1
|
Cárdenas Espinosa MJ, Schmidgall T, Pohl J, Wagner G, Wynands B, Wierckx N, Heipieper HJ, Eberlein C. Assessment of New and Genome-Reduced Pseudomonas Strains Regarding Their Robustness as Chassis in Biotechnological Applications. Microorganisms 2023; 11:microorganisms11040837. [PMID: 37110260 PMCID: PMC10144732 DOI: 10.3390/microorganisms11040837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/12/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Organic olvent-tolerant strains of the Gram-negative bacterial genus Pseudomonas are discussed as potential biocatalysts for the biotechnological production of various chemicals. However, many current strains with the highest tolerance are belonging to the species P. putida and are classified as biosafety level 2 strains, which makes them uninteresting for the biotechnological industry. Therefore, it is necessary to identify other biosafety level 1 Pseudomonas strains with high tolerance towards solvents and other forms of stress, which are suitable for establishing production platforms of biotechnological processes. In order to exploit the native potential of Pseudomonas as a microbial cell factory, the biosafety level 1 strain P. taiwanensis VLB120 and its genome-reduced chassis (GRC) variants as well as the plastic-degrading strain P. capeferrum TDA1 were assessed regarding their tolerance towards different n-alkanols (1-butanol, 1-hexanol, 1-octanol, 1-decanol). Toxicity of the solvents was investigated by their effects on bacterial growth rates given as the EC50 concentrations. Hereby, both toxicities as well as the adaptive responses of P. taiwanensis GRC3 and P. capeferrum TDA1 showed EC50 values up to two-fold higher than those previously detected for P. putida DOT-T1E (biosafety level 2), one of the best described solvent-tolerant bacteria. Furthermore, in two-phase solvent systems, all the evaluated strains were adapted to 1-decanol as a second organic phase (i.e., OD560 was at least 0.5 after 24 h of incubation with 1% (v/v) 1-decanol), which shows the potential use of these strains as platforms for the bio-production of a wide variety of chemicals at industrial level.
Collapse
Affiliation(s)
- María José Cárdenas Espinosa
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Tabea Schmidgall
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Jessica Pohl
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Georg Wagner
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Benedikt Wynands
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Nick Wierckx
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Hermann J. Heipieper
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
| | - Christian Eberlein
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, 04318 Leipzig, Germany
- Correspondence:
| |
Collapse
|
2
|
Dahal S, Hurst GB, Chourey K, Engle NL, Burdick LH, Morrell-Falvey JL, Tschaplinski TJ, Doktycz MJ, Pelletier DA. Mechanism for Utilization of the Populus-Derived Metabolite Salicin by a Pseudomonas- Rahnella Co-Culture. Metabolites 2023; 13:metabo13020140. [PMID: 36837758 PMCID: PMC9959693 DOI: 10.3390/metabo13020140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
Pseudomonas fluorescens GM16 associates with Populus, a model plant in biofuel production. Populus releases abundant phenolic glycosides such as salicin, but P. fluorescens GM16 cannot utilize salicin, whereas Pseudomonas strains are known to utilize compounds similar to the aglycone moiety of salicin-salicyl alcohol. We propose that the association of Pseudomonas to Populus is mediated by another organism (such as Rahnella aquatilis OV744) that degrades the glucosyl group of salicin. In this study, we demonstrate that in the Rahnella-Pseudomonas salicin co-culture model, Rahnella grows by degrading salicin to glucose 6-phosphate and salicyl alcohol which is secreted out and is subsequently utilized by P. fluorescens GM16 for its growth. Using various quantitative approaches, we elucidate the individual pathways for salicin and salicyl alcohol metabolism present in Rahnella and Pseudomonas, respectively. Furthermore, we were able to establish that the salicyl alcohol cross-feeding interaction between the two strains on salicin medium is carried out through the combination of their respective individual pathways. The research presents one of the potential advantages of salicyl alcohol release by strains such as Rahnella, and how phenolic glycosides could be involved in attracting multiple types of bacteria into the Populus microbiome.
