1
|
García E. Structure, Function, and Regulation of LytA: The N-Acetylmuramoyl-l-alanine Amidase Driving the "Suicidal Tendencies" of Streptococcus pneumoniae-A Review. Microorganisms 2025; 13:827. [PMID: 40284663 PMCID: PMC12029793 DOI: 10.3390/microorganisms13040827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Streptococcus pneumoniae (pneumococcus) is a significant human pathogen responsible for a range of diseases from mild infections to invasive pneumococcal diseases, particularly affecting children, the elderly, and immunocompromised individuals. Despite pneumococcal conjugate vaccines having reduced disease incidence, challenges persist due to serotype diversity, vaccine coverage gaps, and antibiotic resistance. This review highlights the role of LytA, a key autolysin (N-acetylmuramoyl-l-alanine amidase), in pneumococcal biology. LytA regulates autolysis, contributes to inflammation, and biofilm formation, and impairs bacterial clearance. It also modulates complement activation, aiding immune evasion. LytA expression is influenced by environmental signals and genetic regulation and is tied to competence for genetic transformation, which is an important virulence trait, particularly in meningitis. With the increase in antibiotic resistance, LytA has emerged as a potential therapeutic target. Current research explores its use in bacteriolytic therapies, vaccine development, and synergistic antibiotic strategies. Various compounds, including synthetic peptides, plant extracts, and small molecules, have been investigated for their ability to trigger LytA-mediated bacterial lysis. Future directions include the development of novel anti-pneumococcal interventions leveraging LytA's properties while overcoming vaccine efficacy and resistance-related challenges. Human challenge models and animal studies continue to deepen our understanding of pneumococcal pathogenesis and potential treatment strategies.
Collapse
Affiliation(s)
- Ernesto García
- Centro de Investigaciones Biológicas Margarita Salas, Consejo Superior de Investigaciones Científicas, 28040 Madrid, Spain
| |
Collapse
|
2
|
Jian P, Liu J, Li L, Song Q, Zhang D, Zhang S, Chai C, Zhao H, Zhao G, Zhu H, Qiao J. AcrR1, a novel TetR/AcrR family repressor, mediates acid and antibiotic resistance and nisin biosynthesis in Lactococcus lactis F44. J Dairy Sci 2024; 107:6576-6591. [PMID: 38762103 DOI: 10.3168/jds.2024-24754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/31/2024] [Indexed: 05/20/2024]
Abstract
Lactococcus lactis, widely used in the manufacture of dairy products, encounters various environmental stresses both in natural habitats and during industrial processes. It has evolved intricate machinery of stress sensing and defense to survive harsh stress conditions. Here, we identified a novel TetR/AcrR family transcription regulator, designated AcrR1, to be a repressor for acid and antibiotic tolerance that was derepressed in the presence of vancomycin or under acid stress. The survival rates of acrR1 deletion strain ΔAcrR1 under acid and vancomycin stresses were about 28.7-fold (pH 3.0, HCl), 8.57-fold (pH 4.0, lactic acid) and 2.73-fold (300 ng/mL vancomycin) greater than that of original strain F44. We also demonstrated that ΔAcrR1 was better able to maintain intracellular pH homeostasis and had a lower affinity to vancomycin. No evident effects of AcrR1 deletion on the growth and morphology of strain F44 were observed. Subsequently, we characterized that the transcription level of genes associated with amino acids biosynthesis, carbohydrate transport and metabolism, multidrug resistance, and DNA repair proteins significantly upregulated in ΔAcrR1 using transcriptome analysis and quantitative reverse transcription-PCR assays. Additionally, AcrR1 could repress the transcription of the nisin post-translational modification gene, nisC, leading to a 16.3% increase in nisin yield after AcrR1 deletion. Our results not only refined the knowledge of the regulatory mechanism of TetR/AcrR family regulator in L. lactis, but presented a potential strategy to enhance industrial production of nisin.
Collapse
Affiliation(s)
- Pingqiu Jian
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Jiaheng Liu
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China.
| | - Li Li
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Qianqian Song
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Di Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Shenyi Zhang
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Chaofan Chai
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Hui Zhao
- Department of Pharmaceutical and Biological Engineering, School of Chemical Engineering, Sichuan University, 610047 Chengdu, China
| | - Guangrong Zhao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Hongji Zhu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| | - Jianjun Qiao
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
3
|
Tamai S, Suzuki Y. Diversity of Fecal Indicator Enterococci among Different Hosts: Importance to Water Contamination Source Tracking. Microorganisms 2023; 11:2981. [PMID: 38138125 PMCID: PMC10745335 DOI: 10.3390/microorganisms11122981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/04/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Enterococcus spp. are common bacteria present in the intestinal tracts of animals and are used as fecal indicators in aquatic environments. On the other hand, enterococci are also known as opportunistic pathogens. Elucidating their composition in the intestinal tracts of domestic animals can assist in estimating the sources of fecal contamination in aquatic environments. However, information on the species and composition of enterococci in animal hosts (except humans) is still lacking. In this study, enterococci were isolated from the feces of cattle, pigs, birds, and humans using selective media. Enterococcal species were identified using mass spectrometry technology, and each host was characterized by diversity and cluster analysis. The most dominant species were E. hirae in cattle, E. faecium in birds, and E. faecalis in pigs and humans. Cattle had the highest alpha diversity, with high interindividual and livestock farm diversity. The dominant enterococcal species in pigs and humans were identical, and cluster analysis showed that the majority of the two hosts' species clustered together.
