1
|
Zheng Y, Cai Y, Jia Z. Role of methanotrophic communities in atmospheric methane oxidation in paddy soils. Front Microbiol 2024; 15:1481044. [PMID: 39569004 PMCID: PMC11578120 DOI: 10.3389/fmicb.2024.1481044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Wetland systems are known methane (CH4) sources. However, flooded rice fields are periodically drained. The paddy soils can absorb atmospheric CH4 during the dry seasons due to high-affinity methane-oxidizing bacteria (methanotroph). Atmospheric CH4 uptake can be induced during the low-affinity oxidation of high-concentration CH4 in paddy soils. Multiple interacting factors control atmospheric CH4 uptake in soil ecosystems. Broader biogeographical data are required to refine our understanding of the biotic and abiotic factors related to atmospheric CH4 uptake in paddy soils. Thus, here, we aimed to assess the high-affinity CH4 oxidation activity and explored the community composition of active atmospheric methanotrophs in nine geographically distinct Chinese paddy soils. Our findings demonstrated that high-affinity oxidation of 1.86 parts per million by volume (ppmv) CH4 was quickly induced after 10,000 ppmv high-concentration CH4 consumption by conventional methanotrophs. The ratios of 16S rRNA to rRNA genes (rDNA) for type II methanotrophs were higher than those for type I methanotrophs in all acid-neutral soils (excluding the alkaline soil) with high-affinity CH4 oxidation activity. Both the 16S rRNA:rDNA ratios of type II methanotrophs and the abundance of 13C-labeled type II methanotrophs positively correlated with high-affinity CH4 oxidation activity. Soil abiotic factors can regulate methanotrophic community composition and atmospheric CH4 uptake in paddy soils. High-affinity methane oxidation activity, as well as the abundance of type II methanotroph, negatively correlated with soil pH, while they positively correlated with soil nutrient availability (soil organic carbon, total nitrogen, and ammonium-nitrogen). Our results indicate the importance of type II methanotrophs and abiotic factors in atmospheric CH4 uptake in paddy soils. Our findings offer a broader biogeographical perspective on atmospheric CH4 uptake in paddy soils. This provides evidence that periodically drained paddy fields can serve as the dry-season CH4 sink. This study is anticipated to help in determining and devising greenhouse gas mitigation strategies through effective farm management in paddy fields.
Collapse
Affiliation(s)
- Yan Zheng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan, China
| | - Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu, China
| |
Collapse
|
2
|
Wang Y, Wang Y, Zhou K, Zhang H, Cheng M, Wang B, Yan X. Isolation of a facultative methanotroph Methylocystis iwaonis SD4 from rice rhizosphere and establishment of rapid genetic tools for it. Biotechnol Lett 2024; 46:713-724. [PMID: 38733438 DOI: 10.1007/s10529-024-03495-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/13/2024]
Abstract
Methanotrophs of the genus Methylocystis are frequently found in rice paddies. Although more than ten facultative methanotrophs have been reported since 2005, none of these strains was isolated from paddy soil. Here, a facultative methane-oxidizing bacterium, Methylocystis iwaonis SD4, was isolated and characterized from rhizosphere samples of rice plants in Nanjing, China. This strain grew well on methane or methanol but was able to grow slowly using acetate or ethanol. Moreover, strain SD4 showed sustained growth at low concentrations of methane (100 and 500 ppmv). M. iwaonis SD4 could utilize diverse nitrogen sources, including nitrate, urea, ammonium as well as dinitrogen. Strain SD4 possessed genes encoding both the particulate methane monooxygenase and the soluble methane monooxygenase. Simple and rapid genetic manipulation methods were established for this strain, enabling vector transformation and unmarked genetic manipulation. Fast growth rate and efficient genetic tools make M. iwaonis SD4 an ideal model to study facultative methanotrophs, and the ability to grow on low concentration of methane implies its potential in methane removal.
Collapse
Affiliation(s)
- Yinghui Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Yuying Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Keyu Zhou
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Haili Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Minggen Cheng
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Baozhan Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China
| | - Xin Yan
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, People's Republic of China.
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-Based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
3
|
Zhang L, Lin W, Sardans J, Li X, Hui D, Yang Z, Wang H, Lin H, Wang Y, Guo J, Peñuelas J, Yang Y. Soil warming-induced reduction in water content enhanced methane uptake at different soil depths in a subtropical forest. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171994. [PMID: 38561130 DOI: 10.1016/j.scitotenv.2024.171994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/05/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024]
Abstract
Global warming can significantly impact soil CH4 uptake in subtropical forests due to changes in soil moisture, temperature sensitivity of methane-oxidizing bacteria (MOB), and shifts in microbial communities. However, the specific effects of climate warming and the underlying mechanisms on soil CH4 uptake at different soil depths remain poorly understood. To address this knowledge gap, we conducted a soil warming experiment (+4 °C) in a natural forest. From August 2020 to October 2021, we measured soil temperature, soil moisture, and CH4 uptake rates at four different soil depths: 0-10 cm, 10-20 cm, 20-40 cm, and 40-60 cm. Additionally, we assessed the soil MOB community structure and pmoA gene (with qPCR) at the 0-10 and 10-20 cm depths. Our findings revealed that warming significantly enhanced soil net CH4 uptake rate by 12.28 %, 29.51 %, and 61.05 % in the 0-10, 20-40, and 40-60 cm soil layers, respectively. The warming also led to reduced soil moisture levels, with more pronounced reductions observed at the 20-40 cm depth compared to the 0-20 cm depth. At the 0-10 cm depth, warming increased the relative abundance of upland soil cluster α (a type of MOB) and decreased the relative abundance of Methylocystis, but it did not significantly increase the pmoA gene copies. Our structural equation model analysis indicated that warming directly regulated soil CH4 uptake rate through the decrease in soil moisture, rather than through changes in the pmoA gene and MOB community structure at the 0-20 cm depth. In summary, our results demonstrate that warming enhances soil CH4 uptake at different depths, with soil moisture playing a crucial role in this process. Under warming conditions, the drier soil pores allow for better CH4 penetration, thereby promoting more efficient activity of MOB.
Collapse
Affiliation(s)
- Lei Zhang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Weisheng Lin
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China.
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Xiaoling Li
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Dafeng Hui
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Zhijie Yang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China
| | - Haizhen Wang
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Hao Lin
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China
| | - Yufang Wang
- College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, Gansu Province, China
| | - Jianfen Guo
- Fujian Provincial Key Laboratory for Plant Eco-physiology, Fujian Normal University, Fuzhou 350117, China; Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China.
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona 08193, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona 08193, Catalonia, Spain
| | - Yusheng Yang
- Institute of Geography, Fujian Normal University, Fuzhou 350117, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian normal University, Sanming 365002, China
| |
Collapse
|
4
|
McGivern BB, Cronin DR, Ellenbogen JB, Borton MA, Knutson EL, Freire-Zapata V, Bouranis JA, Bernhardt L, Hernandez AI, Flynn RM, Woyda R, Cory AB, Wilson RM, Chanton JP, Woodcroft BJ, Ernakovich JG, Tfaily MM, Sullivan MB, Tyson GW, Rich VI, Hagerman AE, Wrighton KC. Microbial polyphenol metabolism is part of the thawing permafrost carbon cycle. Nat Microbiol 2024; 9:1454-1466. [PMID: 38806673 PMCID: PMC11153144 DOI: 10.1038/s41564-024-01691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/02/2024] [Indexed: 05/30/2024]
Abstract
With rising global temperatures, permafrost carbon stores are vulnerable to microbial degradation. The enzyme latch theory states that polyphenols should accumulate in saturated peatlands due to diminished phenol oxidase activity, inhibiting resident microbes and promoting carbon stabilization. Pairing microbiome and geochemical measurements along a permafrost thaw-induced saturation gradient in Stordalen Mire, a model Arctic peatland, we confirmed a negative relationship between phenol oxidase expression and saturation but failed to support other trends predicted by the enzyme latch. To inventory alternative polyphenol removal strategies, we built CAMPER, a gene annotation tool leveraging polyphenol enzyme knowledge gleaned across microbial ecosystems. Applying CAMPER to genome-resolved metatranscriptomes, we identified genes for diverse polyphenol-active enzymes expressed by various microbial lineages under a range of redox conditions. This shifts the paradigm that polyphenols stabilize carbon in saturated soils and highlights the need to consider both oxic and anoxic polyphenol metabolisms to understand carbon cycling in changing ecosystems.
Collapse
Affiliation(s)
- Bridget B McGivern
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, USA
| | - Dylan R Cronin
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Jared B Ellenbogen
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, USA
| | - Mikayla A Borton
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, USA
| | - Eleanor L Knutson
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | | | - John A Bouranis
- Department of Environmental Science; University of Arizona, Tucson, AZ, USA
| | - Lukas Bernhardt
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Alma I Hernandez
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Rory M Flynn
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, USA
| | - Reed Woyda
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, USA
| | - Alexandra B Cory
- Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Rachel M Wilson
- Department of Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Jeffrey P Chanton
- Department of Earth Ocean and Atmospheric Sciences, Florida State University, Tallahassee, FL, USA
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Jessica G Ernakovich
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| | - Malak M Tfaily
- Department of Environmental Science; University of Arizona, Tucson, AZ, USA
| | - Matthew B Sullivan
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
- Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Gene W Tyson
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Queensland, Australia
| | - Virginia I Rich
- Department of Microbiology, The Ohio State University, Columbus, OH, USA
| | - Ann E Hagerman
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH, USA
| | - Kelly C Wrighton
- Department of Soil and Crop Science, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
5
|
Patil SK, Islam T, Tveit A, Hodson A, Øvreås L. Targeting methanotrophs and isolation of a novel psychrophilic Methylobacter species from a terrestrial Arctic alkaline methane seep in Lagoon Pingo, Central Spitsbergen (78° N). Antonie Van Leeuwenhoek 2024; 117:60. [PMID: 38517574 PMCID: PMC10959801 DOI: 10.1007/s10482-024-01953-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024]
Abstract
The microbial diversity associated with terrestrial groundwater seepage through permafrost soils is tightly coupled to the geochemistry of these fluids. Terrestrial alkaline methane seeps from Lagoon Pingo, Central Spitsbergen (78°N) in Norway, with methane-saturated and oxygen-limited groundwater discharge providing a potential habitat for methanotrophy. Here, we report on the microbial community's comparative analyses and distribution patterns at two sites close to Lagoon Pingo's methane emission source. To target methane-oxidizing bacteria from this system, we analysed the microbial community pattern of replicate samples from two sections near the main methane seepage source. DNA extraction, metabarcoding and subsequent sequencing of 16S rRNA genes revealed microbial communities where the major prokaryotic phyla were Pseudomonadota (42-47%), Gemmatimonadota (4-14%) and Actinobacteriota (7-11%). Among the Pseudomonadota, members of the genus Methylobacter were present at relative abundances between 1.6 and 4.7%. Enrichment targeting the methane oxidising bacteria was set up using methane seep sediments as inoculum and methane as the sole carbon and energy source, and this resulted in the isolation of a novel psychrophilic methane oxidizer, LS7-T4AT. The optimum growth temperature for the isolate was 13 °C and the pH optimum was 8.0. The morphology of cells was short rods, and TEM analysis revealed intracytoplasmic membranes arranged in stacks, a distinctive feature for Type I methanotrophs in the family Methylomonadaceae of the class Gammaproteobacteria. The strain belongs to the genus Methylobacter based on high 16S rRNA gene similarity to the psychrophilic species of Methylobacter psychrophilus Z-0021T (98.95%), the psychrophilic strain Methylobacter sp. strain S3L5C (99.00%), and the Arctic mesophilic species of Methylobacter tundripaludum SV96T (99.06%). The genome size of LS7-T4AT was 4,338,157 bp with a G + C content of 47.93%. The average nucleotide identities (ANIb) of strain LS7-T4AT to 10 isolated strains of genus Methylobacter were between 75.54 and 85.51%, lower than the species threshold of 95%. The strain LS7-T4AT represents a novel Arctic species, distinct from other members of the genus Methylobacter, for which the name Methylobacter svalbardensis sp. nov. is proposed. The type of strain is LS7-T4AT (DSMZ:114308, JCM:39463).
