1
|
Wang Y, Xue D, Chen X, Qiu Q, Chen H. Structure and Functions of Endophytic Bacterial Communities Associated with Sphagnum Mosses and Their Drivers in Two Different Nutrient Types of Peatlands. MICROBIAL ECOLOGY 2024; 87:47. [PMID: 38407642 PMCID: PMC10896819 DOI: 10.1007/s00248-024-02355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024]
Abstract
Sphagnum mosses are keystone plant species in the peatland ecosystems that play a crucial role in the formation of peat, which shelters a broad diversity of endophytic bacteria with important ecological functions. In particular, methanotrophic and nitrogen-fixing endophytic bacteria benefit Sphagnum moss hosts by providing both carbon and nitrogen. However, the composition and abundance of endophytic bacteria from different species of Sphagnum moss in peatlands of different nutrient statuses and their drivers remain unclear. This study used 16S rRNA gene amplicon sequencing to examine endophytic bacterial communities in Sphagnum mosses and measured the activity of methanotrophic microbial by the 13C-CH4 oxidation rate. According to the results, the endophytic bacterial community structure varied among Sphagnum moss species and Sphagnum capillifolium had the highest endophytic bacterial alpha diversity. Moreover, chlorophyll, phenol oxidase, carbon contents, and water retention capacity strongly shaped the communities of endophytic bacteria. Finally, Sphagnum palustre in Hani (SP) had a higher methane oxidation rate than S. palustre in Taishanmiao. This result is associated with the higher average relative abundance of Methyloferula an obligate methanotroph in SP. In summary, this work highlights the effects of Sphagnum moss characteristics on the endophytic bacteriome. The endophytic bacteriome is important for Sphagnum moss productivity, as well as for carbon and nitrogen cycles in Sphagnum moss peatlands.
Collapse
Affiliation(s)
- Yue Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dan Xue
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| | - Xuhui Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qing Qiu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China
| | - Huai Chen
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, No. 9, Section 4, South Renmin Road, Chengdu, 610041, China.
- Zoige Peatland and Global Change Research Station, Chinese Academy of Sciences, Hongyuan, 624400, China.
| |
Collapse
|
2
|
Jensen S, Siljanen HM, Dörsch P. Activity and abundance of methanotrophic bacteria in a northern mountainous gradient of wetlands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2023; 15:206-215. [PMID: 36786058 PMCID: PMC10464705 DOI: 10.1111/1758-2229.13137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 11/23/2022] [Indexed: 05/06/2023]
Abstract
Methane uptake and diversity of methanotrophic bacteria was investigated across six hydrologically connected wetlands in a mountainous forest landscape upstream of lake Langtjern, southern Norway. From floodplain through shrubs, forest and sedges to a Sphagnum covered site, growing season CH4 production was insufficiently consumed to balance release into the atmosphere. Emission increased by soil moisture ranging 0.6-6.8 mg CH4 m-2 h-1 . Top soils of all sites consumed CH4 including at the lowest 78 ppmv CH4 supplied, thus potentially oxidizing 17-51 nmol CH4 g-1 dw h-1 , with highest Vmax 440 nmol g-1 dw h-1 under Sphagnum and lowest Km 559 nM under hummocked Carex. Nine genera and several less understood type I and type II methanotrophs were detected by the key functional gene pmoA involved in methane oxidation. Microarray signal intensities from all sites revealed Methylococcus, the affiliated Lake Washington cluster, Methylocaldum, a Japanese rice cluster, Methylosinus, Methylocystis and the affiliated Peat264 cluster. Notably enriched by site was a floodplain Methylomonas and a Methylocapsa-affiliated watershed cluster in the Sphagnum site. The climate sensitive water table was shown to be a strong controlling factor highlighting its link with the CH4 cycle in elevated wetlands.