Collapse
Affiliation(s)
| | - Yoshihiro Suzuki
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki 889-2192, Japan;
| |
Collapse
|
4
|
Kwack KH, Lee JH, Moon JH. Whole genome and RNA sequencing of oral commensal bacterium Streptococcus anginosus subsp. anginosus with vancomycin tolerance. J Microbiol 2022; 60:167-176. [PMID: 34997538 DOI: 10.1007/s12275-022-1425-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 11/24/2022]
Abstract
"Antibiotic tolerance" promotes the rapid subsequent evolution of "antibiotic resistance," however, it is often overlooked because it is difficult to distinguish between tolerant and susceptible organisms. A commensal bacterium S. anginosus subsp. anginosus strain KHUD_S1, isolated from dental biofilm was found to exhibit a high MBC/MIC ratio of 32 against vancomycin. We observed KHUD_S1 cells exposed to vancomycin did not grow but maintained viability. Transmission electron microscope showed KHUD_S1 cells possessed a dense, thick capsule and maintained the cell wall integrity upon vancomycin exposure. To infer the underlying mechanisms of the vancomycin tolerance in KHUD_S1, we performed whole genome sequencing and RNA sequencing. The KHUD_S1 genome carried three genes encoding branching enzymes that can affect peptidoglycan structure through interpeptide bridge formation. Global gene expression profiling revealed that the vancomycin-induced downregulation of carbohydrate and inorganic ion transport/metabolism as well as translation is less prominent in KHUD_S1 than in the vancomycin susceptible strain KHUD_S3. Based on the transcriptional levels of genes related to peptidoglycan synthesis, KHUD_S1 was determined to have a 3D peptidoglycan architecture distinct from KHUD_S3. It was found that, under vancomycin exposure, the peptidoglycan was remodeled through changes in the interpeptide bridge and transpeptidation reactions. Collectively, these features of S. anginosus KHUD_S1, including a dense capsule and differential gene expression in peptidoglycan synthesis, may contribute to vancomycin tolerance. Our results showing the occurrence of vancomycin tolerance amongst oral commensal bacteria highlight the need for considering future strategies for screening of antibiotic tolerance as an effort to reduce antibiotic resistance.
Collapse
Affiliation(s)
- Kyu Hwan Kwack
- Department of Dentistry, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
- Present address: Department of Oral Biology, University at Buffalo School of Dental Medicine, Buffalo, New York, 14214, USA
| | - Jae-Hyung Lee
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| | - Ji-Hoi Moon
- Department of Oral Microbiology, School of Dentistry, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
5
|
Survey on phenotypic resistance in Enterococcus faecalis: comparison between the expression of biofilm-associated genes in Enterococcus faecalis persister and non-persister cells. Mol Biol Rep 2021; 49:971-979. [PMID: 34751916 DOI: 10.1007/s11033-021-06915-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Phenotypic resistance is considered as a serious therapeutic challenge for which a definitive remedy has not been discovered yet. Biofilm and persister cell formation are two well-studied phenotypic resistance phenomena, leading to the recalcitrance and relapse of different types of chronic infections. The presence of persister cells in biofilm structures seems to be one of the main factors contributing to the relapse of infections and treatment failure. Given the dormant and inert nature of persister cells, they can be easy targets for the immune system factors. Biofilm formation can be a survival strategy for the defenseless persister cells. Thus, this study was aimed to evaluate the expression of biofilm-associated genes in Enterococcus faecalis persister and non-persister cells. METHODS Vancomycin susceptibility and biofilm formation ability were investigated among 95 E. faecalis clinical isolates using microtiter broth dilution and microtiter plate assays, respectively. PCR was used to determine the presence of biofilm-related genes (gelE, esp, and agg) among the vancomycin-susceptible, biofilm producer E. faecalis isolates (91 isolates). Minimum bactericidal concentration for biofilms (MBCB) were determined for vancomycin using the MTP assay. Bacterial persister assay was performed using an enzymatic lysis assay. Finally, the expression of biofilm-related genes was compared between the persister and non-persister isolates of E. faecalis using real-time qPCR. RESULTS E. faecalis isolates showed a high level of susceptibility (95.8%) to vancomycin (MIC < 1 µg/mL). The gelE, esp, and agg genes were found in 91 (100%), 72 (79.12), and 74 (81.32) of the isolates, respectively. All the E. faecalis isolates were tolerant to vancomycin in the biofilm condition, showing a MBCB of > 2500 µg/mL. Based on the enzymatic lysis assay, only 3 isolates, out of the 91, had the ability to form persister cells. The expression of biofilm-associated genes was higher among the persister compared to non-persister E. faecalis isolates. CONCLUSIONS Biofilm-associated persister cells indicated a high vancomycin tolerance compared to non-persister cells. Moreover, persister isolates showed a higher tendency for biofilm formation and a higher expression level of the biofilm-associated genes, compared to non-persister isolates.