Collapse
Affiliation(s)
- Sanjeev Dahal
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Genome Science and Technology Program, University of Tennessee, Knoxville, TN 37996, USA
- Department of Chemical Engineering, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Gregory B. Hurst
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Karuna Chourey
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Nancy L. Engle
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Leah H. Burdick
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | | | | | - Mitchel J. Doktycz
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Dale A. Pelletier
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
- Correspondence:
| |
Collapse
|
3
|
Sousa STPD, Cabral L, Lacerda-Júnior GV, Noronha MF, Ottoni JR, Sartoratto A, Oliveira VMD. Exploring the genetic potential of a fosmid metagenomic library from an oil-impacted mangrove sediment for metabolism of aromatic compounds. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109974. [PMID: 31761556 DOI: 10.1016/j.ecoenv.2019.109974] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/10/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
Aromatic hydrocarbons (AH) are widely distributed in nature, and many of them have been reported as relevant environmental pollutants and valuable carbon sources for different microorganisms. In this work, high-throughput sequencing of a metagenomic fosmid library was carried out to evaluate the functional and taxonomic diversity of genes involved in aromatic compounds degradation in oil-impacted mangrove sediments. In addition, activity-based approach and gas chromatography were used to assess the degradation potential of fosmid clones. Results indicated that AH degradation genes, such as monooxygenases and dioxygenases, were grouped into the following categories: anaerobic degradation of aromatic compounds (20.34%), metabolism of central aromatic intermediates (35.40%) and peripheral pathways for catabolism of aromatic compounds (22.56%). Taxonomic affiliation of genes related to aromatic compounds metabolism revealed the prevalence of the classes Alphaproteobacteria, Actinobacteria, Betaproteobacteria, Gammaproteobacteria and Deltaproteobacteria. Aromatic hydrocarbons (phenol, naphthalene, phenanthrene, pyrene and benzopyrene) were used as the only carbon source to screen clones with degradation potential. Of the 2500 clones tested, 48 showed some respiratory activity in at least one of the five carbon sources used. The hydrocarbon degradation ability of the top ten fosmid clones was confirmed by GC-MS. Further, annotation of assembled metagenomic fragments revealed ORFs corresponding to proteins and functional domains directly or indirectly involved in the aromatic compound metabolism, such as catechol 2,3-dioxygenase and ferredoxin oxidoreductase. Finally, these data suggest that the indigenous mangrove sediment microbiota developed essential mechanisms towards ecosystem remediation of petroleum hydrocarbon impact.
Collapse
Affiliation(s)
- Sanderson Tarciso Pereira de Sousa
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Lucélia Cabral
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Gileno Vieira Lacerda-Júnior
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Melline Fontes Noronha
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Júlia Ronzella Ottoni
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Adilson Sartoratto
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| | - Valéria Maia de Oliveira
- Research Center for Chemistry, Biology and Agriculture (CPQBA), Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil.
