsis of present and future strategies targeting CE after TBI in the context of a paradigm shift towards precision medicine. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".
Collapse
|
13
|
Yuan M, Ma MN, Wang TY, Feng Y, Chen P, He C, Liu S, Guo YX, Wang Y, Fan Y, Wang LQ, E XQ, Qiao GF, Li BY. Direct activation of tachykinin receptors within baroreflex afferent pathway and neurocontrol of blood pressure regulation. CNS Neurosci Ther 2018; 25:123-135. [PMID: 29900692 DOI: 10.1111/cns.12993] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 05/12/2018] [Accepted: 05/20/2018] [Indexed: 12/16/2022] Open
Abstract
AIM Substance P (SP) causes vasodilation and blood pressure (BP) reduction. However, the involvement of tachykinin receptors (NKRs) within baroreflex afferent pathway in SP-mediated BP regulation is largely unknown. METHODS Under control and hypertensive condition, NKRs' expressions were evaluated in nodose (NG) and nucleus of tractus solitary (NTS) of male, female, and ovariectomized (OVX) rats; BP was recorded after microinjection of SP and NKRs agonists into NG; Baroreceptor sensitivity (BRS) was tested as well. RESULTS Immunostaining and immunoblotting data showed that NK1R and NK2R were estrogen-dependently expressed on myelinated and unmyelinated afferents in NG. A functional study showed that BP was reduced dose-dependently by SP microinjection, which was more dramatic in males and can be mimicked by NK1R and NK2R agonists. Notably, further BP elevation and BRS dysfunction were confirmed in desoxycorticosterone acetate (DOCA)-salt model in OVX compared with DOCA-salt model in intact female rats. Additionally, similar changes in NKRs' expression in NG were also detected using DOCA-salt and SHR. Compared with NG, inversed expression profiles of NKRs were also found in NTS with either gender. CONCLUSION The estrogen-dependent NKRs' expression in baroreflex afferent pathway participates at least partially in sexual-dimorphic and SP-mediated BP regulation under physiological and hypertensive conditions.
Collapse
Affiliation(s)
- Mei Yuan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Mei-Na Ma
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ting-Yu Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yan Feng
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Pei Chen
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Chao He
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Sijie Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yun-Xia Guo
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yao Fan
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lu-Qi Wang
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Xiao-Qiang E
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guo-Fen Qiao
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Bai-Yan Li
- Department of Pharmacology, State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, College of Pharmacy, Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
The effect of an acute systemic inflammatory insult on the chronic effects of a single mild traumatic brain injury. Behav Brain Res 2018; 336:22-31. [DOI: 10.1016/j.bbr.2017.08.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/18/2017] [Accepted: 08/23/2017] [Indexed: 12/19/2022]
|
15
|
Sorby-Adams AJ, Marcoionni AM, Dempsey ER, Woenig JA, Turner RJ. The Role of Neurogenic Inflammation in Blood-Brain Barrier Disruption and Development of Cerebral Oedema Following Acute Central Nervous System (CNS) Injury. Int J Mol Sci 2017; 18:E1788. [PMID: 28817088 PMCID: PMC5578176 DOI: 10.3390/ijms18081788] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 08/07/2017] [Accepted: 08/15/2017] [Indexed: 12/13/2022] Open
Abstract
Acute central nervous system (CNS) injury, encompassing traumatic brain injury (TBI) and stroke, accounts for a significant burden of morbidity and mortality worldwide, largely attributable to the development of cerebral oedema and elevated intracranial pressure (ICP). Despite this, clinical treatments are limited and new therapies are urgently required to improve patient outcomes and survival. Originally characterised in peripheral tissues, such as the skin and lungs as a neurally-elicited inflammatory process that contributes to increased microvascular permeability and tissue swelling, neurogenic inflammation has now been described in acute injury to the brain where it may play a key role in the secondary injury cascades that evolve following both TBI and stroke. In particular, release of the neuropeptides substance P (SP) and calcitonin gene-related peptide (CGRP) appear to be critically involved. In particular, increased SP expression is observed in perivascular tissue following acute CNS injury, with the magnitude of SP release being related to both the frequency and degree of the insult. SP release is associated with profound blood-brain barrier disruption and the subsequent development of vasogenic oedema, as well as neuronal injury and poor functional outcomes. Inhibition of SP through use of a neurokinin 1 (NK1) antagonist is highly beneficial following both TBI and ischaemic stroke in pre-clinical models. The role of CGRP is more unclear, especially with respect to TBI, with both elevations and reductions in CGRP levels reported following trauma. However, a beneficial role has been delineated in stroke, given its potent vasodilatory effects. Thus, modulating neuropeptides represents a novel therapeutic target in the treatment of cerebral oedema following acute CNS injury.