Collapse
Affiliation(s)
- Shalaka K Patil
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway.
| | - Tajul Islam
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway
| | - Alexander Tveit
- Department of Arctic and Marine Biology, The Arctic University of Tromsø, 9037, Tromsø, Norway
| | - Andrew Hodson
- University Centre in Svalbard, 9171, Longyearbyen, Norway
| | - Lise Øvreås
- Department of Biological Sciences, University of Bergen, Postboks 7803, 5020, Bergen, Norway
- University Centre in Svalbard, 9171, Longyearbyen, Norway
- Bjerknes Centre for Climate Research, Jahnebakken 5, 5007, Bergen, Norway
| |
Collapse
|
6
|
Dong L, Chen M, Liu C, Lv Y, Wang X, Lei Q, Fang Y, Tong H. Microbe interactions drive the formation of floating iron films in circumneutral wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167711. [PMID: 37832684 DOI: 10.1016/j.scitotenv.2023.167711] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/04/2023] [Accepted: 10/07/2023] [Indexed: 10/15/2023]
Abstract
Floating iron (Fe) films are widely found in wetlands that can form oxic-anoxic boundaries under circumneutral conditions. These films play a crucial role in the redox transformations and bioavailability of nutrients and trace metals. Current studies mainly focus on chemical oxidation during Fe film formation under circumneutral conditions. The functional microorganisms and associated microbial processes involved in Fe film formation have yet to be investigated in detail. Here, we investigated the microbial communities and involved microbial processes for the formation of floating Fe films in wetlands. Ferrihydrite was the dominant Fe(III) phase in films, accompanied by moderate levels of carbon and silicon. The Fe species and microbial analysis indicated that Fe films contain mixed-valent Fe and can form biotically. Microbial community analysis showed that the dominant genera in these Fe films were Fe-oxidizing and reducing bacteria and methanotrophs, including Leptothrix, Ferriphasclus, Gallionella, Geobacter and Methylococcales. Leptothrix, Ferriphasclus and Gallionella, as classical Fe(II)-oxidizing bacteria (FeOB), can oxidize Fe(II) with limited oxygen and form special structures that are consistent with Fe film morphology. Geobacter can provide a source of Fe(II) for FeOB growth, and Methylococcales can perform methane oxidation to provide energy for Fe cycling. The high ratios of Gallionella- and Geobacter-related microorganisms and carbon fixation genes proved the contribution of potential of Fe cycling and autotrophic microbial communities to the formation of Fe films. The diversity of microbial community suggested that Fe(II) oxidation could trigger carbon fixation, while Fe(III) reduction accelerated Fe and carbon cycling through anaerobic respiration and autotrophic chemosynthesis. These results highlight the contribution of these multiple microbial processes to Fe and carbon cycling during the formation of floating Fe films in wetlands. However, further studies are required to fully elucidate the interaction of functional microorganisms involved in floating film formation and their biogeochemical role in wetlands.
Collapse
Affiliation(s)
- Leheng Dong
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang 471023, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yahui Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Xugang Wang
- College of Agriculture / Tree Peony, Henan University of Science and Technology, Luoyang 471023, China
| | - Qinkai Lei
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Yujuan Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
7
|
Seppey CVW, Cabrol L, Thalasso F, Gandois L, Lavergne C, Martinez-Cruz K, Sepulveda-Jauregui A, Aguilar-Muñoz P, Astorga-España MS, Chamy R, Dellagnezze BM, Etchebehere C, Fochesatto GJ, Gerardo-Nieto O, Mansilla A, Murray A, Sweetlove M, Tananaev N, Teisserenc R, Tveit AT, Van de Putte A, Svenning MM, Barret M. Biogeography of microbial communities in high-latitude ecosystems: Contrasting drivers for methanogens, methanotrophs and global prokaryotes. Environ Microbiol 2023; 25:3364-3386. [PMID: 37897125 DOI: 10.1111/1462-2920.16526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Methane-cycling is becoming more important in high-latitude ecosystems as global warming makes permafrost organic carbon increasingly available. We explored 387 samples from three high-latitudes regions (Siberia, Alaska and Patagonia) focusing on mineral/organic soils (wetlands, peatlands, forest), lake/pond sediment and water. Physicochemical, climatic and geographic variables were integrated with 16S rDNA amplicon sequences to determine the structure of the overall microbial communities and of specific methanogenic and methanotrophic guilds. Physicochemistry (especially pH) explained the largest proportion of variation in guild composition, confirming species sorting (i.e., environmental filtering) as a key mechanism in microbial assembly. Geographic distance impacted more strongly beta diversity for (i) methanogens and methanotrophs than the overall prokaryotes and, (ii) the sediment habitat, suggesting that dispersal limitation contributed to shape the communities of methane-cycling microorganisms. Bioindicator taxa characterising different ecological niches (i.e., specific combinations of geographic, climatic and physicochemical variables) were identified, highlighting the importance of Methanoregula as generalist methanogens. Methylocystis and Methylocapsa were key methanotrophs in low pH niches while Methylobacter and Methylomonadaceae in neutral environments. This work gives insight into the present and projected distribution of methane-cycling microbes at high latitudes under climate change predictions, which is crucial for constraining their impact on greenhouse gas budgets.
Collapse
Affiliation(s)
- Christophe V W Seppey
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
- Institute of Environmental Science and Geography, University of Potsdam, Potsdam-Golm, Germany
| | - Léa Cabrol
- Aix-Marseille University, CNRS, IRD, Mediterranean Institute of Oceanography (MIO) UM 110, Marseille, France
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago, Chile
| | - Frederic Thalasso
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Laure Gandois
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Céline Lavergne
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Karla Martinez-Cruz
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
- Environmental Physics Group, Limnological Institute, University of Konstanz, Konstanz, Germany
| | | | - Polette Aguilar-Muñoz
- HUB AMBIENTAL UPLA, Laboratory of Aquatic Environmental Research, Universidad de Playa Ancha, Valparaíso, Chile
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | | | - Rolando Chamy
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Bruna Martins Dellagnezze
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Claudia Etchebehere
- Microbial Ecology Laboratory, Department of Microbial Biochemistry and Genomic, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - Gilberto J Fochesatto
- Department of Atmospheric Sciences, University of Alaska Fairbanks, Fairbanks, Alaska, USA
| | - Oscar Gerardo-Nieto
- Centro de Investigacíon y de Estudios Avanzados del Instituto Politecnico Nacional (Cinvestav-IPN), Departamento de Biotecnología y Bioingeniería, México, Mexico
| | - Andrés Mansilla
- Departamento de Ciencias y Recursos Naturales, Universidad de Magallanes, Punta Arenas, Chile
| | - Alison Murray
- Division of Earth and Ecosystem Sciences, Desert Research Institute, Reno, Nevada, USA
| | - Maxime Sweetlove
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Nikita Tananaev
- Melnikov Permafrost Institute, Russian Academy of Sciences, Yakutsk, Russia
- Institute of Natural Sciences, North-Eastern Federal University, Yakutsk, Russia
| | - Roman Teisserenc
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| | - Alexander T Tveit
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Anton Van de Putte
- Royal Belgian Institute for Natural Sciences, OD-Nature, Brussels, Belgium
| | - Mette M Svenning
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Maialen Barret
- Laboratoire Écologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
8
|
Vigderovich H, Eckert W, Elvert M, Gafni A, Rubin-Blum M, Bergman O, Sivan O. Aerobic methanotrophy increases the net iron reduction in methanogenic lake sediments. Front Microbiol 2023; 14:1206414. [PMID: 37577416 PMCID: PMC10415106 DOI: 10.3389/fmicb.2023.1206414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
In methane (CH4) generating sediments, methane oxidation coupled with iron reduction was suggested to be catalyzed by archaea and bacterial methanotrophs of the order Methylococcales. However, the co-existence of these aerobic and anaerobic microbes, the link between the processes, and the oxygen requirement for the bacterial methanotrophs have remained unclear. Here, we show how stimulation of aerobic methane oxidation at an energetically low experimental environment influences net iron reduction, accompanied by distinct microbial community changes and lipid biomarker patterns. We performed incubation experiments (between 30 and 120 days long) with methane generating lake sediments amended with 13C-labeled methane, following the additions of hematite and different oxygen levels in nitrogen headspace, and monitored methane turnover by 13C-DIC measurements. Increasing oxygen exposure (up to 1%) promoted aerobic methanotrophy, considerable net iron reduction, and the increase of microbes, such as Methylomonas, Geobacter, and Desulfuromonas, with the latter two being likely candidates for iron recycling. Amendments of 13C-labeled methanol as a potential substrate for the methanotrophs under hypoxia instead of methane indicate that this substrate primarily fuels methylotrophic methanogenesis, identified by high methane concentrations, strongly positive δ13CDIC values, and archaeal lipid stable isotope data. In contrast, the inhibition of methanogenesis by 2-bromoethanesulfonate (BES) led to increased methanol turnover, as suggested by similar 13C enrichment in DIC and high amounts of newly produced bacterial fatty acids, probably derived from heterotrophic bacteria. Our experiments show a complex link between aerobic methanotrophy and iron reduction, which indicates iron recycling as a survival mechanism for microbes under hypoxia.
Collapse
Affiliation(s)
- Hanni Vigderovich
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Werner Eckert
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Marcus Elvert
- MARUM—Center for Marine Environmental Sciences and Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Almog Gafni
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Maxim Rubin-Blum
- Israel Oceanographic and Limnological Research, National Institute of Oceanography, Haifa, Israel
| | - Oded Bergman
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- The Yigal Allon Kinneret Limnological Laboratory, Israel Oceanographic and Limnological Research, Migdal, Israel
| | - Orit Sivan
- Department of Earth and Environmental Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
9
|
Huang Z, Chen T, Yang Z, Wang Y, Zhou Y, Ding X, Zhang L, Yan B. Risk assessment and microbial community structure in agricultural soils contaminated by vanadium from stone coal mining. CHEMOSPHERE 2023; 310:136916. [PMID: 36272620 DOI: 10.1016/j.chemosphere.2022.136916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
High health risks of vanadium (V) released by the mining of vanadium titanomagnetite (VTM) have been widely recognized, but little is known about the risks and microbial community responses of V pollution as a consequence of the stone coal mining (SCM), another important resource for V mining. In this study, the topsoils and the profile soils were collected from the agricultural soils around a typical SCM in Hunan Province, China, with the investigation of ecological, health risks and microbial community structures. The results showed that ∼97.6% of sampling sites had levels of total V exceeding the Chinese National standard (i.e., 130 mg/kg), and up to 41.1% of V speciation in the topsoils was pentavalent vanadium (V(V)). Meanwhile, the proportions of HQ > 1 and 0.6-1 in the topsoils were ∼8.3% and ∼31.0% respectively, indicating that V might pose a non-carcinogenic risk to children. In addition, the microbial community varied between the topsoils and the profile soils. Both sulfur-oxidizing bacteria (e.g. Thiobacillus, MND1, Ignavibacterium) and sulfate-reducing bacteria (e.g. Desulfatiglans, GOUTB8, GOUTA6) might have been involved in V(V) reductive detoxification. This study helps better understand the pollution and associated risks of V in the soils of SCM and provides a potential strategy for bioremediation of the V-contaminated environment.