| |
Collapse
|
4
|
Transcriptomic Analyses Elucidate Adaptive Differences of Closely Related Strains of Pseudomonas aeruginosa in Fuel. Appl Environ Microbiol 2017; 83:AEM.03249-16. [PMID: 28314727 DOI: 10.1128/aem.03249-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/06/2017] [Indexed: 02/03/2023] Open
Abstract
Pseudomonas aeruginosa can utilize hydrocarbons, but different strains have various degrees of adaptation despite their highly conserved genome. P. aeruginosa ATCC 33988 is highly adapted to hydrocarbons, while P. aeruginosa strain PAO1, a human pathogen, is less adapted and degrades jet fuel at a lower rate than does ATCC 33988. We investigated fuel-specific transcriptomic differences between these strains in order to ascertain the underlying mechanisms utilized by the adapted strain to proliferate in fuel. During growth in fuel, the genes related to alkane degradation, heat shock response, membrane proteins, efflux pumps, and several novel genes were upregulated in ATCC 33988. Overexpression of alk genes in PAO1 provided some improvement in growth, but it was not as robust as that of ATCC 33988, suggesting the role of other genes in adaptation. Expression of the function unknown gene PA5359 from ATCC 33988 in PAO1 increased the growth in fuel. Bioinformatic analysis revealed that PA5359 is a predicted lipoprotein with a conserved Yx(FWY)xxD motif, which is shared among bacterial adhesins. Overexpression of the putative resistance-nodulation-division (RND) efflux pump PA3521 to PA3523 increased the growth of the ATCC 33988 strain, suggesting a possible role in fuel tolerance. Interestingly, the PAO1 strain cannot utilize n-C8 and n-C10 The expression of green fluorescent protein (GFP) under the control of alkB promoters confirmed that alk gene promoter polymorphism affects the expression of alk genes. Promoter fusion assays further confirmed that the regulation of alk genes was different in the two strains. Protein sequence analysis showed low amino acid differences for many of the upregulated genes, further supporting transcriptional control as the main mechanism for enhanced adaptation.IMPORTANCE These results support that specific signal transduction, gene regulation, and coordination of multiple biological responses are required to improve the survival, growth, and metabolism of fuel in adapted strains. This study provides new insight into the mechanistic differences between strains and helpful information that may be applied in the improvement of bacterial strains for resistance to biotic and abiotic factors encountered during bioremediation and industrial biotechnological processes.
Collapse
|
5
|
Modrzyński JJ, Christensen JH, Mayer P, Brandt KK. Limited recovery of soil microbial activity after transient exposure to gasoline vapors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 216:826-835. [PMID: 27376993 DOI: 10.1016/j.envpol.2016.06.054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 06/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation.
Collapse
Affiliation(s)
- Jakub J Modrzyński
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| | - Jan H Christensen
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark; Department of Environmental Science, Aarhus University, 4000, Roskilde, Denmark.
| | - Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark.
| |
Collapse
|
6
|
Efflux systems in bacteria and their metabolic engineering applications. Appl Microbiol Biotechnol 2015; 99:9381-93. [PMID: 26363557 DOI: 10.1007/s00253-015-6963-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 08/20/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
The production of valuable chemicals from metabolically engineered microbes can be limited by excretion from the cell. Efflux is often overlooked as a bottleneck in metabolic pathways, despite its impact on alleviating feedback inhibition and product toxicity. In the past, it has been assumed that endogenous efflux pumps and membrane porins can accommodate product efflux rates; however, there are an increasing number of examples wherein overexpressing efflux systems is required to improve metabolite production. In this review, we highlight specific examples from the literature where metabolite export has been studied to identify unknown transporters, increase tolerance to metabolites, and improve the production capabilities of engineered bacteria. The review focuses on the export of a broad spectrum of valuable chemicals including amino acids, sugars, flavins, biofuels, and solvents. The combined set of examples supports the hypothesis that efflux systems can be identified and engineered to confer export capabilities on industrially relevant microbes.