Collapse
Affiliation(s)
- Sigmund Jensen
- Department of Biological SciencesUniversity of BergenBergenNorway
| | - Henri M.P. Siljanen
- Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
| | - Peter Dörsch
- Norwegian University of Life SciencesFaculty for Environmental Sciences and Natural Resource ManagementNorway
| |
Collapse
|
3
|
Methylomonas rapida sp. nov., a novel species of fast-growing, carotenoid-producing obligate methanotrophs with high biotechnological potential. Syst Appl Microbiol 2023; 46:126398. [PMID: 36724672 DOI: 10.1016/j.syapm.2023.126398] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/31/2022] [Accepted: 01/11/2023] [Indexed: 01/26/2023]
Abstract
The genus Methylomonas accommodates strictly aerobic, obligate methanotrophs, with their sole carbon and energy sources restricted to methane and methanol. These bacteria inhabit oxic-anoxic interfaces of various freshwater habitats and have attracted considerable attention as potential producers of a single-cell protein. Here, we characterize two fast-growing representatives of this genus, strains 12 and MP1T, which are phylogenetically distinct from the currently described Methylomonas species (94.0-97.3 % 16S rRNA gene sequence similarity). Strains 12 and MP1T were isolated from freshwater sediments collected in Moscow and Krasnodar regions, respectively. Cells of these strains are Gram-negative, red-pigmented, highly motile thick rods that contain a type I intracytoplasmic membrane system and possess a particulate methane monooxygenase (pMMO) enzyme. These bacteria grow between 8 and 45 °C (optimum 35 °C) in a relatively narrow pH range of 5.5-7.3 (optimum pH 6.6-7.2). Major carotenoids synthesized by these methanotrophs are 4,4'-diaplycopene-4,4'-dioic acid, 1,1'-dihydroxy-3,4-didehydrolycopene and 4,4'-diaplycopenoic acid. High biomass yield, of up to 3.26 g CDW/l, is obtained during continuous cultivation of MP1T on natural gas in a bioreactor at a dilution rate of 0.22 h-1. The complete genome sequence of strain MP1T is 4.59 Mb in size; the DNA G + C content is 52.8 mol%. The genome encodes four rRNA operons, one pMMO operon and 4,216 proteins. The genome sequence displays 82-85 % average nucleotide identity to those of earlier described Methylomonas species. We propose to classify these bacteria as representing a novel species of the genus Methylomonas, M. rapida sp. nov., with the type strain MP1T (=KCTC 92586T = VKM B-3663T).
Collapse
|
4
|
Chen KH, Nelson J. A scoping review of bryophyte microbiota: diverse microbial communities in small plant packages. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4496-4513. [PMID: 35536989 DOI: 10.1093/jxb/erac191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
Plant health depends not only on the condition of the plant itself but also on its diverse community of microbes, or microbiota. Just like the better-studied angiosperms, bryophytes (mosses, liverworts, and hornworts) harbor diverse communities of bacteria, archaea, fungi, and other microbial eukaryotes. Bryophytes are increasingly recognized as important model systems for understanding plant evolution, development, physiology, and symbiotic interactions. Much of the work on bryophyte microbiota in the past focused on specific symbiont types for each bryophyte group, but more recent studies are taking a broader view acknowledging the coexistence of diverse microbial communities in bryophytes. Therefore, this review integrates studies of bryophyte microbes from both perspectives to provide a holistic view of the existing research for each bryophyte group and on key themes. The systematic search also reveals the taxonomic and geographic biases in this field, including a severe under-representation of the tropics, very few studies on viruses or eukaryotic microbes beyond fungi, and a focus on mycorrhizal fungi studies in liverworts. Such gaps may have led to errors in conclusions about evolutionary patterns in symbiosis. This analysis points to a wealth of future research directions that promise to reveal how the distinct life cycles and physiology of bryophytes interact with their microbiota.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Jessica Nelson