Collapse
|
6
|
Liu P, Hao Z, Liu M, Niu M, Sun P, Yan S, Zhao L, Zhao X. Genetic mutations in adaptive evolution of growth-independent vancomycin-tolerant Staphylococcus aureus. J Antimicrob Chemother 2021; 76:2765-2773. [PMID: 34302174 DOI: 10.1093/jac/dkab260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/29/2021] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Antibiotic tolerance allows bacteria to overcome antibiotic treatment transiently and potentially accelerates the emergence of resistance. However, our understanding of antibiotic tolerance at the genetic level during adaptive evolution of Staphylococcus aureus remains incomplete. We sought to identify the mutated genes and verify the role of these genes in the formation of vancomycin tolerance in S. aureus. METHODS Vancomycin-susceptible S. aureus strain Newman was used to induce vancomycin-tolerant isolates in vitro by cyclic exposure under a high concentration of vancomycin (20× MIC). WGS and Sanger sequencing were performed to identify the genetic mutations. The function of mutated genes in vancomycin-tolerant isolates were verified by gene complementation. Other phenotypes of vancomycin-tolerant isolates were also determined, including mutation frequency, autolysis, lysostaphin susceptibility, cell wall thickness and cross-tolerance. RESULTS A series of vancomycin-tolerant S. aureus (VTSA) strains were isolated and 18 mutated genes were identified by WGS. Among these genes, pbp4, htrA, stp1, pth and NWMN_1068 were confirmed to play roles in VTSA formation. Mutation of mutL promoted the emergence of VTSA. All VTSA showed no changes in growth phenotype. Instead, they exhibited reduced autolysis, decreased lysostaphin susceptibility and thickened cell walls. In addition, all VTSA strains were cross-tolerant to antibiotics targeting cell wall synthesis but not to quinolones and lipopeptides. CONCLUSIONS Our results demonstrate that genetic mutations are responsible for emergence of phenotypic tolerance and formation of vancomycin tolerance may lie in cell wall changes in S. aureus.
Collapse
Affiliation(s)
- Pilong Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China.,Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Zehua Hao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Miaomiao Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Mingze Niu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Peng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Shunhua Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Lixiu Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Xin Zhao
- Department of Animal Science, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
7
|
Zhong Z, Kwok LY, Hou Q, Sun Y, Li W, Zhang H, Sun Z. Comparative genomic analysis revealed great plasticity and environmental adaptation of the genomes of Enterococcus faecium. BMC Genomics 2019; 20:602. [PMID: 31331270 PMCID: PMC6647102 DOI: 10.1186/s12864-019-5975-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background As an important nosocomial pathogen, Enterococcus faecium has received increasing attention in recent years. However, a large number of studies have focused on the hospital-associated isolates and ignored isolates originated from the natural environments. Results In this study, comparative genomic analysis was conducted on 161 isolates originated from human, animal, and naturally fermented dairy products. The results showed that the environment played an important role in shaping the genomes of Enterococcus faecium. The isolates from human had the largest average genome size, while the isolates from dairy products had the smallest average genome size and fewest antibiotic resistance genes. A phylogenetic tree was reconstructed based on the genomes of these isolates, which revealed new insights into the phylogenetic relationships among the dairy isolates and those from hospitals, communities, and animals. Furthermore, 202 environment-specific genes were identified, including 136 dairy-specific, 31 human blood-specific, and 35 human gastrointestinal-specific genes. Interestingly, five dairy-specific genes (namely lacF, lacA/B, lacD, lacG, and lacC) that constituted an integrated lactose metabolism pathway existed in almost all dairy isolates. The pathway conservation demonstrated an active role of the environment in shaping the genomes of Enterococcus faecium. Conclusions This study shows that the Enterococcus faecium species has great genomic plasticity and high versatility to occupy broad ecological roles, dwelling as non-harmful dairy and animal gut commensals as well as significant nosocomial pathogens that disseminate antibiotic resistance genes. Electronic supplementary material The online version of this article (10.1186/s12864-019-5975-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Yaru Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural affairs, Inner Mongolia Agricultural University, Hohhot, China.,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural affairs, Inner Mongolia Agricultural University, Hohhot, China. .,Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Hohhot, China.