Collapse
|
7
|
Ramos JL, Sol Cuenca M, Molina-Santiago C, Segura A, Duque E, Gómez-García MR, Udaondo Z, Roca A. Mechanisms of solvent resistance mediated by interplay of cellular factors inPseudomonas putida. FEMS Microbiol Rev 2015; 39:555-66. [DOI: 10.1093/femsre/fuv006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2015] [Indexed: 11/14/2022] Open
|
8
|
Membrane transporter engineering in industrial biotechnology and whole cell biocatalysis. Trends Biotechnol 2015; 33:237-46. [DOI: 10.1016/j.tibtech.2015.02.001] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 01/15/2015] [Accepted: 02/02/2015] [Indexed: 02/06/2023]
|
9
|
Molina-Santiago C, Daddaoua A, Gómez-Lozano M, Udaondo Z, Molin S, Ramos JL. Differential transcriptional response to antibiotics by Pseudomonas putida DOT-T1E. Environ Microbiol 2015; 17:3251-62. [PMID: 25581266 DOI: 10.1111/1462-2920.12775] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 12/26/2014] [Accepted: 01/06/2014] [Indexed: 11/29/2022]
Abstract
Multi-drug resistant bacteria are a major threat to humanity, especially because the current battery of known antibiotics is not sufficient to combat infections produced by these microbes. Therefore, the study of how current antibiotics act and how bacteria defend themselves against antibiotics is of critical importance. Pseudomonas putida DOT-T1E exhibits an impressive array of RND efflux pumps, which confer this microorganism high resistance to organic solvents and antibiotics that would kill most other microorganisms. We have chosen DOT-T1E as a model microbe to study the microbial responses to a wide battery of antibiotics (chloramphenicol, rifampicin, tetracycline, ciprofloxacin, ampicillin, kanamycin, spectinomycin and gentamicin). Ribonucleic acid sequencing (RNA)-seq analyses revealed that each antibiotic provokes a unique transcriptional response profile in DOT-T1E. While many of the genes identified were related to known antibiotic targets, others were unrelated or encoded hypothetical proteins. These results indicate that our knowledge of antibiotic resistance mechanisms is still partial. We also identified 138 new small RNAs (sRNAs) in DOT-T1E, dramatically adding to the 16 that have been previously described. Importantly, our results reveal that a correlation exists between the expression of messenger RNA and sRNA, indicating that some of these sRNAs are likely involved in fine tuning the expression of antibiotic resistance genes. Taken together, these findings open new frontiers in the fight against multi-drug resistant bacteria and point to the potential use of sRNAs as novel antimicrobial targets.
Collapse
Affiliation(s)
- Carlos Molina-Santiago
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, Granada, E-18008, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, Granada, E-18008, Spain
| | - María Gómez-Lozano
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Zulema Udaondo
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, Granada, E-18008, Spain
| | - Søren Molin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Juan-Luis Ramos
- Department of Environmental Protection, Consejo Superior de Investigaciones Científicas, C/ Profesor Albareda 1, Granada, E-18008, Spain
| |
Collapse
|
10
|
Kongpol A, Kato J, Tajima T, Pongtharangkul T, S. Vangnai A. Enhanced 3-methylcatechol production by Pseudomonas putida TODE1 in a two-phase biotransformation system. J GEN APPL MICROBIOL 2014; 60:183-90. [DOI: 10.2323/jgam.60.183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Cray JA, Bell ANW, Bhaganna P, Mswaka AY, Timson DJ, Hallsworth JE. The biology of habitat dominance; can microbes behave as weeds? Microb Biotechnol 2013; 6:453-92. [PMID: 23336673 PMCID: PMC3918151 DOI: 10.1111/1751-7915.12027] [Citation(s) in RCA: 163] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/03/2012] [Indexed: 02/06/2023] Open
Abstract
Competition between microbial species is a product of, yet can lead to a reduction in, the microbial diversity of specific habitats. Microbial habitats can resemble ecological battlefields where microbial cells struggle to dominate and/or annihilate each other and we explore the hypothesis that (like plant weeds) some microbes are genetically hard-wired to behave in a vigorous and ecologically aggressive manner. These 'microbial weeds' are able to dominate the communities that develop in fertile but uncolonized--or at least partially vacant--habitats via traits enabling them to out-grow competitors; robust tolerances to habitat-relevant stress parameters and highly efficient energy-generation systems; avoidance of or resistance to viral infection, predation and grazers; potent antimicrobial systems; and exceptional abilities to sequester and store resources. In addition, those associated with nutritionally