Collapse
Affiliation(s)
- Zulv Huang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Zhangwei Yang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yaqing Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Yang Zhou
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Ding
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Lijuan Zhang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Insights into the Genomic Potential of a Methylocystis sp. from Amazonian Floodplain Sediments. Microorganisms 2022; 10:microorganisms10091747. [PMID: 36144349 PMCID: PMC9506196 DOI: 10.3390/microorganisms10091747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/23/2022] [Accepted: 08/02/2022] [Indexed: 11/26/2022] Open
Abstract
Although floodplains are recognized as important sources of methane (CH4) in the Amazon basin, little is known about the role of methanotrophs in mitigating CH4 emissions in these ecosystems. Our previous data reported the genus Methylocystis as one of the most abundant methanotrophs in these floodplain sediments. However, information on the functional potential and life strategies of these organisms living under seasonal flooding is still missing. Here, we described the first metagenome-assembled genome (MAG) of a Methylocystis sp. recovered from Amazonian floodplains sediments, and we explored its functional potential and ecological traits through phylogenomic, functional annotation, and pan-genomic approaches. Both phylogenomics and pan-genomics identified the closest placement of the bin.170_fp as Methylocystis parvus. As expected for Type II methanotrophs, the Core cluster from the pan-genome comprised genes for CH4 oxidation and formaldehyde assimilation through the serine pathway. Furthermore, the complete set of genes related to nitrogen fixation is also present in the Core. Interestingly, the MAG singleton cluster revealed the presence of unique genes related to nitrogen metabolism and cell motility. The study sheds light on the genomic characteristics of a dominant, but as yet unexplored methanotroph from the Amazonian floodplains. By exploring the genomic potential related to resource utilization and motility capability, we expanded our knowledge on the niche breadth of these dominant methanotrophs in the Amazonian floodplains.
Collapse
|
11
|
Abstract
Wetlands are the major natural source of methane, an important greenhouse gas. The sulfur and methane cycles in wetlands are linked—e.g., a strong sulfur cycle can inhibit methanogenesis. Although there has historically been a clear distinction drawn between methane and sulfur oxidizers, here, we isolated a methanotroph that also performed respiratory oxidization of sulfur compounds. We experimentally demonstrated that thiotrophy and methanotrophy are metabolically compatible, and both metabolisms could be expressed simultaneously in a single microorganism. These findings suggest that mixotrophic methane/sulfur-oxidizing bacteria are a previously overlooked component of environmental methane and sulfur cycles. This creates a framework for a better understanding of these redox cycles in natural and engineered wetlands. Natural and anthropogenic wetlands are major sources of the atmospheric greenhouse gas methane. Methane emissions from wetlands are mitigated by methanotrophic bacteria at the oxic–anoxic interface, a zone of intense redox cycling of carbon, sulfur, and nitrogen compounds. Here, we report on the isolation of an aerobic methanotrophic bacterium, ‘Methylovirgula thiovorans' strain HY1, which possesses metabolic capabilities never before found in any methanotroph. Most notably, strain HY1 is the first bacterium shown to aerobically oxidize both methane and reduced sulfur compounds for growth. Genomic and proteomic analyses showed that soluble methane monooxygenase and XoxF-type alcohol dehydrogenases are responsible for methane and methanol oxidation, respectively. Various pathways for respiratory sulfur oxidation were present, including the Sox–rDsr pathway and the S4I system. Strain HY1 employed the Calvin–Benson–Bassham cycle for CO2 fixation during chemolithoautotrophic growth on reduced sulfur compounds. Proteomic and microrespirometry analyses showed that the metabolic pathways for methane and thiosulfate oxidation were induced in the presence of the respective substrates. Methane and thiosulfate could therefore be independently or simultaneously oxidized. The discovery of this versatile bacterium demonstrates that methanotrophy and thiotrophy are compatible in a single microorganism and underpins the intimate interactions of methane and sulfur cycles in oxic–anoxic interface environments.
Collapse
|
12
|
Wang Y, Lu Y, Li X, Zhu G, Li N, Han J, Sun L, Yang Z, Zeng RJ. Light-dependent enhancement of sulfadiazine detoxification and mineralization by non-photosynthetic methanotrophs. WATER RESEARCH 2022; 220:118623. [PMID: 35665677 DOI: 10.1016/j.watres.2022.118623] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Co-metabolism and photodegradation are two approaches for remediating trace organic compounds (TOrCs), however, interactions between the two with regards to TOrCs degradation have not been elucidated. In this study, sulfadiazine (SDZ) was chosen as a representative TOrC and Methylocystis bryophila as a typical strain. Under light conditions, about 80.6% of SDZ was removed by M. bryophila, but only 7.6% or 28.9% of SDZ was eliminated by either individual photodegradation or by co-metabolism. The SDZ stimulated more extracellular organic matter (EOM) production by M. bryophila. The enhanced SDZ degradation was attributed to indirect photolysis caused by the excited triplet state of EOM (3EOM*) and co-metabolism. The UPLC-QTOF-MS analysis showed that due to co-metabolism, the pyrimidine ring was broken and could further be oxidized into smaller molecules under light conditions, such as formic and acetic acids. The SDZ mineralization ratio increased from 9.9% under the co-metabolic condition alone to 36.5% under co-metabolism coupled with photodegradation. The Ames tests confirmed that the SDZ degradation products by co-metabolism were mutagenic, however, their toxicity was ameliorated by light during co-metabolism. In conclusion, light plays a crucial role in co-metabolic processes of TOrCs.
Collapse
Affiliation(s)
- Yongzhen Wang
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Yongze Lu
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Xin Li
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Guangcan Zhu
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Na Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jing Han
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Liwei Sun
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Zhonglian Yang
- School of Energy and Environment, Southeast University, No.2, Sipailou, Nanjing, Jiangsu 210096, China; State Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing 210096, China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
13
|
Tikhonova EN, Grouzdev DS, Avtukh AN, Kravchenko IK. Methylocystis silviterrae sp.nov., a high-affinity methanotrophic bacterium isolated from the boreal forest soil. Int J Syst Evol Microbiol 2021; 71. [PMID: 34913862 DOI: 10.1099/ijsem.0.005166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel species is proposed for a high-affinity methanotrophic representative of the genus Methylocystis. Strain FST was isolated from a weakly acidic (pH 5.3) mixed forest soil of the southern Moscow area. Cells of FST are aerobic, Gram-negative, non-motile, curved coccoids or short rods that contain an intracytoplasmic membrane system typical of type-II methanotrophs. Only methane and methanol are used as carbon sources. FST grew at a temperature range of 4-37 °C (optimum 25-30 °C) and a pH range of 4.5 to 7.5 (optimum pH 6.0-6.5). The major fatty acids were C18 : 1ω8c, C18 : 1ω7c and C18 : 0; the major quinone as Q-8. FST displays 16S rRNA gene sequences similarity to other taxonomically recognized members of the genus Methylocystis, with Methylocystis hirsuta CSC1T (99.6 % similarity) and Methylocystis rosea SV97T (99.3 % similarity) as its closest relatives. The genome comprises 3.85 Mbp and has a DNA G+C content of 62.6 mol%. Genomic analyses and DNA-DNA relatedness with genome-sequenced members of the genus Methylocystis demonstrated that FST could be separated from its closest relatives. FST possesses two particulate methane monooxygenases (pMMO): low-affinity pMMO1 and high-affinity pMMO2. In laboratory experiments, it was demonstrated that FST might oxidize methane at atmospheric concentration. The genome contained various genes for nitrogen fixation, polyhydroxybutyrate synthesis, antibiotic resistance and detoxification of arsenic, cyanide and mercury. On the basis of genotypic, phenotypic and chemotaxonomic characteristics, it is proposed that the isolate represents a novel species, Methylocystis silviterrae sp. nov. The type strain is FST (=KCTC 82935T=VKM B-3535T).
Collapse
Affiliation(s)
- Ekaterina N Tikhonova
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Denis S Grouzdev
- SciBear OU, Tartu mnt 67/1-13b, Kesklinna linnaosa, Tallin 10115, Estonia
| | - Alexander N Avtukh
- All-Russian Collection of Microorganisms - VKM, GK Skryabin Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center' Puschino Scientific Center for Biological Research of the Russian Academy of Sciences, Estonia
| | - Irina K Kravchenko
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Daisley BA, Koenig D, Engelbrecht K, Doney L, Hards K, Al KF, Reid G, Burton JP. Emerging connections between gut microbiome bioenergetics and chronic metabolic diseases. Cell Rep 2021; 37:110087. [PMID: 34879270 DOI: 10.1016/j.celrep.2021.110087] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/03/2021] [Accepted: 11/10/2021] [Indexed: 12/25/2022] Open
Abstract
The conventional viewpoint of single-celled microbial metabolism fails to adequately depict energy flow at the systems level in host-adapted microbial communities. Emerging paradigms instead support that distinct microbiomes develop interconnected and interdependent electron transport chains that rely on cooperative production and sharing of bioenergetic machinery (i.e., directly involved in generating ATP) in the extracellular space. These communal resources represent an important subset of the microbial metabolome, designated here as the "pantryome" (i.e., pantry or external storage compartment), that critically supports microbiome function and can exert multifunctional effects on host physiology. We review these interactions as they relate to human health by detailing the genomic-based sharing potential of gut-derived bacterial and archaeal reference strains. Aromatic amino acids, metabolic cofactors (B vitamins), menaquinones (vitamin K2), hemes, and short-chain fatty acids (with specific emphasis on acetate as a central regulator of symbiosis) are discussed in depth regarding their role in microbiome-related metabolic diseases.
Collapse
Affiliation(s)
- Brendan A Daisley
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - David Koenig
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kathleen Engelbrecht
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Liz Doney
- Kimberly Clark Corporation, Global Research and Engineering-Life Science, Neenah, WI, USA
| | - Kiel Hards
- Department of Microbiology and Immunology, University of Otago, Dunedin, Otago, New Zealand
| | - Kait F Al
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada
| | - Gregor Reid
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada
| | - Jeremy P Burton
- Department of Microbiology & Immunology, The University of Western Ontario, London, ON N6A 5C1, Canada; Canadian Centre for Human Microbiome and Probiotics Research, London, ON N6A 4V2, Canada; Department of Surgery, Division of Urology, Schulich School of Medicine, London, ON N6A 5C1, Canada.
| |
Collapse
|
15
|
Integrating Decomposers, Methane-Cycling Microbes and Ecosystem Carbon Fluxes Along a Peatland Successional Gradient in a Land Uplift Region. Ecosystems 2021. [DOI: 10.1007/s10021-021-00713-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractPeatlands are carbon dioxide (CO2) sinks that, in parallel, release methane (CH4). The peatland carbon (C) balance depends on the interplay of decomposer and CH4-cycling microbes, vegetation, and environmental conditions. These interactions are susceptible to the changes that occur along a successional gradient from vascular plant-dominated systems to Sphagnum moss-dominated systems. Changes similar to this succession are predicted to occur from climate change. Here, we investigated how microbial and plant communities are interlinked with each other and with ecosystem C cycling along a successional gradient on a boreal land uplift coast. The gradient ranged from shoreline to meadows and fens, and further to bogs. Potential microbial activity (aerobic CO2 production; CH4 production and oxidation) and biomass were greatest in the early successional meadows, although their communities of aerobic decomposers (fungi, actinobacteria), methanogens, and methanotrophs did not differ from the older fens. Instead, the functional microbial communities shifted at the fen–bog transition concurrent with a sudden decrease in C fluxes. The successional patterns of decomposer versus CH4-cycling communities diverged at the bog stage, indicating strong but distinct microbial responses to Sphagnum dominance and acidity. We highlight young meadows as dynamic sites with the greatest microbial potential for C release. These hot spots of C turnover with dense sedge cover may represent a sensitive bottleneck in succession, which is necessary for eventual long-term peat accumulation. The distinctive microbes in bogs could serve as indicators of the C sink function in restoration measures that aim to stabilize the C in the peat.