| |
Collapse
|
8
|
He Q, Hou Q, Wang Y, Li J, Li W, Kwok LY, Sun Z, Zhang H, Zhong Z. Comparative genomic analysis of Enterococcus faecalis: insights into their environmental adaptations. BMC Genomics 2018; 19:527. [PMID: 29996769 PMCID: PMC6042284 DOI: 10.1186/s12864-018-4887-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 06/19/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Enterococcus faecalis is widely studied as a common gut commensal and a nosocomial pathogen. In fact, Enterococcus faecalis is ubiquitous in nature, and it has been isolated from various niches, including the gastrointestinal tract, faeces, blood, urine, water, and fermented foods (such as dairy products). In order to elucidate the role of habitat in shaping the genome of Enterococcus faecalis, we performed a comparative genomic analysis of 78 strains of various origins. RESULTS Although no correlation was found between the strain isolation habitat and the phylogeny of Enterococcus faecalis from our whole genome-based phylogenetic analysis, our results revealed some environment-associated features in the analysed Enterococcus faecalis genomes. Significant differences were found in the genome size and the number of predicted open reading frames (ORFs) between strains originated from different environments. In general, strains from water sources had the smallest genome size and the least number of predicted ORFs. We also identified 293 environment-specific genes, some of which might link to the adaptive strategies for survival in particular environments. In addition, the number of antibiotic resistance genes was significantly different between strains isolated from dairy products, water, and blood. Strains isolated from blood had the largest number of antibiotic resistance genes. CONCLUSION These findings improve our understanding of the role of habitat in shaping the genomes of Enterococcus faecalis.
Collapse
Affiliation(s)
- Qiuwen He
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Qiangchuan Hou
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Jing Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Weicheng Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China
| | - Zhi Zhong
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education P.R. C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China. .,Key Laboratory of Dairy Products Processing, Ministry of Agriculture P.R.C, Inner Mongolia Agricultural University, Huhhot, 010018, People's Republic of China.
| |
Collapse
|
9
|
Tavernier S, Sass A, De Bruyne M, Baeke F, De Rycke R, Crabbé A, Vandecandelaere I, Van Nieuwerburgh F, Coenye T. Decreased susceptibility of Streptococcus anginosus to vancomycin in a multispecies biofilm is due to increased thickness of the cell wall. J Antimicrob Chemother 2018; 73:2323-2330. [DOI: 10.1093/jac/dky216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023] Open
Affiliation(s)
- Sarah Tavernier
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Andrea Sass
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Michiel De Bruyne
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium
- Center for Inflammation Research and Bioimaging Core, VIB, Ghent, Belgium
| | - Femke Baeke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium
- Center for Inflammation Research and Bioimaging Core, VIB, Ghent, Belgium
| | - Riet De Rycke
- Department of Biomedical Molecular Biology and Expertise Centre for Transmission Electron Microscopy, Ghent University, Ghent, Belgium
- Center for Inflammation Research and Bioimaging Core, VIB, Ghent, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | | | | | - Tom Coenye
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Kim HJ, Kim N, Shum D, Huddar S, Park CM, Jang S. Identification of Antipneumococcal Molecules Effective Against Different Streptococcus pneumoniae Serotypes Using a Resazurin-Based High-Throughput Screen. Assay Drug Dev Technol 2018; 15:198-209. [PMID: 28723269 DOI: 10.1089/adt.2017.789] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pneumoniae is a major human pathogen, causing around 1.6 million deaths worldwide each year. By optimizing a resazurin-based assay to detect S. pneumoniae growth in 384-well microplates, we developed a new high-throughput screening (HTS) system for the discovery of antipneumococcal molecules, which was unsuccessful using conventional absorbance measurements. Before applying our protocol to a large-scale screen, we validated the system through a pilot screen targeting about 7,800 bioactive molecules using three different S. pneumoniae serotypes. Primary screenings of a further 27,000 synthetic small molecules facilitated the identification of 3-acyl-2-phenylamino-1,4-dihydropquinolin-4-one (APDQ) derivatives that inhibited growth of S. pneumoniae with MIC90 values <1 μM (0.03-0.81 μM). Five selected APDQ derivatives were also active against Staphylococcus aureus but neither Klebsiella pneumoniae nor Pseudomonas aeruginosa, suggesting that APDQ may act specifically against Gram-positive bacteria. Our results both validated and demonstrated the utility of the resazurin-based HTS system for the identification of new antipneumococcal molecules. Moreover, the identified new antipneumococcal molecules in this study may have potential to be further developed as new antibiotics.