- Maastricht Science Programme, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Defining the
Sphagnum
Core Microbiome across the North American Continent Reveals a Central Role for Diazotrophic Methanotrophs in the Nitrogen and Carbon Cycles of Boreal Peatland Ecosystems. mBio 2022. [PMCID: PMC8863050 DOI: 10.1128/mbio.03714-21] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Peat mosses of the genus Sphagnum are ecosystem engineers that frequently predominate over photosynthetic production in boreal peatlands. Sphagnum spp. host diverse microbial communities capable of nitrogen fixation (diazotrophy) and methane oxidation (methanotrophy), thereby potentially supporting plant growth under severely nutrient-limited conditions. Moreover, diazotrophic methanotrophs represent a possible “missing link” between the carbon and nitrogen cycles, but the functional contributions of the Sphagnum-associated microbiome remain in question. A combination of metagenomics, metatranscriptomics, and dual-isotope incorporation assays was applied to investigate Sphagnum microbiome community composition across the North American continent and provide empirical evidence for diazotrophic methanotrophy in Sphagnum-dominated ecosystems. Remarkably consistent prokaryotic communities were detected in over 250 Sphagnum SSU rRNA libraries from peatlands across the United States (5 states, 17 bog/fen sites, 18 Sphagnum species), with 12 genera of the core microbiome comprising 60% of the relative microbial abundance. Additionally, nitrogenase (nifH) and SSU rRNA gene amplicon analysis revealed that nitrogen-fixing populations made up nearly 15% of the prokaryotic communities, predominated by Nostocales cyanobacteria and Rhizobiales methanotrophs. While cyanobacteria comprised the vast majority (>95%) of diazotrophs detected in amplicon and metagenome analyses, obligate methanotrophs of the genus Methyloferula (order Rhizobiales) accounted for one-quarter of transcribed nifH genes. Furthermore, in dual-isotope tracer experiments, members of the Rhizobiales showed substantial incorporation of 13CH4 and 15N2 isotopes into their rRNA. Our study characterizes the core Sphagnum microbiome across large spatial scales and indicates that diazotrophic methanotrophs, here defined as obligate methanotrophs of the rare biosphere (Methyloferula spp. of the Rhizobiales) that also carry out diazotrophy, play a keystone role in coupling of the carbon and nitrogen cycles in nutrient-poor peatlands.
Collapse
|
6
|
Kox MAR, Smolders AJP, Speth DR, Lamers LPM, Op den Camp HJM, Jetten MSM, van Kessel MAHJ. A Novel Laboratory-Scale Mesocosm Setup to Study Methane Emission Mitigation by Sphagnum Mosses and Associated Methanotrophs. Front Microbiol 2021; 12:652486. [PMID: 33981290 PMCID: PMC8108401 DOI: 10.3389/fmicb.2021.651103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/26/2021] [Indexed: 11/13/2022] Open
Abstract
Degraded peatlands are often rewetted to prevent oxidation of the peat, which reduces CO2 emission. However, the created anoxic conditions will boost methane (CH4) production and thus emission. Here, we show that submerged Sphagnum peat mosses in rewetted-submerged peatlands can reduce CH4 emission from peatlands with 93%. We were able to mimic the field situation in the laboratory by using a novel mesocosm set-up. By combining these with 16S rRNA gene amplicon sequencing and qPCR analysis of the pmoA and mmoX genes, we showed that submerged Sphagnum mosses act as a niche for CH4 oxidizing bacteria. The tight association between Sphagnum peat mosses and methane oxidizing bacteria (MOB) significantly reduces CH4 emissions by peatlands and can be studied in more detail in the mesocosm setup developed in this study.