Collapse
|
16
|
Zhang Q, Deng S, Li J, Yao H, Li D. Cultivation of aerobic granular sludge coupled with built-in biochemical cycle galvanic-cells driven by dual selective pressure and its denitrification characteristics. BIORESOURCE TECHNOLOGY 2021; 337:125454. [PMID: 34198243 DOI: 10.1016/j.biortech.2021.125454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/16/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Dual selective pressure was applied as the driving condition to cultivate an enhanced aerobic granular sludge (AGS) with Fe(0)-based biochemical cycle galvanic-cells (BCGC) as the core. The BCGC-AGS coupled micro-electrolysis with synergistic autotrophic-heterotrophic denitrification to enhance nitrogen removal. COD and total nitrogen removal of 91.8% and 95.9% were achieved, respectively. The formation of circulation channel between Fe3+ and Fe2+ provided a solid foundation for the biochemical cycle of galvanic-cells with low consumption. The existence of micro-electrolysis selective pressure in BCGC-AGS was also confirmed. Facultative aerobic bacteria Methylocystis and Azospirillum were the most abundant genera. Facultative iron redox bacteria and autotrophic denitrifying bacteria Geobacter, Thiobacillus, Aquabacterium, Thauera and Azospirillum showed high abundance, affirming the success culture of EAGS system. Load shock test verified BCGC-AGS possessed excellent load shock resistance. Obtaining the advantages of fast-cultivation, high-efficiency and low galvanic-cells consumption, BCGC-AGS showed significant potential for practical application.
Collapse
Affiliation(s)
- Qi Zhang
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China.
| | - Shihai Deng
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jinlong Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China
| | - Hong Yao
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, PR China
| | - Desheng Li
- School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, PR China; Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, Beijing 100044, PR China
| |
Collapse
|
17
|
Hakobyan A, Liesack W. Unexpected metabolic versatility among type II methanotrophs in the Alphaproteobacteria. Biol Chem 2021; 401:1469-1477. [PMID: 32769217 DOI: 10.1515/hsz-2020-0200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/04/2020] [Indexed: 12/16/2022]
Abstract
Aerobic methane-oxidizing bacteria, or methanotrophs, play a crucial role in the global methane cycle. Their methane oxidation activity in various environmental settings has a great mitigation effect on global climate change. Alphaproteobacterial methanotrophs were among the first to be taxonomically characterized, nowadays unified in the Methylocystaceae and Beijerinckiaceae families. Originally thought to have an obligate growth requirement for methane and related one-carbon compounds as a source of carbon and energy, it was later shown that various alphaproteobacterial methanotrophs are facultative, able to grow on multi-carbon compounds such as acetate. Most recently, we expanded our knowledge of the metabolic versatility of alphaproteobacterial methanotrophs. We showed that Methylocystis sp. strain SC2 has the capacity for mixotrophic growth on H2 and CH4. This mini-review will summarize the change in perception from the long-held paradigm of obligate methanotrophy to today's recognition of alphaproteobacterial methanotrophs as having both facultative and mixotrophic capabilities.
Collapse
Affiliation(s)
- Anna Hakobyan
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
| | - Werner Liesack
- Research group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, D-35043, Marburg, Germany
| |
Collapse
|
18
|
Awala SI, Gwak JH, Kim YM, Kim SJ, Strazzulli A, Dunfield PF, Yoon H, Kim GJ, Rhee SK. Verrucomicrobial methanotrophs grow on diverse C3 compounds and use a homolog of particulate methane monooxygenase to oxidize acetone. ISME JOURNAL 2021; 15:3636-3647. [PMID: 34158629 PMCID: PMC8630023 DOI: 10.1038/s41396-021-01037-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 11/26/2022]
Abstract
Short-chain alkanes (SCA; C2-C4) emitted from geological sources contribute to photochemical pollution and ozone production in the atmosphere. Microorganisms that oxidize SCA and thereby mitigate their release from geothermal environments have rarely been studied. In this study, propane-oxidizing cultures could not be grown from acidic geothermal samples by enrichment on propane alone, but instead required methane addition, indicating that propane was co-oxidized by methanotrophs. “Methylacidiphilum” isolates from these enrichments did not grow on propane as a sole energy source but unexpectedly did grow on C3 compounds such as 2-propanol, acetone, and acetol. A gene cluster encoding the pathway of 2-propanol oxidation to pyruvate via acetol was upregulated during growth on 2-propanol. Surprisingly, this cluster included one of three genomic operons (pmoCAB3) encoding particulate methane monooxygenase (PMO), and several physiological tests indicated that the encoded PMO3 enzyme mediates the oxidation of acetone to acetol. Acetone-grown resting cells oxidized acetone and butanone but not methane or propane, implicating a strict substrate specificity of PMO3 to ketones instead of alkanes. Another PMO-encoding operon, pmoCAB2, was induced only in methane-grown cells, and the encoded PMO2 could be responsible for co-metabolic oxidation of propane to 2-propanol. In nature, propane probably serves primarily as a supplemental growth substrate for these bacteria when growing on methane.
Collapse
Affiliation(s)
- Samuel Imisi Awala
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Joo-Han Gwak
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Yong-Man Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon, 34132, Republic of Korea
| | - Andrea Strazzulli
- Department of Biology, University of Naples "Federico II", Complesso Universitario Di Monte S. Angelo, Via Cupa Nuova Cinthia 21, 80126, Naples, Italy
| | - Peter F Dunfield
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary, AB, T2N 1N4, Canada
| | - Hyeokjun Yoon
- Biological and Genetic Resources Assessment Division, National Institute of Biological Resources, 42 Hwangyeong-ro, Seo-gu, Incheon, 22689, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences and Research Center of Ecomimetics, College of Natural Sciences, Chonnam National University, Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea
| | - Sung-Keun Rhee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, 1 Chungdae-ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
19
|
Microbial Communities in Methane Cycle: Modern Molecular Methods Gain Insights into Their Global Ecology. ENVIRONMENTS 2021. [DOI: 10.3390/environments8020016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of methane as a greenhouse gas in the concept of global climate changes is well known. Methanogens and methanotrophs are two microbial groups which contribute to the biogeochemical methane cycle in soil, so that the total emission of CH4 is the balance between its production and oxidation by microbial communities. Traditional identification techniques, such as selective enrichment and pure-culture isolation, have been used for a long time to study diversity of methanogens and methanotrophs. However, these techniques are characterized by significant limitations, since only a relatively small fraction of the microbial community could be cultured. Modern molecular methods for quantitative analysis of the microbial community such as real-time PCR (Polymerase chain reaction), DNA fingerprints and methods based on high-throughput sequencing together with different “omics” techniques overcome the limitations imposed by culture-dependent approaches and provide new insights into the diversity and ecology of microbial communities in the methane cycle. Here, we review available knowledge concerning the abundances, composition, and activity of methanogenic and methanotrophic communities in a wide range of natural and anthropogenic environments. We suggest that incorporation of microbial data could fill the existing microbiological gaps in methane flux modeling, and significantly increase the predictive power of models for different environments.
Collapse
|
20
|
Recovery in methanotrophic activity does not reflect on the methane-driven interaction network after peat mining. Appl Environ Microbiol 2021; 87:AEM.02355-20. [PMID: 33355115 PMCID: PMC8090869 DOI: 10.1128/aem.02355-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic methanotrophs are crucial in ombrotrophic peatlands, driving the methane and nitrogen cycles. Peat mining adversely affects the methanotrophs, but activity and community composition/abundances may recover after restoration. Considering that the methanotrophic activity and growth are significantly stimulated in the presence of other microorganisms, the methane-driven interaction network, encompassing methanotrophs and non-methanotrophs (i.e., methanotrophic interactome), may also be relevant in conferring community resilience. Yet, little is known of the response and recovery of the methanotrophic interactome to disturbances. Here, we determined the recovery of the methanotrophic interactome as inferred by a co-occurrence network analysis, comparing a pristine and restored peatland. We coupled a DNA-based stable isotope probing (SIP) approach using 13C-CH4 to a co-occurrence network analysis derived from the 13C-enriched 16S rRNA gene sequences to relate the response in methanotrophic activity to the structuring of the interaction network. Methanotrophic activity and abundances recovered after peat restoration since 2000. 'Methylomonaceae' was the predominantly active methanotrophs in both peatlands, but differed in the relative abundance of Methylacidiphilaceae and Methylocystis However, bacterial community composition was distinct in both peatlands. Likewise, the methanotrophic interactome was profoundly altered in the restored peatland. Structuring of the interaction network after peat mining resulted in the loss of complexity and modularity, indicating a less connected and efficient network, which may have consequences in the event of recurring/future disturbances. Therefore, determining the response of the methane-driven interaction network, in addition to relating methanotrophic activity to community composition/abundances, provided a more comprehensive understanding of the resilience of the methanotrophs.Importance The resilience and recovery of microorganisms from disturbances are often determined with regard to their activity and community composition/abundances. Rarely has the response of the network of interacting microorganisms been considered, despite accumulating evidence showing that microbial interaction modulates community functioning. Comparing the methane-driven interaction network of a pristine and restored peatland, our findings revealed that the metabolically active microorganisms were less connected and formed less modular 'hubs' in the restored peatland, indicative of a less complex network which may have consequences with recurring disturbances and environmental changes. This also suggests that the resilience and full recovery in the methanotrophic activity and abundances do not reflect on the interaction network. Therefore, it is relevant to consider the interaction-induced response, in addition to documenting changes in activity and community composition/abundances, to provide a comprehensive understanding of the resilience of microorganisms to disturbances.
Collapse
|
21
|
Jung GY, Rhee SK, Han YS, Kim SJ. Genomic and Physiological Properties of a Facultative Methane-Oxidizing Bacterial Strain of Methylocystis sp. from a Wetland. Microorganisms 2020; 8:microorganisms8111719. [PMID: 33147874 PMCID: PMC7716213 DOI: 10.3390/microorganisms8111719] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/07/2023] Open
Abstract
Methane-oxidizing bacteria are crucial players in controlling methane emissions. This study aimed to isolate and characterize a novel wetland methanotroph to reveal its role in the wetland environment based on genomic information. Based on phylogenomic analysis, the isolated strain, designated as B8, is a novel species in the genus Methylocystis. Strain B8 grew in a temperature range of 15 °C to 37 °C (optimum 30–35 °C) and a pH range of 6.5 to 10 (optimum 8.5–9). Methane, methanol, and acetate were used as carbon sources. Hydrogen was produced under oxygen-limited conditions. The assembled genome comprised of 3.39 Mbp and 59.9 mol% G + C content. The genome contained two types of particulate methane monooxygenases (pMMO) for low-affinity methane oxidation (pMMO1) and high-affinity methane oxidation (pMMO2). It was revealed that strain B8 might survive atmospheric methane concentration. Furthermore, the genome had various genes for hydrogenase, nitrogen fixation, polyhydroxybutyrate synthesis, and heavy metal resistance. This metabolic versatility of strain B8 might enable its survival in wetland environments.
Collapse
Affiliation(s)
- Gi-Yong Jung
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju 28644, Korea;
| | - Young-Soo Han
- Department of Environmental Engineering, Chungnam National University, Daejeon 34134, Korea;
| | - So-Jeong Kim
- Geologic Environment Research Division, Korea Institute of Geoscience and Mineral Resources, Daejeon 34132, Korea;
- Correspondence: ; Tel.: +82-42-868-3311; Fax: +82-42-868-3414
| |
Collapse
|
22
|
Cai Y, Zhou X, Shi L, Jia Z. Atmospheric Methane Oxidizers Are Dominated by Upland Soil Cluster Alpha in 20 Forest Soils of China. MICROBIAL ECOLOGY 2020; 80:859-871. [PMID: 32803363 DOI: 10.1007/s00248-020-01570-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 08/03/2020] [Indexed: 05/25/2023]
Abstract
Upland soil clusters alpha and gamma (USCα and USCγ) are considered a major biological sink of atmospheric methane and are often detected in forest and grassland soils. These clusters are phylogenetically classified using the particulate methane monooxygenase gene pmoA because of the difficulty of cultivation. Recent studies have established a direct link of pmoA genes to 16S rRNA genes based on their isolated strain or draft genomes. However, whether the results of pmoA-based assays could be largely represented by 16S rRNA gene sequencing in upland soils remains unclear. In this study, we collected 20 forest soils across China and compared methane-oxidizing bacterial (MOB) communities by high-throughput sequencing of 16S rRNA and pmoA genes using different primer sets. The results showed that 16S rRNA gene sequencing and the semi-nested polymerase chain reaction (PCR) of the pmoA gene (A189/A682r nested with a mixture of mb661 and A650) consistently revealed the dominance of USCα (accounting for more than 50% of the total MOB) in 12 forest soils. A189f/A682r successfully amplified pmoA genes (mainly RA14 of USCα) in only three forest soils. A189f/mb661 could amplify USCα (mainly JR1) in several forest soils but showed a strong preferential amplification of Methylocystis and many other type I MOB groups. A189f/A650 almost exclusively amplified USCα (mainly JR1) and largely discriminated against Methylocystis and most of the other MOB groups. The semi-nested PCR approach weakened the bias of A189f/mb661 and A189f/A650 for JR1 and balanced the coverage of all USCα members. The canonical correspondence analysis indicated that soil NH4+-N and pH were the main environmental factors affecting the MOB community of Chinese forest soils. The RA14 of the USCα group prefers to live in soils with low pH, low temperature, low elevation, high precipitation, and rich in nitrogen. JR1's preferences for temperature and elevation were opposite to RA14. Our study suggests that combining the deep sequencing of 16S rRNA and pmoA genes to characterize MOB in forest soils is the best choice.