Collapse
Affiliation(s)
- Annabel J Sorby-Adams
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Amanda M Marcoionni
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Eden R Dempsey
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Joshua A Woenig
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| | - Renée J Turner
- Adelaide Medical School and Adelaide Centre for Neuroscience Research, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide SA 5005, Australia.
| |
Collapse
|
16
|
Corrigan F, Arulsamy A, Collins-Praino LE, Holmes JL, Vink R. Toll like receptor 4 activation can be either detrimental or beneficial following mild repetitive traumatic brain injury depending on timing of activation. Brain Behav Immun 2017; 64:124-139. [PMID: 28412141 DOI: 10.1016/j.bbi.2017.04.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 03/30/2017] [Accepted: 04/07/2017] [Indexed: 12/14/2022] Open
Abstract
A history of repeated concussion has been linked to the later development of neurodegeneration, which is associated with the accumulation of hyperphosphorylated tau and the development of behavioral deficits. However, the role that exogenous factors, such as immune activation, may play in the development of neurodegeneration following repeated mild traumatic brain injury (rmTBI) has not yet been explored. To investigate, male Sprague-Dawley rats were administered three mTBIs 5days apart using the diffuse impact-acceleration model to generate ∼100G. Sham animals underwent surgery only. At 1 or 5days following the last injury rats were given the TLR4 agonist, lipopolysaccharide (LPS, 0.1mg/kg), or saline. TLR4 activation had differential effects following rmTBI depending on the timing of activation. When given at 1day post-injury, LPS acutely activated microglia, but decreased production of pro-inflammatory cytokines like IL-6. This was associated with a reduction in neuronal injury, both acutely, with a restoration of levels of myelin basic protein (MBP), and chronically, preventing a loss of both MBP and PSD-95. Furthermore, these animals did not develop behavioral deficits with no changes in locomotion, anxiety, depressive-like behavior or cognition at 3months post-injury. Conversely, when LPS was given at 5days post-injury, it was associated acutely with an increase in pro-inflammatory cytokine production, with an exacerbation of neuronal damage and increased levels of aggregated and phosphorylated tau. At 3months post-injury, there was a slight exacerbation of functional deficits, particularly in cognition and depressive-like behavior. This highlights the complexity of the immune response following rmTBI and the need to understand how a history of rmTBI interacts with environmental factors to influence the potential to develop later neurodegeneration.
Collapse
Affiliation(s)
- Frances Corrigan
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia.
| | - Alina Arulsamy
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Lyndsey E Collins-Praino
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Joshua L Holmes
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, Australia
| | - Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
17
|
Vink R, Gabrielian L, Thornton E. The Role of Substance P in Secondary Pathophysiology after Traumatic Brain Injury. Front Neurol 2017; 8:304. [PMID: 28701994 PMCID: PMC5487380 DOI: 10.3389/fneur.2017.00304] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 06/13/2017] [Indexed: 12/20/2022] Open
Abstract
It has recently been shown that substance P (SP) plays a major role in the secondary injury process following traumatic brain injury (TBI), particularly with respect to neuroinflammation, increased blood–brain barrier (BBB) permeability, and edema formation. Edema formation is associated with the development of increased intracranial pressure (ICP) that has been widely associated with increased mortality and morbidity after neurotrauma. However, a pharmacological intervention to specifically reduce ICP is yet to be developed, with current interventions limited to osmotic therapy rather than addressing the cause of increased ICP. Given that previous publications have shown that SP, NK1 receptor antagonists reduce edema after TBI, more recent studies have examined whether these compounds might also reduce ICP and improve brain oxygenation after TBI. We discuss the results of these studies, which demonstrate that NK1 antagonists reduce posttraumatic ICP to near normal levels within 4 h of drug administration, as well as restoring brain oxygenation to near normal levels in the same time frame. The improvements in these parameters occurred in association with an improvement in BBB integrity to serum proteins, suggesting that SP-mediated increases in vascular permeability significantly contribute to the development of increased ICP after acute brain injury. NK1 antagonists may therefore provide a novel, mechanistically targeted approach to the management of increased ICP.