Collapse
Affiliation(s)
- Martine A R Kox
- Department of Microbiology, IWWR, Radboud University, Nijmegen, Netherlands.,Department of Aquatic Ecology and Environmental Biology, IWWR, Radboud University, Nijmegen, Netherlands
| | - Alfons J P Smolders
- Department of Aquatic Ecology and Environmental Biology, IWWR, Radboud University, Nijmegen, Netherlands.,B-WARE Research Centre, Nijmegen, Netherlands
| | - Daan R Speth
- Department of Microbiology, IWWR, Radboud University, Nijmegen, Netherlands
| | - Leon P M Lamers
- Department of Aquatic Ecology and Environmental Biology, IWWR, Radboud University, Nijmegen, Netherlands
| | | | - Mike S M Jetten
- Department of Microbiology, IWWR, Radboud University, Nijmegen, Netherlands
| | | |
Collapse
|
7
|
Choi M, Yun T, Song MJ, Kim J, Lee BH, Löffler FE, Yoon S. Cometabolic Vinyl Chloride Degradation at Acidic pH Catalyzed by Acidophilic Methanotrophs Isolated from Alpine Peat Bogs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5959-5969. [PMID: 33843227 DOI: 10.1021/acs.est.0c08766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Remediation of toxic chlorinated ethenes via microbial reductive dechlorination can lead to ethene formation; however, the process stalls in acidic groundwater, leading to the accumulation of carcinogenic vinyl chloride (VC). This study explored the feasibility of cometabolic VC degradation by moderately acidophilic methanotrophs. Two novel isolates, Methylomonas sp. strain JS1 and Methylocystis sp. strain MJC1, were obtained from distinct alpine peat bogs located in South Korea. Both isolates cometabolized VC with CH4 as the primary substrate under oxic conditions at pH at or below 5.5. VC cometabolism in axenic cultures occurred in the presence (10 μM) or absence (<0.01 μM) of copper, suggesting that VC removal had little dependence on copper availability, which regulates expression and activity of soluble and particulate methane monooxygenases in methanotrophs. The model neutrophilic methanotroph Methylosinus trichosporium strain OB3b also grew and cometabolized VC at pH 5.0 regardless of copper availability. Bioaugmentation of acidic peat soil slurries with methanotroph isolates demonstrated enhanced VC degradation and VC consumption below the maximum concentration level of 2 μg L-1. Community profiling of the microcosms suggested species-specific differences, indicating that robust bioaugmentation with methanotroph cultures requires further research.
Collapse
Affiliation(s)
- Munjeong Choi
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Taeho Yun
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Min Joon Song
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Jisun Kim
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| | - Byoung-Hee Lee
- Microorganism Resources Division, National Institute of Biological Resources, NIBR, Incheon 22689, South Korea
| | - Frank E Löffler
- Center for Environmental Biotechnology, Department of Microbiology, Department of Civil and Environmental Engineering, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, KAIST, Daejeon 34141, South Korea
| |
Collapse
|
8
|
Bark-dwelling methanotrophic bacteria decrease methane emissions from trees. Nat Commun 2021; 12:2127. [PMID: 33837213 PMCID: PMC8035153 DOI: 10.1038/s41467-021-22333-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/08/2021] [Indexed: 02/01/2023] Open
Abstract
Tree stems are an important and unconstrained source of methane, yet it is uncertain whether internal microbial controls (i.e. methanotrophy) within tree bark may reduce methane emissions. Here we demonstrate that unique microbial communities dominated by methane-oxidising bacteria (MOB) dwell within bark of Melaleuca quinquenervia, a common, invasive and globally distributed lowland species. In laboratory incubations, methane-inoculated M. quinquenervia bark mediated methane consumption (up to 96.3 µmol m-2 bark d-1) and reveal distinct isotopic δ13C-CH4 enrichment characteristic of MOB. Molecular analysis indicates unique microbial communities reside within the bark, with MOB primarily from the genus Methylomonas comprising up to 25 % of the total microbial community. Methanotroph abundance was linearly correlated to methane uptake rates (R2 = 0.76, p = 0.006). Finally, field-based methane oxidation inhibition experiments demonstrate that bark-dwelling MOB reduce methane emissions by 36 ± 5 %. These multiple complementary lines of evidence indicate that bark-dwelling MOB represent a potentially significant methane sink, and an important frontier for further research.