Collapse
Affiliation(s)
- Yuanfeng Cai
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Xue Zhou
- College of agricultural science and engineering, Hohai University, Nanjing, 210098, Jiangsu Province, China
| | - Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
23
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
24
|
Hakobyan A, Zhu J, Glatter T, Paczia N, Liesack W. Hydrogen utilization by Methylocystis sp. strain SC2 expands the known metabolic versatility of type IIa methanotrophs. Metab Eng 2020; 61:181-196. [PMID: 32479801 DOI: 10.1016/j.ymben.2020.05.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/20/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Methane, a non-expensive natural substrate, is used by Methylocystis spp. as a sole source of carbon and energy. Here, we assessed whether Methylocystis sp. strain SC2 is able to also utilize hydrogen as an energy source. The addition of 2% H2 to the culture headspace had the most significant positive effect on the growth yield under CH4 (6%) and O2 (3%) limited conditions. The SC2 biomass yield doubled from 6.41 (±0.52) to 13.82 (±0.69) mg cell dry weight per mmol CH4, while CH4 consumption was significantly reduced. Regardless of H2 addition, CH4 utilization was increasingly redirected from respiration to fermentation-based pathways with decreasing O2/CH4 mixing ratios. Theoretical thermodynamic calculations confirmed that hydrogen utilization under oxygen-limited conditions doubles the maximum biomass yield compared to fully aerobic conditions without H2 addition. Hydrogen utilization was linked to significant changes in the SC2 proteome. In addition to hydrogenase accessory proteins, the production of Group 1d and Group 2b hydrogenases was significantly increased in both short- and long-term incubations. Both long-term incubation with H2 (37 d) and treatments with chemical inhibitors revealed that SC2 growth under hydrogen-utilizing conditions does not require the activity of complex I. Apparently, strain SC2 has the metabolic capacity to channel hydrogen-derived electrons into the quinone pool, which provides a link between hydrogen oxidation and energy production. In summary, H2 may be a promising alternative energy source in biotechnologically oriented methanotroph projects that aim to maximize biomass yield from CH4, such as the production of high-quality feed protein.
Collapse
Affiliation(s)
- Anna Hakobyan
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Jing Zhu
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Institute of Environmental Science and Technology, Zhejiang University, Hangzhou, China
| | - Timo Glatter
- Core Facility for Mass Spectrometry and Proteomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Nicole Paczia
- Core Facility for Metabolomics and Small Molecule Mass Spectrometry, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Werner Liesack
- Research Group "Methanotrophic Bacteria and Environmental Genomics/Transcriptomics", Max Planck Institute for Terrestrial Microbiology, Marburg, Germany; Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
25
|
Pan-Genome-Based Analysis as a Framework for Demarcating Two Closely Related Methanotroph Genera Methylocystis and Methylosinus. Microorganisms 2020; 8:microorganisms8050768. [PMID: 32443820 PMCID: PMC7285482 DOI: 10.3390/microorganisms8050768] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/17/2020] [Accepted: 05/18/2020] [Indexed: 01/21/2023] Open
Abstract
The Methylocystis and Methylosinus are two of the five genera that were included in the first taxonomic framework of methanotrophic bacteria created half a century ago. Members of both genera are widely distributed in various environments and play a key role in reducing methane fluxes from soils and wetlands. The original separation of these methanotrophs in two distinct genera was based mainly on their differences in cell morphology. Further comparative studies that explored various single-gene-based phylogenies suggested the monophyletic nature of each of these genera. Current availability of genome sequences from members of the Methylocystis/Methylosinus clade opens the possibility for in-depth comparison of the genomic potentials of these methanotrophs. Here, we report the finished genome sequence of Methylocystis heyeri H2T and compare it to 23 currently available genomes of Methylocystis and Methylosinus species. The phylogenomic analysis confirmed that members of these genera form two separate clades. The Methylocystis/Methylosinus pan-genome core comprised 1173 genes, with the accessory genome containing 4941 and 11,192 genes in the shell and the cloud, respectively. Major differences between the genome-encoded environmental traits of these methanotrophs include a variety of enzymes for methane oxidation and dinitrogen fixation as well as genomic determinants for cell motility and photosynthesis.
Collapse
|
26
|
Yadav AN, Singh J, Rastegari AA, Yadav N. Phyllospheric Microbiomes: Diversity, Ecological Significance, and Biotechnological Applications. ACTA ACUST UNITED AC 2020. [PMCID: PMC7123684 DOI: 10.1007/978-3-030-38453-1_5] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The phyllosphere referred to the total aerial plant surfaces (above-ground portions), as habitat for microorganisms. Microorganisms establish compositionally complex communities on the leaf surface. The microbiome of phyllosphere is rich in diversity of bacteria, fungi, actinomycetes, cyanobacteria, and viruses. The diversity, dispersal, and community development on the leaf surface are based on the physiochemistry, environment, and also the immunity of the host plant. A colonization process is an important event where both the microbe and the host plant have been benefited. Microbes commonly established either epiphytic or endophytic mode of life cycle on phyllosphere environment, which helps the host plant and functional communication with the surrounding environment. To the scientific advancement, several molecular techniques like metagenomics and metaproteomics have been used to study and understand the physiology and functional relationship of microbes to the host and its environment. Based on the available information, this chapter describes the basic understanding of microbiome in leaf structure and physiology, microbial interactions, especially bacteria, fungi, and actinomycetes, and their adaptation in the phyllosphere environment. Further, the detailed information related to the importance of the microbiome in phyllosphere to the host plant and their environment has been analyzed. Besides, biopotentials of the phyllosphere microbiome have been reviewed.
Collapse
Affiliation(s)
- Ajar Nath Yadav
- Department of Biotechnology, Eternal University, Baru Sahib, Himachal Pradesh India
| | - Joginder Singh
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab India
| | | | - Neelam Yadav
- Gopi Nath PG College, Veer Bahadur Singh Purvanchal University, Ghazipur, Uttar Pradesh India
| |
Collapse
|
27
|
Farhan Ul Haque M, Crombie AT, Murrell JC. Novel facultative Methylocella strains are active methane consumers at terrestrial natural gas seeps. MICROBIOME 2019; 7:134. [PMID: 31585550 PMCID: PMC6778391 DOI: 10.1186/s40168-019-0741-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/20/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Natural gas seeps contribute to global climate change by releasing substantial amounts of the potent greenhouse gas methane and other climate-active gases including ethane and propane to the atmosphere. However, methanotrophs, bacteria capable of utilising methane as the sole source of carbon and energy, play a significant role in reducing the emissions of methane from many environments. Methylocella-like facultative methanotrophs are a unique group of bacteria that grow on other components of natural gas (i.e. ethane and propane) in addition to methane but a little is known about the distribution and activity of Methylocella in the environment. The purposes of this study were to identify bacteria involved in cycling methane emitted from natural gas seeps and, most importantly, to investigate if Methylocella-like facultative methanotrophs were active utilisers of natural gas at seep sites. RESULTS The community structure of active methane-consuming bacteria in samples from natural gas seeps from Andreiasu Everlasting Fire (Romania) and Pipe Creek (NY, USA) was investigated by DNA stable isotope probing (DNA-SIP) using 13C-labelled methane. The 16S rRNA gene sequences retrieved from DNA-SIP experiments revealed that of various active methanotrophs, Methylocella was the only active methanotrophic genus common to both natural gas seep environments. We also isolated novel facultative methanotrophs, Methylocella sp. PC1 and PC4 from Pipe Creek, able to utilise methane, ethane, propane and various non-gaseous multicarbon compounds. Functional and comparative genomics of these new isolates revealed genomic and physiological divergence from already known methanotrophs, in particular, the absence of mxa genes encoding calcium-containing methanol dehydrogenase. Methylocella sp. PC1 and PC4 had only the soluble methane monooxygenase (sMMO) and lanthanide-dependent methanol dehydrogenase (XoxF). These are the first Alphaproteobacteria methanotrophs discovered with this reduced functional redundancy for C-1 metabolism (i.e. sMMO only and XoxF only). CONCLUSIONS Here, we provide evidence, using culture-dependent and culture-independent methods, that Methylocella are abundant and active at terrestrial natural gas seeps, suggesting that they play a significant role in the biogeochemical cycling of these gaseous alkanes. This might also be significant for the design of biotechnological strategies for controlling natural gas emissions, which are increasing globally due to unconventional exploitation of oil and gas.
Collapse
Affiliation(s)
- Muhammad Farhan Ul Haque
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| | - Andrew T Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK.
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
28
|
Draft Genome Sequence of Methylocystis heyeri H2 T, a Methanotroph with Habitat-Specific Adaptations, Isolated from a Peatland Ecosystem. Microbiol Resour Announc 2019; 8:8/29/e00454-19. [PMID: 31320431 PMCID: PMC6639610 DOI: 10.1128/mra.00454-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Methylocystis heyeri H2T is an aerobic facultative methanotroph which was isolated from an acidic Sphagnum peat bog lake and is a common inhabitant of peatland ecosystems. This bacterium possesses two particulate methane monooxygenases with low and high affinity to methane and a number of genomic adaptations to acidic conditions.
Collapse
|
29
|
Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D'Amore DV, Keeling PJ, Hallam SJ, Mohn WW. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO 2, and CH 4 fluxes in temperate rainforest soil. ISME JOURNAL 2018; 13:950-963. [PMID: 30538276 PMCID: PMC6461783 DOI: 10.1038/s41396-018-0334-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022]
Abstract
The Pacific coastal temperate rainforest (PCTR) is a global hot-spot for carbon cycling and export. Yet the influence of microorganisms on carbon cycling processes in PCTR soil is poorly characterized. We developed and tested a conceptual model of seasonal microbial carbon cycling in PCTR soil through integration of geochemistry, micro-meteorology, and eukaryotic and prokaryotic ribosomal amplicon (rRNA) sequencing from 216 soil DNA and RNA libraries. Soil moisture and pH increased during the wet season, with significant correlation to net CO2 flux in peat bog and net CH4 flux in bog forest soil. Fungal succession in these sites was characterized by the apparent turnover of Archaeorhizomycetes phylotypes accounting for 41% of ITS libraries. Anaerobic prokaryotes, including Syntrophobacteraceae and Methanomicrobia increased in rRNA libraries during the wet season. Putatively active populations of these phylotypes and their biogeochemical marker genes for sulfate and CH4 cycling, respectively, were positively correlated following rRNA and metatranscriptomic network analysis. The latter phylotype was positively correlated to CH4 fluxes (r = 0.46, p < 0.0001). Phylotype functional assignments were supported by metatranscriptomic analysis. We propose that active microbial populations respond primarily to changes in hydrology, pH, and nutrient availability. The increased microbial carbon export observed over winter may have ramifications for climate-soil feedbacks in the PCTR.