Collapse
Affiliation(s)
- Robert Vink
- Sansom Institute for Health Research, University of South Australia, Adelaide, SA, Australia
| | - Levon Gabrielian
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Emma Thornton
- Discipline of Anatomy and Pathology, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
18
|
Corrigan F, Mander KA, Leonard AV, Vink R. Neurogenic inflammation after traumatic brain injury and its potentiation of classical inflammation. J Neuroinflammation 2016; 13:264. [PMID: 27724914 PMCID: PMC5057243 DOI: 10.1186/s12974-016-0738-9] [Citation(s) in RCA: 224] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/28/2016] [Indexed: 01/05/2023] Open
Abstract
Background The neuroinflammatory response following traumatic brain injury (TBI) is known to be a key secondary injury factor that can drive ongoing neuronal injury. Despite this, treatments that have targeted aspects of the inflammatory pathway have not shown significant efficacy in clinical trials. Main body We suggest that this may be because classical inflammation only represents part of the story, with activation of neurogenic inflammation potentially one of the key initiating inflammatory events following TBI. Indeed, evidence suggests that the transient receptor potential cation channels (TRP channels), TRPV1 and TRPA1, are polymodal receptors that are activated by a variety of stimuli associated with TBI, including mechanical shear stress, leading to the release of neuropeptides such as substance P (SP). SP augments many aspects of the classical inflammatory response via activation of microglia and astrocytes, degranulation of mast cells, and promoting leukocyte migration. Furthermore, SP may initiate the earliest changes seen in blood-brain barrier (BBB) permeability, namely the increased transcellular transport of plasma proteins via activation of caveolae. This is in line with reports that alterations in transcellular transport are seen first following TBI, prior to decreases in expression of tight-junction proteins such as claudin-5 and occludin. Indeed, the receptor for SP, the tachykinin NK1 receptor, is found in caveolae and its activation following TBI may allow influx of albumin and other plasma proteins which directly augment the inflammatory response by activating astrocytes and microglia. Conclusions As such, the neurogenic inflammatory response can exacerbate classical inflammation via a positive feedback loop, with classical inflammatory mediators such as bradykinin and prostaglandins then further stimulating TRP receptors. Accordingly, complete inhibition of neuroinflammation following TBI may require the inhibition of both classical and neurogenic inflammatory pathways.
Collapse
Affiliation(s)
- Frances Corrigan
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia.
| | - Kimberley A Mander
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Anna V Leonard
- Adelaide Centre for Neuroscience Research, School of Medicine, The University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Sansom Institute for Health Research, The University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
19
|
Corrigan F, Vink R, Turner RJ. Inflammation in acute CNS injury: a focus on the role of substance P. Br J Pharmacol 2015; 173:703-15. [PMID: 25827155 DOI: 10.1111/bph.13155] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/02/2015] [Accepted: 03/24/2015] [Indexed: 12/13/2022] Open
Abstract
Recently, a number of reports have shown that neurogenic inflammation may play a role in the secondary injury response following acute injury to the CNS, including traumatic brain injury (TBI) and stroke. In particular substance P (SP) release appears to be critically involved. Specifically, the expression of the neuropeptide SP is increased in acute CNS injury, with the magnitude of SP release being related to both the frequency and magnitude of the insult. SP release is associated with an increase in blood-brain barrier permeability and the development of vasogenic oedema as well as neuronal injury and worse functional outcome. Moreover, inhibiting the actions of SP through use of a NK1 receptor antagonist is highly beneficial in both focal and diffuse models of TBI, as well as in ischaemic stroke, with a therapeutic window of up to 12 h. We propose that NK1 receptor antagonists represent a novel therapeutic option for treatment of neurogenic inflammation following acute CNS injury.