Collapse
Affiliation(s)
- Hyung Jun Kim
- 1 Antibacterial Resistance Research Laboratory, Discovery Biology Department, Institut Pasteur Korea , Seongnam-si, Korea
| | - Namyoul Kim
- 2 Assay Development and Screening Group, Screening Sciences and Novel Assay Technologies Department, Institut Pasteur Korea , Seongnam-si, Korea
| | - David Shum
- 2 Assay Development and Screening Group, Screening Sciences and Novel Assay Technologies Department, Institut Pasteur Korea , Seongnam-si, Korea
| | - Srigouri Huddar
- 3 Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology , Daejeon, Korea.,4 Korea University of Science and Technology , Daejeon, Korea
| | - Chul Min Park
- 3 Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology , Daejeon, Korea
| | - Soojin Jang
- 1 Antibacterial Resistance Research Laboratory, Discovery Biology Department, Institut Pasteur Korea , Seongnam-si, Korea
| |
Collapse
|
11
|
Fong IW, Shlaes D, Drlica K. Antimicrobial Resistance Among Streptococcus pneumoniae. ANTIMICROBIAL RESISTANCE IN THE 21ST CENTURY 2018:13-38. [PMCID: PMC7122384 DOI: 10.1007/978-3-319-78538-7_2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Antibiotic resistance in Streptococcus pneumoniae (pneumococcus), the main pathogen responsible for community-acquired pneumonia (CAP), meningitis, bacteremia, and otitis media, is a major concern for clinicians. This pathogen is associated with high rates of morbidity and mortality, especially among children under 2 years old, immunocompromised persons, and the elderly population. The major anti-pneumococcus agents are β-lactams and macrolides, with fluoroquinolones ranking third. The emergence of antibiotic-resistant pneumococcus due to overuse of antibiotics is a global concern. While the discovery of novel classes of antibiotics for the pneumococcus is at a standstill, significant progress in reducing the problem of resistance is associated with antibacterial vaccines. Nevertheless, the World Health Organization recently considered drug-resistant S. pneumoniae as ranking among the 12 bacteria, for which there is an urgent need for new treatments. A challenge is to slow the evolution of new strains that are resistant to the vaccines.
Collapse
Affiliation(s)
- I. W. Fong
- Department of Medicine, University of Toronto, Toronto, ON Canada
| | - David Shlaes
- Anti-infectives Consulting, LLC, Stonington, CT USA
| | - Karl Drlica
- Public Health Research Institute, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ USA
| |
Collapse
|
12
|
Oravcova V, Mihalcin M, Zakova J, Pospisilova L, Masarikova M, Literak I. Vancomycin-resistant enterococci with vanA gene in treated municipal wastewater and their association with human hospital strains. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:633-643. [PMID: 28763660 DOI: 10.1016/j.scitotenv.2017.07.121] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 07/10/2017] [Accepted: 07/13/2017] [Indexed: 05/22/2023]
Abstract
Vancomycin-resistant enterococci (VRE) are pathogens of increasing medical importance. In Brno, Czech Republic, we collected 37 samples from the effluent of a wastewater treatment plant (WWTP), 21 surface swabs from hospital settings, and 59 fecal samples from hospitalized patients and staff. Moreover, we collected 284 gull cloacal swabs from the colony situated 35km downstream the WWTP. Samples were cultured selectively. Enterococci were identified using MALDI-TOF MS, phenotypically tested for susceptibility to antibiotics, and by PCR for occurrence of resistance and virulence genes. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were used to examine genotypic diversity. VRE carrying the vanA gene were found in 32 (86%, n=37) wastewater samples, from which we obtained 49 isolates: Enterococcus faecium (44) and Enterococcus gallinarum (2), Enterococcus casseliflavus (2), and Enterococcus raffinosus (1). From 33 (69%) of 48 inpatient stool samples, we obtained 39 vanA-carrying VRE, which belonged to E. faecium (33 isolates), Enterococcus faecalis (4), and Enterococcus raffinosus (2). Nearly one-third of the samples from hospital surfaces contained VRE with the vanA gene. VRE were not detected among gulls. Sixty-seven (84%, n=80) E. faecium isolates carried virulence genes hyl and/or esp. Virulence of E. faecalis was encoded by gelE, asa1, and cylA genes. A majority of the E. faecium isolates belonged to the clinically important sequence types ST17 (WWTP: 10 isolates; hospital: 4 isolates), ST18 (9;8), and ST78 (5;0). The remaining isolates belonged to ST555 (2;0), ST262 (1;6), ST273 (3;0), ST275 (1;0), ST549 (2;0), ST19 (0;1), ST323 (3;0), and ST884 (7;17). Clinically important enterococci carrying the vanA gene were almost continually detectable in the effluent of the WWTP, indicating insufficient removal of VRE during wastewater treatment and permanent shedding of these antibiotic resistant pathogens into the environment from this source. This represents a risk of their transmission to the environment.