Collapse
|
9
|
Farhan Ul Haque M, Xu HJ, Murrell JC, Crombie A. Facultative methanotrophs - diversity, genetics, molecular ecology and biotechnological potential: a mini-review. MICROBIOLOGY (READING, ENGLAND) 2020; 166:894-908. [PMID: 33085587 PMCID: PMC7660913 DOI: 10.1099/mic.0.000977] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/20/2020] [Indexed: 12/18/2022]
Abstract
Methane-oxidizing bacteria (methanotrophs) play a vital role in reducing atmospheric methane emissions, and hence mitigating their potent global warming effects. A significant proportion of the methane released is thermogenic natural gas, containing associated short-chain alkanes as well as methane. It was one hundred years following the description of methanotrophs that facultative strains were discovered and validly described. These can use some multi-carbon compounds in addition to methane, often small organic acids, such as acetate, or ethanol, although Methylocella strains can also use short-chain alkanes, presumably deriving a competitive advantage from this metabolic versatility. Here, we review the diversity and molecular ecology of facultative methanotrophs. We discuss the genetic potential of the known strains and outline the consequent benefits they may obtain. Finally, we review the biotechnological promise of these fascinating microbes.
Collapse
Affiliation(s)
| | - Hui-Juan Xu
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - J. Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Andrew Crombie
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
- Present address: School of Environmental Sciences, University of East Anglia, Norwich, NR4 7TJ, UK
| |
Collapse
|
10
|
Chroňáková A, Bárta J, Kaštovská E, Urbanová Z, Picek T. Spatial heterogeneity of belowground microbial communities linked to peatland microhabitats with different plant dominants. FEMS Microbiol Ecol 2020; 95:5551480. [PMID: 31425589 DOI: 10.1093/femsec/fiz130] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/16/2019] [Indexed: 11/13/2022] Open
Abstract
Peatland vegetation is composed mostly of mosses, graminoids and ericoid shrubs, and these have a distinct impact on peat biogeochemistry. We studied variation in soil microbial communities related to natural peatland microhabitats dominated by Sphagnum, cotton-grass and blueberry. We hypothesized that such microhabitats will be occupied by structurally and functionally different microbial communities, which will vary further during the vegetation season due to changes in temperature and photosynthetic activity of plant dominants. This was addressed using amplicon-based sequencing of prokaryotic and fungal rDNA and qPCR with respect to methane-cycling communities. Fungal communities were highly microhabitat-specific, while prokaryotic communities were additionally directed by soil pH and total N content. Seasonal alternations in microbial community composition were less important; however, they influenced the abundance of methane-cycling communities. Cotton-grass and blueberry bacterial communities contained relatively more α-Proteobacteria but less Chloroflexi, Fibrobacteres, Firmicutes, NC10, OD1 and Spirochaetes than in Sphagnum. Methanogens, syntrophic and anaerobic bacteria (i.e. Clostridiales, Bacteroidales, Opitutae, Chloroflexi and Syntrophorhabdaceae) were suppressed in blueberry indicating greater aeration that enhanced abundance of fungi (mainly Archaeorhizomycetes) and resulted in the highest fungi-to-bacteria ratio. Thus, microhabitats dominated by different vascular plants are inhabited by unique microbial communities, contributing greatly to spatial functional diversity within peatlands.