Collapse
Affiliation(s)
- David J Levy-Booth
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada
| | - Ian J W Giesbrecht
- Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada.,School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Colleen T E Kellogg
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada
| | - Thierry J Heger
- The University of Applied Sciences Western Switzerland, CHANGINS, Delémont, Switzerland
| | - David V D'Amore
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Juneau, Alaska, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Han D, Dedysh SN, Liesack W. Unusual Genomic Traits Suggest Methylocystis bryophila S285 to Be Well Adapted for Life in Peatlands. Genome Biol Evol 2018; 10:623-628. [PMID: 29390143 PMCID: PMC5808792 DOI: 10.1093/gbe/evy025] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2018] [Indexed: 01/21/2023] Open
Abstract
The genus Methylocystis belongs to the class Alphaproteobacteria, the family Methylocystaceae, and encompasses aerobic methanotrophic bacteria with the serine pathway of carbon assimilation. All Methylocystis species are able to fix dinitrogen and several members of this genus are also capable of using acetate or ethanol in the absence of methane, which explains their wide distribution in various habitats. One additional trait that enables their survival in the environment is possession of two methane-oxidizing isozymes, the conventional particulate methane monooxygenase (pMMO) with low-affinity to substrate (pMMO1) and the high-affinity enzyme (pMMO2). Here, we report the finished genome sequence of Methylocystis bryophila S285, a pMMO2-possessing methanotroph from a Sphagnum-dominated wetland, and compare it to the genome of Methylocystis sp. strain SC2, which is the first methanotroph with confirmed high-affinity methane oxidation potential. The complete genome of Methylocystis bryophila S285 consists of a 4.53 Mb chromosome and one plasmid, 175 kb in size. The genome encodes two types of particulate MMO (pMMO1 and pMMO2), soluble MMO and, in addition, contains a pxmABC-like gene cluster similar to that present in some gammaproteobacterial methanotrophs. The full set of genes related to the serine pathway, the tricarboxylic acid cycle as well as the ethylmalonyl-CoA pathway is present. In contrast to most described methanotrophs including Methylocystis sp. strain SC2, two different types of nitrogenases, that is, molybdenum–iron and vanadium–iron types, are encoded in the genome of strain S285. This unique combination of genome-based traits makes Methylocystis bryophila well adapted to the fluctuation of carbon and nitrogen sources in wetlands.
Collapse
Affiliation(s)
- Dongfei Han
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Svetlana N Dedysh
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Werner Liesack
- Research Group Methanotrophic Bacteria and Environmental Genomics/Transcriptomics, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Corresponding author: E-mail: .
| |
Collapse
|
31
|
Methanotrophy across a natural permafrost thaw environment. ISME JOURNAL 2018; 12:2544-2558. [PMID: 29955139 PMCID: PMC6155033 DOI: 10.1038/s41396-018-0065-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 11/09/2022]
Abstract
The fate of carbon sequestered in permafrost is a key concern for future global warming as this large carbon stock is rapidly becoming a net methane source due to widespread thaw. Methane release from permafrost is moderated by methanotrophs, which oxidise 20-60% of this methane before emission to the atmosphere. Despite the importance of methanotrophs to carbon cycling, these microorganisms are under-characterised and have not been studied across a natural permafrost thaw gradient. Here, we examine methanotroph communities from the active layer of a permafrost thaw gradient in Stordalen Mire (Abisko, Sweden) spanning three years, analysing 188 metagenomes and 24 metatranscriptomes paired with in situ biogeochemical data. Methanotroph community composition and activity varied significantly as thaw progressed from intact permafrost palsa, to partially thawed bog and fully thawed fen. Thirteen methanotroph population genomes were recovered, including two novel genomes belonging to the uncultivated upland soil cluster alpha (USCα) group and a novel potentially methanotrophic Hyphomicrobiaceae. Combined analysis of porewater δ13C-CH4 isotopes and methanotroph abundances showed methane oxidation was greatest below the oxic-anoxic interface in the bog. These results detail the direct effect of thaw on autochthonous methanotroph communities, and their consequent changes in population structure, activity and methane moderation potential.
Collapse
|
32
|
Pratscher J, Vollmers J, Wiegand S, Dumont MG, Kaster A. Unravelling the Identity, Metabolic Potential and Global Biogeography of the Atmospheric Methane-Oxidizing Upland Soil Cluster α. Environ Microbiol 2018; 20:1016-1029. [PMID: 29314604 PMCID: PMC6849597 DOI: 10.1111/1462-2920.14036] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/19/2017] [Accepted: 12/19/2017] [Indexed: 02/06/2023]
Abstract
Understanding of global methane sources and sinks is a prerequisite for the design of strategies to counteract global warming. Microbial methane oxidation in soils represents the largest biological sink for atmospheric methane. However, still very little is known about the identity, metabolic properties and distribution of the microbial group proposed to be responsible for most of this uptake, the uncultivated upland soil cluster α (USCα). Here, we reconstructed a draft genome of USCα from a combination of targeted cell sorting and metagenomes from forest soil, providing the first insights into its metabolic potential and environmental adaptation strategies. The 16S rRNA gene sequence recovered was distinctive and suggests this crucial group as a new genus within the Beijerinckiaceae, close to Methylocapsa. Application of a fluorescently labelled suicide substrate for the particulate methane monooxygenase enzyme (pMMO) coupled to 16S rRNA fluorescence in situ hybridisation (FISH) allowed for the first time a direct link of the high-affinity activity of methane oxidation to USCα cells in situ. Analysis of the global biogeography of this group further revealed its presence in previously unrecognized habitats, such as subterranean and volcanic biofilm environments, indicating a potential role of these environments in the biological sink for atmospheric methane.
Collapse
Affiliation(s)
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of TechnologyKarlsruheGermany
| | - Sandra Wiegand
- Department of MicrobiologyInstitute for Water and Wetland Research, Faculty of Science, Radboud UniversityNijmegenThe Netherlands
| | - Marc G. Dumont
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| | - Anne‐Kristin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
33
|
Integrating isotopic, microbial, and modeling approaches to understand methane dynamics in a frequently disturbed deep reservoir in Taiwan. Ecol Res 2017. [DOI: 10.1007/s11284-017-1502-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
34
|
Morawe M, Hoeke H, Wissenbach DK, Lentendu G, Wubet T, Kröber E, Kolb S. Acidotolerant Bacteria and Fungi as a Sink of Methanol-Derived Carbon in a Deciduous Forest Soil. Front Microbiol 2017; 8:1361. [PMID: 28790984 PMCID: PMC5523551 DOI: 10.3389/fmicb.2017.01361] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 07/05/2017] [Indexed: 02/03/2023] Open
Abstract
Methanol is an abundant atmospheric volatile organic compound that is released from both living and decaying plant material. In forest and other aerated soils, methanol can be consumed by methanol-utilizing microorganisms that constitute a known terrestrial sink. However, the environmental factors that drive the biodiversity of such methanol-utilizers have been hardly resolved. Soil-derived isolates of methanol-utilizers can also often assimilate multicarbon compounds as alternative substrates. Here, we conducted a comparative DNA stable isotope probing experiment under methylotrophic (only [13C1]-methanol was supplemented) and combined substrate conditions ([12C1]-methanol and alternative multi-carbon [13Cu]-substrates were simultaneously supplemented) to (i) identify methanol-utilizing microorganisms of a deciduous forest soil (European beech dominated temperate forest in Germany), (ii) assess their substrate range in the soil environment, and (iii) evaluate their trophic links to other soil microorganisms. The applied multi-carbon substrates represented typical intermediates of organic matter degradation, such as acetate, plant-derived sugars (xylose and glucose), and a lignin-derived aromatic compound (vanillic acid). An experimentally induced pH shift was associated with substantial changes of the diversity of active methanol-utilizers suggesting that soil pH was a niche-defining factor of these microorganisms. The main bacterial methanol-utilizers were members of the Beijerinckiaceae (Bacteria) that played a central role in a detected methanol-based food web. A clear preference for methanol or multi-carbon substrates as carbon source of different Beijerinckiaceae-affiliated phylotypes was observed suggesting a restricted substrate range of the methylotrophic representatives. Apart from Bacteria, we also identified the yeasts Cryptococcus and Trichosporon as methanol-derived carbon-utilizing fungi suggesting that further research is needed to exclude or prove methylotrophy of these fungi.
Collapse
Affiliation(s)
- Mareen Morawe
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany
| | - Henrike Hoeke
- Department of Molecular Systems Biology, Helmholtz Centre for Environmental ResearchLeipzig, Germany.,Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, University of LeipzigLeipzig, Germany
| | - Dirk K Wissenbach
- Institute of Forensic Medicine, University Hospital JenaJena, Germany
| | - Guillaume Lentendu
- Department of Ecology, University of KaiserslauternKaiserslautern, Germany
| | - Tesfaye Wubet
- Department of Soil Ecology, Helmholtz Centre for Environmental ResearchLeipzig, Germany
| | - Eileen Kröber
- Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| | - Steffen Kolb
- Department of Ecological Microbiology, University of BayreuthBayreuth, Germany.,Institute of Landscape Biogeochemistry, Leibniz Centre for Landscape ResearchMüncheberg, Germany
| |
Collapse
|
35
|
Methylacidiphilum fumariolicum SolV, a thermoacidophilic 'Knallgas' methanotroph with both an oxygen-sensitive and -insensitive hydrogenase. ISME JOURNAL 2016; 11:945-958. [PMID: 27935590 PMCID: PMC5364354 DOI: 10.1038/ismej.2016.171] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/26/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022]
Abstract
Methanotrophs play a key role in balancing the atmospheric methane concentration. Recently, the microbial methanotrophic diversity was extended by the discovery of thermoacidophilic methanotrophs belonging to the Verrucomicrobia phylum in geothermal areas. Here we show that a representative of this new group, Methylacidiphilum fumariolicum SolV, is able to grow as a real 'Knallgas' bacterium on hydrogen/carbon dioxide, without addition of methane. The full genome of strain SolV revealed the presence of two hydrogen uptake hydrogenases genes, encoding an oxygen-sensitive (hup-type) and an oxygen-insensitive enzyme (hhy-type). The hhy-type hydrogenase was constitutively expressed and active and supported growth on hydrogen alone up to a growth rate of 0.03 h-1, at O2 concentrations below 1.5%. The oxygen-sensitive hup-type hydrogenase was expressed when oxygen was reduced to below 0.2%. This resulted in an increase of the growth rate to a maximum of 0.047 h-1, that is 60% of the rate on methane. The results indicate that under natural conditions where both hydrogen and methane might be limiting strain SolV may operate primarily as a methanotrophic 'Knallgas' bacterium. These findings argue for a revision of the role of hydrogen in methanotrophic ecosystems, especially in soil and related to consumption of atmospheric methane.
Collapse
|
36
|
Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun 2016; 7:11728. [PMID: 27248847 PMCID: PMC4895445 DOI: 10.1038/ncomms11728] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/25/2016] [Indexed: 01/30/2023] Open
Abstract
Soils serve as the biological sink of the potent greenhouse gas methane with exceptionally low concentrations of ∼1.84 p.p.m.v. in the atmosphere. The as-yet-uncultivated methane-consuming bacteria have long been proposed to be responsible for this ‘high-affinity' methane oxidation (HAMO). Here we show an emerging HAMO activity arising from conventional methanotrophs in paddy soil. HAMO activity was quickly induced during the low-affinity oxidation of high-concentration methane. Activity was lost gradually over 2 weeks, but could be repeatedly regained by flush-feeding the soil with elevated methane. The induction of HAMO activity occurred only after the rapid growth of methanotrophic populations, and a metatranscriptome-wide association study suggests that the concurrent high- and low-affinity methane oxidation was catalysed by known methanotrophs rather than by the proposed novel atmospheric methane oxidizers. These results provide evidence of atmospheric methane uptake in periodically drained ecosystems that are typically considered to be a source of atmospheric methane. Atmospheric methane may be consumed by microorganisms in soil, but the mechanisms behind high-affinity methane oxidization remain poorly understood. Here, Jia et al. show that known methanotrophic bacteria are responsible for atmospheric methane uptake in periodically drained wetland ecosystems.