Collapse
Affiliation(s)
- F Corrigan
- Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| | - R Vink
- Division of Health Sciences, University of South Australia, Adelaide, SA, Australia
| | - R J Turner
- Adelaide Centre for Neuroscience Research, The University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
20
|
Leonard AV, Thornton E, Vink R. NK1 receptor blockade is ineffective in improving outcome following a balloon compression model of spinal cord injury. PLoS One 2014; 9:e98364. [PMID: 24859234 PMCID: PMC4032275 DOI: 10.1371/journal.pone.0098364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 05/01/2014] [Indexed: 11/21/2022] Open
Abstract
The neuropeptide substance P (SP) is a well-known mediator of neurogenic inflammation following a variety of CNS disorders. Indeed, inhibition of SP through antagonism of its receptor, the tachykinin NK1 receptor, has been shown to be beneficial following both traumatic brain injury and stroke. Such studies demonstrated that administration of an NK1 receptor antagonist reduced blood-brain-barrier permeability, edema development and improved functional outcome. Furthermore, our recent studies have demonstrated a potential role for SP in mediating neurogenic inflammation following traumatic spinal cord injury (SCI). Accordingly, the present study investigates whether inhibition of SP may similarly play a neuroprotective role following traumatic SCI. A closed balloon compression injury was induced at T10 in New Zealand White rabbits. At 30 minutes post-injury an NK1 receptor antagonist was administered intravenously. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, spinal water content (edema), intrathecal pressure (ITP), and histological and functional outcome from 5 hours to 2 weeks post-SCI. Administration of an NK1 receptor antagonist was not effective in reducing BSCB permeability, edema, ITP, or functional deficits following SCI. We conclude that SP mediated neurogenic inflammation does not seem to play a major role in BSCB disruption, edema development and consequential tissue damage seen in acute traumatic SCI. Rather it is likely that the severe primary insult and subsequent hemorrhage may be the key contributing factors to ongoing SCI injury.
Collapse
Affiliation(s)
- Anna Victoria Leonard
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
- * E-mail:
| | - Emma Thornton
- School of Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Robert Vink
- Division of Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
21
|
Leonard AV, Thornton E, Vink R. Substance P as a mediator of neurogenic inflammation after balloon compression induced spinal cord injury. J Neurotrauma 2013; 30:1812-23. [PMID: 23924052 DOI: 10.1089/neu.2013.2993] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Although clinical spinal cord injury (SCI) occurs within a closed environment, most experimental models of SCI create an open injury. Such an open environment precludes the measurement of intrathecal pressure (ITP), whose increase after SCI has been linked to the development of greater tissue damage and functional deficits. Raised ITP may be potentiated by edema, which we have recently shown to be associated with substance P (SP) induced neurogenic inflammation in both traumatic brain injury and stroke. The present study investigates whether SP plays a similar role as a mediator of neurogenic inflammation after SCI. A closed balloon compression injury was induced at T10 in New Zealand white rabbits. Animals were thereafter assessed for blood spinal cord barrier (BSCB) permeability, edema, ITP, histological outcome, and functional outcome from 5 h to 2 weeks post-SCI. The balloon compression model produced significant increases in BSCB permeability, edema, and ITP along with significant functional deficits that persisted for 2 weeks. Histological assessment demonstrated decreased SP immunoreactivity in the injured spinal cord while NK1 receptor immunoreactivity initially increased before returning to sham levels. In addition, aquaporin 4 immunoreactivity increased early post-SCI, implicating this water channel in the development of edema after SCI. The changes described in the present study support a role for SP as a mediator of neurogenic inflammation after SCI.
Collapse
Affiliation(s)
- Anna V Leonard
- The School of Medical Sciences, Level 4, Medical School South, The University of Adelaide , Adelaide, South Australia, Australia
| | | | | |
Collapse
|
22
|
Blocking neurogenic inflammation for the treatment of acute disorders of the central nervous system. Int J Inflam 2013; 2013:578480. [PMID: 23819099 PMCID: PMC3681302 DOI: 10.1155/2013/578480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 05/08/2013] [Indexed: 01/11/2023] Open
Abstract
Classical inflammation is a well-characterized secondary response to many acute disorders of the central nervous system. However, in recent years, the role of neurogenic inflammation in the pathogenesis of neurological diseases has gained increasing attention, with a particular focus on its effects on modulation of the blood-brain barrier BBB. The neuropeptide substance P has been shown to increase blood-brain barrier permeability following acute injury to the brain and is associated with marked cerebral edema. Its release has also been shown to modulate classical inflammation. Accordingly, blocking substance P NK1 receptors may provide a novel alternative treatment to ameliorate the deleterious effects of neurogenic inflammation in the central nervous system. The purpose of this paper is to provide an overview of the role of substance P and neurogenic inflammation in acute injury to the central nervous system following traumatic brain injury, spinal cord injury, stroke, and meningitis.
Collapse
|