Collapse
Affiliation(s)
- Veronika Oravcova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Matus Mihalcin
- Department of Infectious Diseases, University Hospital Brno, Brno, Czech Republic; Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Jana Zakova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Lucie Pospisilova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Martina Masarikova
- CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Ivan Literak
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
13
|
Transcriptional Repressor PtvR Regulates Phenotypic Tolerance to Vancomycin in Streptococcus pneumoniae. J Bacteriol 2017; 199:JB.00054-17. [PMID: 28484041 DOI: 10.1128/jb.00054-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/26/2017] [Indexed: 02/05/2023] Open
Abstract
Reversible or phenotypic tolerance to antibiotics within microbial populations has been implicated in treatment failure of chronic infections and development of persister cells. However, the molecular mechanisms regulating phenotypic drug tolerance are largely unknown. In this study, we identified a four-gene operon in Streptococcus pneumoniae that contributes to phenotypic tolerance to vancomycin (ptv). RNA sequencing, quantiative reverse transcriptase PCR, and transcriptional luciferase reporter experiments revealed that transcription of the ptv operon (consisting of ptvR, ptvA, ptvB, and ptvC) is induced by exposure to vancomycin. Further investigation showed that transcription of the ptv operon is repressed by PtvR, a PadR family repressor. Transcriptional induction of the ptv operon by vancomycin was achieved by transcriptional derepression of this locus, which was mediated by PtvR. Importantly, fully derepressing ptvABC by deleting ptvR or overexpressing the ptv operon with an exogenous promoter significantly enhanced vancomycin tolerance. Gene deletion analysis revealed that PtvA, PtvB, and PtvC are all required for the PtvR-regulated phenotypic tolerance to vancomycin. Finally, the results of an electrophoretic mobility shift assay with recombinant PtvR showed that PtvR represses the transcription of the ptv operon by binding to two palindromic sequences within the ptv promoter. Together, the ptv locus represents an inducible system in S. pneumoniae in response to stressful conditions, including those caused by antibiotics.IMPORTANCE Reversible or phenotypic tolerance to antibiotics within microbial populations is associated with treatment failure of bacterial diseases, but the underlying mechanisms regulating phenotypic drug tolerance remain obscure. This study reports our finding of a multigene locus that contributes to inducible tolerance to vancomycin in Streptococcus pneumoniae, an important opportunistic human pathogen. The vancomycin tolerance phenotype depends on the PtvR transcriptional repressor and three predicted membrane-associated proteins encoded by the ptv locus. This represents the first example of a gene locus in S. pneumoniae that is responsible for antibiotic tolerance and has important implications for further understanding bacterial responses and phenotypic tolerance to antibiotic treatment in this and other pathogens.
Collapse
|
14
|
Antibiotic Resistance Profiling and Genotyping of Vancomycin-Resistant Enterococci Collected from an Urban River Basin in the Provincial City of Miyazaki, Japan. WATER 2017. [DOI: 10.3390/w9020079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Abstract
PURPOSE OF REVIEW Pneumococcal infections are a major cause of morbidity and mortality worldwide. In recent years, Streptococcus pneumoniae has shown increasing resistance to a several antibiotics, becoming a worldwide problem. The impact of antibiotic resistance of S. pneumoniae on clinical outcomes is still controversial. The principal reason for this controversy is the existence of several factors related to the patients and to the pathogen that may influence how antibiotic resistance patterns affect clinical outcomes. The aim of this review is to discuss current knowledge of the epidemiological data on antibiotic resistance; we also discuss mechanisms and risk factors for antibiotic resistance. RECENT FINDINGS The phenomenon of serotype replacement after the introduction of conjugate pneumococcal vaccinations and the escalation of antibiotic resistance worldwide remains an important issue in terms of their impact on clinical outcomes in pneumococcal disease. Antimicrobial resistance of pneumococcus leads to changes in the clinical presentation of pneumococcal disease, making it more difficult to diagnose and to treat. Consumption of antibiotics in the community is directly proportional to antimicrobial resistance. Carriage of S. pneumoniae and infection with antibiotic-resistant pneumococcus is associated with prior antibiotic therapy, extremes of age, presence of comorbidities (i.e. COPD), attendance at child day care centers, crowded conditions, intra-familial transmission, and nursing home residence. SUMMARY Antibiotic-resistant S. pneumoniae is a worldwide problem. The implementation of several strategies including vaccine campaigns, prudent use of current antibiotics, and programs for the surveillance of pneumococcal infections, could limit the increasing resistance of this pathogen to antimicrobials.