Collapse
|
37
|
DiSpirito AA, Semrau JD, Murrell JC, Gallagher WH, Dennison C, Vuilleumier S. Methanobactin and the Link between Copper and Bacterial Methane Oxidation. Microbiol Mol Biol Rev 2016; 80:387-409. [PMID: 26984926 PMCID: PMC4867365 DOI: 10.1128/mmbr.00058-15] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Methanobactins (mbs) are low-molecular-mass (<1,200 Da) copper-binding peptides, or chalkophores, produced by many methane-oxidizing bacteria (methanotrophs). These molecules exhibit similarities to certain iron-binding siderophores but are expressed and secreted in response to copper limitation. Structurally, mbs are characterized by a pair of heterocyclic rings with associated thioamide groups that form the copper coordination site. One of the rings is always an oxazolone and the second ring an oxazolone, an imidazolone, or a pyrazinedione moiety. The mb molecule originates from a peptide precursor that undergoes a series of posttranslational modifications, including (i) ring formation, (ii) cleavage of a leader peptide sequence, and (iii) in some cases, addition of a sulfate group. Functionally, mbs represent the extracellular component of a copper acquisition system. Consistent with this role in copper acquisition, mbs have a high affinity for copper ions. Following binding, mbs rapidly reduce Cu(2+) to Cu(1+). In addition to binding copper, mbs will bind most transition metals and near-transition metals and protect the host methanotroph as well as other bacteria from toxic metals. Several other physiological functions have been assigned to mbs, based primarily on their redox and metal-binding properties. In this review, we examine the current state of knowledge of this novel type of metal-binding peptide. We also explore its potential applications, how mbs may alter the bioavailability of multiple metals, and the many roles mbs may play in the physiology of methanotrophs.
Collapse
Affiliation(s)
- Alan A DiSpirito
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | - Jeremy D Semrau
- Department of Civil and Environmental Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - J Colin Murrell
- Earth and Life Systems Alliance, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| | - Warren H Gallagher
- Department of Chemistry, University of Wisconsin-Eau Claire, Eau Claire, Wisconsin, USA
| | - Christopher Dennison
- Institute for Cell and Molecular Biosciences, Medical School, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Stéphane Vuilleumier
- Department of Microbiology, Genomics and the Environment, UMR 7156 UNISTRA-CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
38
|
Knief C. Diversity and Habitat Preferences of Cultivated and Uncultivated Aerobic Methanotrophic Bacteria Evaluated Based on pmoA as Molecular Marker. Front Microbiol 2015; 6:1346. [PMID: 26696968 PMCID: PMC4678205 DOI: 10.3389/fmicb.2015.01346] [Citation(s) in RCA: 276] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/16/2015] [Indexed: 01/06/2023] Open
Abstract
Methane-oxidizing bacteria are characterized by their capability to grow on methane as sole source of carbon and energy. Cultivation-dependent and -independent methods have revealed that this functional guild of bacteria comprises a substantial diversity of organisms. In particular the use of cultivation-independent methods targeting a subunit of the particulate methane monooxygenase (pmoA) as functional marker for the detection of aerobic methanotrophs has resulted in thousands of sequences representing "unknown methanotrophic bacteria." This limits data interpretation due to restricted information about these uncultured methanotrophs. A few groups of uncultivated methanotrophs are assumed to play important roles in methane oxidation in specific habitats, while the biology behind other sequence clusters remains still largely unknown. The discovery of evolutionary related monooxygenases in non-methanotrophic bacteria and of pmoA paralogs in methanotrophs requires that sequence clusters of uncultivated organisms have to be interpreted with care. This review article describes the present diversity of cultivated and uncultivated aerobic methanotrophic bacteria based on pmoA gene sequence diversity. It summarizes current knowledge about cultivated and major clusters of uncultivated methanotrophic bacteria and evaluates habitat specificity of these bacteria at different levels of taxonomic resolution. Habitat specificity exists for diverse lineages and at different taxonomic levels. Methanotrophic genera such as Methylocystis and Methylocaldum are identified as generalists, but they harbor habitat specific methanotrophs at species level. This finding implies that future studies should consider these diverging preferences at different taxonomic levels when analyzing methanotrophic communities.
Collapse
Affiliation(s)
- Claudia Knief
- Institute of Crop Science and Resource Conservation – Molecular Biology of the Rhizosphere, University of BonnBonn, Germany
| |
Collapse
|
39
|
Myung J, Galega WM, Van Nostrand JD, Yuan T, Zhou J, Criddle CS. Long-term cultivation of a stable Methylocystis-dominated methanotrophic enrichment enabling tailored production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate). BIORESOURCE TECHNOLOGY 2015; 198:811-818. [PMID: 26454368 DOI: 10.1016/j.biortech.2015.09.094] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 06/05/2023]
Abstract
Methane (CH4) is a readily available feedstock for production of polyhydroxyalkanoates (PHAs). The structure and PHA production capacity of a Methylocystis-dominated methanotrophic enrichment was stable in long-term operation (>175 days) when grown exponentially under non-aseptic conditions in fill-and-draw batch cultures with ammonium as nitrogen source. Cells harvested in the draw step were incubated in the absence of nitrogen with various combinations of CH4 and valerate to assess capacity for synthesis of poly(3-hydroxybutyrate) (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). When fed CH4 alone, only P3HB was produced. When fed CH4 plus valerate, PHBV was synthesized. The mol% of 3-hydroxyvalerate (3HV) increased with added valerate. Oxidation of CH4 was required for valerate assimilation, and the fraction of CH4 oxidized increased with increased mol% 3 HV. By separating PHA accumulation from cell replication, tailored PHA-rich biomass can be generated by addition of co-substrate, while retaining a large inoculum for the next cycle of cell division.
Collapse
Affiliation(s)
- Jaewook Myung
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Wakuna M Galega
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Joy D Van Nostrand
- Institute for Environmental Genomics, Department of Microbiology and Plant Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Tong Yuan
- Institute for Environmental Genomics, Department of Microbiology and Plant Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Science, University of Oklahoma, Norman, OK 73019, USA.
| | - Craig S Criddle
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA; Woods Institute for the Environment, Stanford, CA 94305, USA; William and Cloy Codiga Resource Recovery Center, Stanford, CA 94305, USA.
| |
Collapse
|
40
|
Krause S, Niklaus PA, Badwan Morcillo S, Meima Franke M, Lüke C, Reim A, Bodelier PLE. Compositional and functional stability of aerobic methane consuming communities in drained and rewetted peat meadows. FEMS Microbiol Ecol 2015; 91:fiv119. [PMID: 26449384 DOI: 10.1093/femsec/fiv119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2015] [Indexed: 11/13/2022] Open
Abstract
The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions.
Collapse
Affiliation(s)
- Sascha Krause
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Pascal A Niklaus
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich 8057, Switzerland
| | - Sara Badwan Morcillo
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Marion Meima Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| | - Claudia Lüke
- Department of Microbiology, Radboud University Nijmegen, Nijmegen, 6525 AJ, the Netherlands
| | - Andreas Reim
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6708 PB, the Netherlands
| |
Collapse
|
41
|
Ho A, Reim A, Kim SY, Meima-Franke M, Termorshuizen A, de Boer W, van der Putten WH, Bodelier PLE. Unexpected stimulation of soil methane uptake as emergent property of agricultural soils following bio-based residue application. GLOBAL CHANGE BIOLOGY 2015; 21:3864-79. [PMID: 25975568 DOI: 10.1111/gcb.12974] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 05/01/2015] [Indexed: 05/11/2023]
Abstract
Intensification of agriculture to meet the global food, feed, and bioenergy demand entail increasing re-investment of carbon compounds (residues) into agro-systems to prevent decline of soil quality and fertility. However, agricultural intensification decreases soil methane uptake, reducing, and even causing the loss of the methane sink function. In contrast to wetland agricultural soils (rice paddies), the methanotrophic potential in well-aerated agricultural soils have received little attention, presumably due to the anticipated low or negligible methane uptake capacity in these soils. Consequently, a detailed study verifying or refuting this assumption is still lacking. Exemplifying a typical agricultural practice, we determined the impact of bio-based residue application on soil methane flux, and determined the methanotrophic potential, including a qualitative (diagnostic microarray) and quantitative (group-specific qPCR assays) analysis of the methanotrophic community after residue amendments over 2 months. Unexpectedly, after amendments with specific residues, we detected a significant transient stimulation of methane uptake confirmed by both the methane flux measurements and methane oxidation assay. This stimulation was apparently a result of induced cell-specific activity, rather than growth of the methanotroph population. Although transient, the heightened methane uptake offsets up to 16% of total gaseous CO2 emitted during the incubation. The methanotrophic community, predominantly comprised of Methylosinus may facilitate methane oxidation in the agricultural soils. While agricultural soils are generally regarded as a net methane source or a relatively weak methane sink, our results show that methane oxidation rate can be stimulated, leading to higher soil methane uptake. Hence, even if agriculture exerts an adverse impact on soil methane uptake, implementing carefully designed management strategies (e.g. repeated application of specific residues) may compensate for the loss of the methane sink function following land-use change.
Collapse
Affiliation(s)
- Adrian Ho
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB Wageningen, The Netherlands
| | - Andreas Reim
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straβe 10, D-35043, Marburg, Germany
| | - Sang Yoon Kim
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB Wageningen, The Netherlands
| | - Marion Meima-Franke
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB Wageningen, The Netherlands
| | - Aad Termorshuizen
- SoilCares Research, Binnenhaven 5, 6709, PD Wageningen, The Netherlands
| | - Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB Wageningen, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB Wageningen, The Netherlands
- Laboratory of Nematology, Wageningen University and Research Centre (WUR), PO Box 8123, 6700, ES Wageningen, The Netherlands
| | - Paul L E Bodelier
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708, PB Wageningen, The Netherlands
| |
Collapse
|
42
|
Juottonen H, Kotiaho M, Robinson D, Merilä P, Fritze H, Tuittila ES. Microform-related community patterns of methane-cycling microbes in boreal Sphagnum bogs are site specific. FEMS Microbiol Ecol 2015. [PMID: 26220310 DOI: 10.1093/femsec/fiv094] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vegetation and water table are important regulators of methane emission in peatlands. Microform variation encompasses these factors in small-scale topographic gradients of dry hummocks, intermediate lawns and wet hollows. We examined methane production and oxidization among microforms in four boreal bogs that showed more variation of vegetation within a bog with microform than between the bogs. Potential methane production was low and differed among bogs but not consistently with microform. Methane oxidation followed water table position with microform, showing higher rates closer to surface in lawns and hollows than in hummocks. Methanogen community, analysed by mcrA terminal restriction fragment length polymorphism and dominated by Methanoregulaceae or 'Methanoflorentaceae', varied strongly with bog. The extent of microform-related variation of methanogens depended on the bog. Methanotrophs identified as Methylocystis spp. in pmoA denaturing gradient gel electrophoresis similarly showed effect of bog, and microform patterns were stronger within individual bogs. Our results suggest that methane-cycling microbes in boreal Sphagnum bogs with seemingly uniform environmental conditions may show strong site-dependent variation. The bog-intrinsic factor may be related to carbon availability but contrary to expectations appears to be unrelated to current surface vegetation, calling attention to the origin of carbon substrates for microbes in bogs.