complex habitats are extraordinarily versatile in their utilization of diverse substrates. Weed species typically deploy multiple types of antimicrobial including toxins; volatile organic compounds that act as either hydrophobic or highly chaotropic stressors; biosurfactants; organic acids; and moderately chaotropic solutes that are produced in bulk quantities (e.g. acetone, ethanol). Whereas ability to dominate communities is habitat-specific we suggest that some microbial species are archetypal weeds including generalists such as: Pichia anomala, Acinetobacter spp. and Pseudomonas putida; specialists such as Dunaliella salina, Saccharomyces cerevisiae, Lactobacillus spp. and other lactic acid bacteria; freshwater autotrophs Gonyostomum semen and Microcystis aeruginosa; obligate anaerobes such as Clostridium acetobutylicum; facultative pathogens such as Rhodotorula mucilaginosa, Pantoea ananatis and Pseudomonas aeruginosa; and other extremotolerant and extremophilic microbes such as Aspergillus spp., Salinibacter ruber and Haloquadratum walsbyi. Some microbes, such as Escherichia coli, Mycobacterium smegmatis and Pseudoxylaria spp., exhibit characteristics of both weed and non-weed species. We propose that the concept of nonweeds represents a 'dustbin' group that includes species such as Synodropsis spp., Polypaecilum pisce, Metschnikowia orientalis, Salmonella spp., and Caulobacter crescentus. We show that microbial weeds are conceptually distinct from plant weeds, microbial copiotrophs, r-strategists, and other ecophysiological groups of microorganism. Microbial weed species are unlikely to emerge from stationary-phase or other types of closed communities; it is open habitats that select for weed phenotypes. Specific characteristics that are common to diverse types of open habitat are identified, and implications of weed biology and open-habitat ecology are discussed in the context of further studies needed in the fields of environmental and applied microbiology.
Collapse
Affiliation(s)
- Jonathan A Cray
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Andrew N W Bell
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Prashanth Bhaganna
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - Allen Y Mswaka
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - David J Timson
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| | - John E Hallsworth
- School of Biological Sciences, MBC, Queen's University BelfastBelfast, BT9 7BL, Northern Ireland, UK
| |
Collapse
|
12
|
The EmhABC efflux pump in Pseudomonas fluorescens LP6a is involved in naphthalene tolerance but not efflux. Appl Microbiol Biotechnol 2012; 97:2587-96. [PMID: 22940805 DOI: 10.1007/s00253-012-4373-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/27/2022]
Abstract
The EmhABC efflux pump in Pseudomonas fluorescens LP6a effluxes polycyclic aromatic hydrocarbons (PAHs) such as phenanthrene and anthracene but not naphthalene. We previously showed that the presence of EmhABC decreased the efficiency of phenanthrene biodegradation. In this study, we determined whether P. fluorescens LP6a tolerance to naphthalene is a function of the EmhABC efflux pump and how its presence affects the efficiency of naphthalene biodegradation. Growth, membrane fatty acid (FA) composition, and cell morphology showed that 5-mmol L(-1) naphthalene is inhibitory to P. fluorescens LP6a strains. The deleterious effect of naphthalene is suppressed in the presence of EmhABC, which suggests that, although naphthalene is not effluxed by EmhABC, this efflux pump is involved in tolerance of naphthalene toxicity. LP6a mutants lacking the EmhB efflux pump were unable to convert cis-unsaturated FAs to cyclopropane FAs, indicating that naphthalene interferes with the formation of cyclopropane FAs and supporting the proposal that EmhABC is involved in FA turnover in P. fluorescens LP6a strains. The EmhABC efflux pump increases the efficiency of naphthalene metabolism in strain LP6a, which may make naphthalene efflux unnecessary. Thus, the activity of hydrocarbon efflux pumps may be an important factor to consider when selecting bacterial strains for bioremediation or biocatalysis of PAHs.
Collapse
|
13
|
Analysis of solvent tolerance inPseudomonas putidaDOT-T1E based on its genome sequence and a collection of mutants. FEBS Lett 2012; 586:2932-8. [DOI: 10.1016/j.febslet.2012.07.031] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 07/09/2012] [Accepted: 07/09/2012] [Indexed: 11/19/2022]
|
14
|
Segura A, Molina L, Fillet S, Krell T, Bernal P, Muñoz-Rojas J, Ramos JL. Solvent tolerance in Gram-negative bacteria. Curr Opin Biotechnol 2012; 23:415-21. [DOI: 10.1016/j.copbio.2011.11.015] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 10/29/2011] [Accepted: 11/11/2011] [Indexed: 10/14/2022]
|