Collapse
|
16
|
Blázquez B, Fresco-Taboada A, Iglesias-Bexiga M, Menéndez M, García P. PL3 Amidase, a Tailor-made Lysin Constructed by Domain Shuffling with Potent Killing Activity against Pneumococci and Related Species. Front Microbiol 2016; 7:1156. [PMID: 27516758 PMCID: PMC4963390 DOI: 10.3389/fmicb.2016.01156] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 01/18/2023] Open
Abstract
The emergence and spread of antibiotic-resistant bacteria is pushing the need of alternative treatments. In this context, phage therapy is already a reality to successfully fight certain multiresistant bacteria. Among different phage gene products, murein hydrolases responsible of phage progeny liberation (also called lysins or endolysins) are weapons that target specific peptidoglycan bonds, leading to lysis and death of susceptible bacteria when added from the outside. In the pneumococcal system, all but one phage murein hydrolases reported to date share a choline-binding domain that recognizes cell walls containing choline residues in the (lipo)teichoic acids. Some purified pneumococcal or phage murein hydrolases, as well as several chimeric proteins combining natural catalytic and cell wall-binding domains (CBDs) have been used as effective antimicrobials. In this work we have constructed a novel chimeric N-acetylmuramoyl-L-alanine amidase (PL3) by fusing the catalytic domain of the Pal amidase (a phage-coded endolysin) to the CBD of the LytA amidase, the major pneumococcal autolysin. The physicochemical properties of PL3 and the bacteriolytic effect against several pneumococci (including 48 multiresistant representative strain) and related species, like Streptococcus pseudopneumoniae, Streptococcus mitis, and Streptococcus oralis, have been studied. Results have shown that low doses of PL3, in the range of 0.5–5 μg/ml, are enough to practically sterilize all choline-containing strains tested. Moreover, a single 20-μg dose of PL3 fully protected zebrafish embryos from infection by S. pneumoniae D39 strain. Importantly, PL3 keeps 95% enzymatic activity after 4 weeks at 37°C and can be lyophilized without losing activity, demonstrating a remarkable robustness. Such stability, together with a prominent efficacy against a narrow spectrum of human pathogens, confers to PL3 the characteristic to be an effective therapeutic. In addition, our results demonstrate that the structure/function-based domain shuffling approach is a successful method to construct tailor-made endolysins with higher bactericidal activities than their parental enzymes.
Collapse
Affiliation(s)
- Blas Blázquez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Alba Fresco-Taboada
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas Madrid, Spain
| | - Manuel Iglesias-Bexiga
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Margarita Menéndez
- Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain; CIBER de Enfermedades RespiratoriasMadrid, Spain
| |
Collapse
|
17
|
Abstract
Lactic acid bacteria (LAB) are important starter, commensal, or pathogenic microorganisms. The stress physiology of LAB has been studied in depth for over 2 decades, fueled mostly by the technological implications of LAB robustness in the food industry. Survival of probiotic LAB in the host and the potential relatedness of LAB virulence to their stress resilience have intensified interest in the field. Thus, a wealth of information concerning stress responses exists today for strains as diverse as starter (e.g., Lactococcus lactis), probiotic (e.g., several Lactobacillus spp.), and pathogenic (e.g., Enterococcus and Streptococcus spp.) LAB. Here we present the state of the art for LAB stress behavior. We describe the multitude of stresses that LAB are confronted with, and we present the experimental context used to study the stress responses of LAB, focusing on adaptation, habituation, and cross-protection as well as on self-induced multistress resistance in stationary phase, biofilms, and dormancy. We also consider stress responses at the population and single-cell levels. Subsequently, we concentrate on the stress defense mechanisms that have been reported to date, grouping them according to their direct participation in preserving cell energy, defending macromolecules, and protecting the cell envelope. Stress-induced responses of probiotic LAB and commensal/pathogenic LAB are highlighted separately due to the complexity of the peculiar multistress conditions to which these bacteria are subjected in their hosts. Induction of prophages under environmental stresses is then discussed. Finally, we present systems-based strategies to characterize the "stressome" of LAB and to engineer new food-related and probiotic LAB with improved stress tolerance.
Collapse
|
18
|
Díez-Martínez R, De Paz HD, García-Fernández E, Bustamante N, Euler CW, Fischetti VA, Menendez M, García P. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother 2015; 70:1763-73. [PMID: 25733585 DOI: 10.1093/jac/dkv038] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/29/2015] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Streptococcus pneumoniae is becoming increasingly antibiotic resistant worldwide and new antimicrobials are urgently needed. Our aim was new chimeric phage endolysins, or lysins, with improved bactericidal activity by swapping the structural components of two pneumococcal phage lysozymes: Cpl-1 (the best lysin tested to date) and Cpl-7S. METHODS The bactericidal effects of four new chimeric lysins were checked against several bacteria. The purified enzymes were added at different concentrations to resuspended bacteria and viable cells were measured after 1 h. Killing capacity of the most active lysin, Cpl-711, was tested in a mouse bacteraemia model, following mouse survival after injecting different amounts (25-500 μg) of enzyme. The capacity of Cpl-711 to reduce pneumococcal biofilm formation was also studied. RESULTS The chimera Cpl-711 substantially improved the killing activity of the parental phage lysozymes, Cpl-1 and Cpl-7S, against pneumococcal bacteria, including multiresistant strains. Specifically, 5 μg/mL Cpl-711 killed ≥7.5 log of pneumococcal R6 strain. Cpl-711 also reduced pneumococcal biofilm formation and killed 4 log of the bacterial population at 1 μg/mL. Mice challenged intraperitoneally with D39_IU pneumococcal strain were protected by treatment with a single intraperitoneal injection of Cpl-711 1 h later, resulting in about 50% greater protection than with Cpl-1. CONCLUSIONS Domain swapping among phage lysins allows the construction of new chimeric enzymes with high bactericidal activity and a different substrate range. Cpl-711, the most powerful endolysin against pneumococci, offers a promising therapeutic perspective for the treatment of multiresistant pneumococcal infections.