Collapse
Affiliation(s)
- Heli Juottonen
- Department of Biosciences, General Microbiology, University of Helsinki, FI-00014, Finland
| | - Mirkka Kotiaho
- Peatland Ecology Group, Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| | - Devin Robinson
- Natural Resources Institute Finland, Vantaa Unit, FI-01370 Vantaa, Finland
| | - Päivi Merilä
- Natural Resources Institute Finland, Oulu Unit, University of Oulu, FI-90014, Finland
| | - Hannu Fritze
- Natural Resources Institute Finland, Vantaa Unit, FI-01370 Vantaa, Finland
| | - Eeva-Stiina Tuittila
- Peatland Ecology Group, Department of Forest Sciences, University of Helsinki, FI-00014, Finland
| |
Collapse
|
43
|
Leng L, Chang J, Geng K, Lu Y, Ma K. Uncultivated Methylocystis Species in Paddy Soil Include Facultative Methanotrophs that Utilize Acetate. MICROBIAL ECOLOGY 2015; 70:88-96. [PMID: 25475784 DOI: 10.1007/s00248-014-0540-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
Methanotrophs are crucial in regulating methane emission from rice field systems. Type II methanotrophs in particular are often observed in high abundance in paddy soil. Some cultivated species of Methylocystis are able to grow on acetate in the absence of methane. We hypothesize that the dominant type II methanotrophs in paddy soil might facultatively utilize acetate for growth, which we evaluate in the present study. The measurement of methane oxidation rates showed that the methanotrophic activity in paddy soil was inhibited by the addition of acetate compared to the continuous supplementation of methane, but the paddy soil maintained the methane oxidation capacity and recovered following methane supplementation. Terminal restriction fragment length polymorphism analysis (T-RFLP) combined with cloning and sequencing of pmoA genes showed that Methylocystis was enriched after incubation with added acetate, while the type I methanotrophs Methylocaldum/Methylococcus and Methylobacter were enriched by methane supplementation. A comparison of pmoA sequences obtained in this study with those in the public database indicated that they were globally widespread in paddy soils or in associated with rice roots. Furthermore, we performed stable isotope probing (SIP) of pmoA messenger RNA (mRNA) to investigate the assimilation of (13)C-acetate by paddy soil methanotrophs. RNA-SIP revealed that Methylocystis-related methanotrophs which shared the same genotype of the above enriched species were significantly labelled. It indicates that these methanotrophs actively assimilated the labelled acetate in paddy soil. Altogether, these results suggested that uncultivated Methylocystis species are facultative methanotrophs utilizing acetate as a secondary carbon source in paddy soil.
Collapse
Affiliation(s)
- Lingqin Leng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | | | | | | | | |
Collapse
|
44
|
Iguchi H, Yurimoto H, Sakai Y. Interactions of Methylotrophs with Plants and Other Heterotrophic Bacteria. Microorganisms 2015; 3:137-51. [PMID: 27682083 PMCID: PMC5023238 DOI: 10.3390/microorganisms3020137] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/18/2015] [Accepted: 03/27/2015] [Indexed: 01/19/2023] Open
Abstract
Methylotrophs, which can utilize methane and/or methanol as sole carbon and energy sources, are key players in the carbon cycle between methane and CO2, the two most important greenhouse gases. This review describes the relationships between methylotrophs and plants, and between methanotrophs (methane-utilizers, a subset of methylotrophs) and heterotrophic bacteria. Some plants emit methane and methanol from their leaves, and provide methylotrophs with habitats. Methanol-utilizing methylotrophs in the genus Methylobacterium are abundant in the phyllosphere and have the ability to promote the growth of some plants. Methanotrophs also inhabit the phyllosphere, and methanotrophs with high methane oxidation activities have been found on aquatic plants. Both plant and environmental factors are involved in shaping the methylotroph community on plants. Methanotrophic activity can be enhanced by heterotrophic bacteria that provide growth factors (e.g., cobalamin). Information regarding the biological interaction of methylotrophs with other organisms will facilitate a better understanding of the carbon cycle that is driven by methylotrophs.
Collapse
Affiliation(s)
- Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
45
|
Yun J, Zhang H, Deng Y, Wang Y. Aerobic methanotroph diversity in Sanjiang wetland, Northeast China. MICROBIAL ECOLOGY 2015; 69:567-576. [PMID: 25351140 DOI: 10.1007/s00248-014-0506-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Aerobic methanotrophs present in wetlands can serve as a methane filter and thereby significantly reduce methane emissions. Sanjiang wetland is a major methane source and the second largest wetland in China, yet little is known about the characteristics of aerobic methanotrophs in this region. In the present study, we investigated the diversity and abundance of methanotrophs in marsh soils from Sanjiang wetland with three different types of vegetation by 16S ribosomal RNA (rRNA) and pmoA gene analysis. Quantitative polymerase chain reaction analysis revealed the highest number of pmoA gene copies in marsh soils vegetated with Carex lasiocarpa (10(9) g(-1) dry soil), followed by Carex meyeriana, and the least with Deyeuxia angustifolia (10(8) g(-1) dry soil). Consistent results were obtained using Sanger sequencing and pyrosequencing techniques, both indicating the codominance of Methylobacter and Methylocystis species in Sanjiang wetland. Other less abundant methanotrophy, including cultivated Methylomonas and Methylosinus genus, and uncultured clusters such as LP20 and JR-1, were also detected in the wetland. Methanotroph diversity was almost the same in three different vegetation covered soils, suggesting that vegetation types had very little influence on the methanotroph diversity. Our study gives an in-depth insight into the community composition of aerobic methanotrophs in the Sanjiang wetland.
Collapse
Affiliation(s)
- Juanli Yun
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | | | | | | |
Collapse
|
46
|
Henneberger R, Chiri E, Bodelier PEL, Frenzel P, Lüke C, Schroth MH. Field-scale tracking of active methane-oxidizing communities in a landfill cover soil reveals spatial and seasonal variability. Environ Microbiol 2014; 17:1721-37. [PMID: 25186436 DOI: 10.1111/1462-2920.12617] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 08/31/2014] [Indexed: 01/11/2023]
Abstract
Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.
Collapse
Affiliation(s)
- Ruth Henneberger
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 2014; 32:1460-75. [PMID: 25281583 DOI: 10.1016/j.biotechadv.2014.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Abstract
Methane is the main component of natural gas and biogas. As an abundant energy source, methane is crucial not only to meet current energy needs but also to achieve a sustainable energy future. Conversion of methane to liquid fuels provides energy-dense products and therefore reduces costs for storage, transportation, and distribution. Compared to thermochemical processes, biological conversion has advantages such as high conversion efficiency and using environmentally friendly processes. This paper is a comprehensive review of studies on three promising groups of microorganisms (methanotrophs, ammonia-oxidizing bacteria, and acetogens) that hold potential in converting methane to liquid fuels; their habitats, biochemical conversion mechanisms, performance in liquid fuels production, and genetic modification to enhance the conversion are also discussed. To date, methane-to-methanol conversion efficiencies (moles of methanol produced per mole methane consumed) of up to 80% have been reported. A number of issues that impede scale-up of this technology, such as mass transfer limitations of methane, inhibitory effects of H2S in biogas, usage of expensive chemicals as electron donors, and lack of native strains capable of converting methane to liquid fuels other than methanol, are discussed. Future perspectives and strategies in addressing these challenges are also discussed.
Collapse
|
48
|
Francini G, Männistö M, Alaoja V, Kytöviita MM. Arbuscular mycorrhizal fungal community divergence within a common host plant in two different soils in a subarctic Aeolian sand area. MYCORRHIZA 2014; 24:539-550. [PMID: 24687606 DOI: 10.1007/s00572-014-0573-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 03/13/2014] [Indexed: 06/03/2023]
Abstract
There is rising awareness that different arbuscular mycorrhizal (AM) fungi have different autoecology and occupy different soil niches and that the benefits they provide to the host plant are dependent on plant-AM fungus combination. However, the role and community composition of AM fungi in succession are not well known and the northern latitudes remain poorly investigated ecosystems. We studied AM fungal communities in the roots of the grass Deschampsia flexuosa in two different, closely located, successional stages in a northern Aeolian sand area. The AM fungal taxa richness in planta was estimated by cloning and sequencing small subunit ribosomal RNA genes. AM colonization, shoot δ (13)C signature, and %N and %C were measured. Soil microbial community structure and AM fungal mycelium abundance were estimated using phospholipid (PLFA) and neutral lipid (NLFA) analyses. The two successional stages were characterized by distinct plant, microbial, and fungal communities. AM fungal species richness was very low in both the early and late successional stages. AM frequency in D. flexuosa roots was higher in the early successional stage than in the late one. The AM fungal taxa retrieved belonged to the genera generally adapted to Arctic or extreme environments. AM fungi seemed to be important in the early stage of the succession, suggesting that AM fungi may help plants to better cope with the harsh environmental conditions, especially in an early successional stage with more extreme environmental fluctuations.
Collapse
Affiliation(s)
- Gaia Francini
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, 40014, Jyväskylä, Finland,
| | | | | | | |
Collapse
|
49
|
Abdallah RZ, Adel M, Ouf A, Sayed A, Ghazy MA, Alam I, Essack M, Lafi FF, Bajic VB, El-Dorry H, Siam R. Aerobic methanotrophic communities at the Red Sea brine-seawater interface. Front Microbiol 2014; 5:487. [PMID: 25295031 PMCID: PMC4172156 DOI: 10.3389/fmicb.2014.00487] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 08/28/2014] [Indexed: 01/16/2023] Open
Abstract
The central rift of the Red Sea contains 25 brine pools with different physicochemical conditions, dictating the diversity and abundance of the microbial community. Three of these pools, the Atlantis II, Kebrit and Discovery Deeps, are uniquely characterized by a high concentration of hydrocarbons. The brine-seawater interface, described as an anoxic-oxic (brine-seawater) boundary, is characterized by a high methane concentration, thus favoring aerobic methane oxidation. The current study analyzed the aerobic free–living methane-oxidizing bacterial communities that potentially contribute to methane oxidation at the brine-seawater interfaces of the three aforementioned brine pools, using metagenomic pyrosequencing, 16S rRNA pyrotags and pmoA library constructs. The sequencing of 16S rRNA pyrotags revealed that these interfaces are characterized by high microbial community diversity. Signatures of aerobic methane-oxidizing bacteria were detected in the Atlantis II Interface (ATII-I) and the Kebrit Deep Upper (KB-U) and Lower (KB-L) brine-seawater interfaces. Through phylogenetic analysis of pmoA, we further demonstrated that the ATII-I aerobic methanotroph community is highly diverse. We propose four ATII-I pmoA clusters. Most importantly, cluster 2 groups with marine methane seep methanotrophs, and cluster 4 represent a unique lineage of an uncultured bacterium with divergent alkane monooxygenases. Moreover, non-metric multidimensional scaling (NMDS) based on the ordination of putative enzymes involved in methane metabolism showed that the Kebrit interface layers were distinct from the ATII-I and DD-I brine-seawater interfaces.
Collapse
Affiliation(s)
- Rehab Z Abdallah
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt
| | - Mustafa Adel
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Amged Ouf
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Ahmed Sayed
- Department of Biology, American University in Cairo Cairo, Egypt
| | - Mohamed A Ghazy
- Department of Biology, American University in Cairo Cairo, Egypt
| | - Intikhab Alam
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Magbubah Essack
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Feras F Lafi
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Vladimir B Bajic
- Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology Thuwal, Saudi Arabia
| | - Hamza El-Dorry
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt
| | - Rania Siam
- Biotechnology Graduate Program, American University in Cairo Cairo, Egypt ; Department of Biology, American University in Cairo Cairo, Egypt ; YJ-Science and Technology Research Center, American University in Cairo Cairo, Egypt
| |
Collapse
|
50
|
Schmidt H, Eickhorst T. Detection and quantification of native microbial populations on soil-grown rice roots by catalyzed reporter deposition-fluorescencein situhybridization. FEMS Microbiol Ecol 2013; 87:390-402. [DOI: 10.1111/1574-6941.12232] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/08/2013] [Accepted: 09/21/2013] [Indexed: 02/05/2023] Open
Affiliation(s)
- Hannes Schmidt
- Soil Microbial Ecology; University of Bremen; Bremen Germany
| | - Thilo Eickhorst
- Soil Microbial Ecology; University of Bremen; Bremen Germany
| |
Collapse
|