Collapse
Affiliation(s)
- Roberto Díez-Martínez
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Héctor D De Paz
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain
| | - Esther García-Fernández
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain
| | - Noemí Bustamante
- CIBER de Enfermedades Respiratorias, Madrid, Spain Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
| | - Chad W Euler
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA Department of Medical Laboratory Sciences, Hunter College, CUNY, New York, NY, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, The Rockefeller University, New York, NY, USA
| | - Margarita Menendez
- CIBER de Enfermedades Respiratorias, Madrid, Spain Departamento de Química-Física Biológica, Instituto Química-Física Rocasolano, CSIC, Madrid, Spain
| | - Pedro García
- Departamento de Microbiología Molecular y Biología de las Infecciones, Centro de Investigaciones Biológicas, CSIC, Madrid, Spain CIBER de Enfermedades Respiratorias, Madrid, Spain
| |
Collapse
|
19
|
|
20
|
Oravcova V, Zurek L, Townsend A, Clark AB, Ellis JC, Cizek A, Literak I. American crows as carriers of vancomycin-resistant enterococci with vanA gene. Environ Microbiol 2013; 16:939-49. [PMID: 23919480 DOI: 10.1111/1462-2920.12213] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 07/06/2013] [Accepted: 07/10/2013] [Indexed: 11/27/2022]
Abstract
We studied the vanA-carrying vancomycin-resistant enterococci (VRE) isolated from American crows in the United States during the winter 2011/2012. Faecal samples from crows were cultured selectively for VRE and characterized. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were used to examine epidemiological relationships of vanA-containing VRE. Isolates were tested in vitro for their ability to horizontally transfer the vancomycin resistance trait. VRE with the vanA gene were found in 15 (2.5%) of 590 crows samples, from which we obtained 22 different isolates. Enterococcal species were Enterococcus faecium (14) and E. faecalis (8). One, two and 19 isolates originated from Kansas, New York State and Massachusetts, respectively. Based on MLST analysis, E. faecium isolates were grouped as ST18 (6 isolates), ST555 (2), and novel types ST749 (1), ST750 (3), ST751 (1), ST752 (1). Enterococcus faecalis isolates belonged to ST6 (1), ST16 (3) and ST179 (4). All isolates were able to transfer the vancomycin resistance trait via filter mating with very high transfer range. Clinically important enterococci with the vanA gene occur in faeces of wild American crows throughout the United States. These migrating birds may contribute to the dissemination of VRE in environment over large distances. [Correction added after first online publication on 06 August 2013: The number of E. faecium ST752 isolate is now amended to '1', consistent with that shown in the 'Results' section and Figure 2.].
Collapse
Affiliation(s)
- Veronika Oravcova
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1-3, 612 42, Brno, Czech Republic; CEITEC VFU, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
21
|
Biofilm formation avoids complement immunity and phagocytosis of Streptococcus pneumoniae. Infect Immun 2013; 81:2606-15. [PMID: 23649097 DOI: 10.1128/iai.00491-13] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae is a frequent member of the microbiota of the human nasopharynx. Colonization of the nasopharyngeal tract is a first and necessary step in the infectious process and often involves the formation of sessile microbial communities by this human pathogen. The ability to grow and persist as biofilms is an advantage for many microorganisms, because biofilm-grown bacteria show reduced susceptibility to antimicrobial agents and hinder recognition by the immune system. The extent of host protection against biofilm-related pneumococcal disease has not been determined yet. Using pneumococcal strains growing as planktonic cultures or as biofilms, we have investigated the recognition of S. pneumoniae by the complement system and its interactions with human neutrophils. Deposition of C3b, the key complement component, was impaired on S. pneumoniae biofilms. In addition, binding of C-reactive protein and the complement component C1q to the pneumococcal surface was reduced in biofilm bacteria, demonstrating that pneumococcal biofilms avoid the activation of the classical complement pathway. In addition, recruitment of factor H, the downregulator of the alternative pathway, was enhanced by S. pneumoniae growing as biofilms. Our results also show that biofilm formation diverts the alternative complement pathway activation by a PspC-mediated mechanism. Furthermore, phagocytosis of pneumococcal biofilms was also impaired. The present study confirms that biofilm formation in S. pneumoniae is an efficient means of evading both the classical and the PspC-dependent alternative complement pathways the host immune system.
Collapse
|