Collapse
Affiliation(s)
- Alica Chroňáková
- Biology Centre, CAS, Institute of Soil Biology and SoWa RI, Na Sádkách 7, České Budějovice 370 05, Czech Republic
| | - Jiří Bárta
- Department of Ecosystem Biology, University of South Bohemia in České Budějovice, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Eva Kaštovská
- Department of Ecosystem Biology, University of South Bohemia in České Budějovice, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Zuzana Urbanová
- Department of Ecosystem Biology, University of South Bohemia in České Budějovice, Branišovská 1760, České Budějovice 370 05, Czech Republic
| | - Tomáš Picek
- Department of Ecosystem Biology, University of South Bohemia in České Budějovice, Branišovská 1760, České Budějovice 370 05, Czech Republic
| |
Collapse
|
11
|
Profiling population-level diversity and dynamics of Accumulibacter via high throughput sequencing of ppk1. Appl Microbiol Biotechnol 2019; 103:9711-9722. [DOI: 10.1007/s00253-019-10183-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/09/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022]
|
12
|
Pérez R, Casal J, Muñoz R, Lebrero R. Polyhydroxyalkanoates production from methane emissions in Sphagnum mosses: Assessing the effect of temperature and phosphorus limitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:684-690. [PMID: 31254834 DOI: 10.1016/j.scitotenv.2019.06.296] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 06/10/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
The isolation of highly efficient methanotrophic communities is crucial for the optimization of methane bioconversion into products with a high market value such as polyhydroxyalkanoates (PHA). The research here presented aimed at enriching a methanotrophic consortium from two different inocula (Sphagnum peat moss (Sp) and Sphagnum and activated sludge (M)) able to accumulate PHA while efficiently oxidizing CH4. Moreover, the effect of the temperature and phosphorus limitation on the biodegradation rate of CH4 and the PHA accumulation potential was investigated. Higher CH4 degradation rates were obtained under P availability at increasing temperature (25, 30 and 37 °C). The biomass enriched from the mixed inoculum always exhibited a superior biodegradation performance regardless of the temperature (a maximum value of 84.3 ± 8.4 mg CH4 h-1 g biomass-1 was recorded at 37 °C). The results of the PHB production showed that phosphorus limitation is required to promote PHB accumulation, the highest PHB content being observed with the Sphagnum inoculum at 25 °C (13.6 ± 5.6%). The differential specialization of the microbial communities depending on the enrichment temperature supported the key role of this parameter on the results obtained. In all cases after the completion of the enrichment process and of the P limitation tests, Methylocystis, a type II methanotroph known for its ability to accumulate PHA, was the genus that became dominant (reaching percentages from 16 to 46% depending on the enrichment temperature). Thus, the results here obtained demonstrated for the first time the relevance of the temperature used for the enrichment of the methanotrophic bacteria to boost PHA production yields under P limiting condition, highlighting the importance of optimizing culture conditions to improve the cost-efficiency of bioprocesses based on using methane as the primary feedstock for the PHA industrial market.
Collapse
Affiliation(s)
- Rebeca Pérez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain; Institute of Sustainable Processes, Valladolid University, Spain.
| | - Jesús Casal
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain
| | - Raúl Muñoz
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain; Institute of Sustainable Processes, Valladolid University, Spain
| | - Raquel Lebrero
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, Valladolid University, Prado de la Magdalena, 5, Valladolid, Spain; Institute of Sustainable Processes, Valladolid University, Spain
| |
Collapse
|
13
|
Zakharenko AS, Galachyants YP, Morozov IV, Shubenkova OV, Morozov AA, Ivanov VG, Pimenov NV, Krasnopeev AY, Zemskaya TI. Bacterial Communities in Areas of Oil and Methane Seeps in Pelagic of Lake Baikal. MICROBIAL ECOLOGY 2019; 78:269-285. [PMID: 30483839 DOI: 10.1007/s00248-018-1299-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 11/20/2018] [Indexed: 06/09/2023]
Abstract
We have assessed the diversity of bacteria near oil-methane (area I) and methane (area II) seeps in the pelagic zone of Lake Baikal using massive parallel sequencing of 16S rRNA, pmoA, and mxaF gene fragments amplified from total DNA. At depths from the surface to 100 m, sequences belonging to Cyanobacteria dominated. In the communities to a depth of 200 m of the studied areas, Proteobacteria dominated the deeper layers of the water column. Alphaproteobacteria sequences were predominant in the community near the oil-methane seep, while the community near the methane seep was characterized by the prevalence of Alpha- and Gammaproteobacteria. Among representatives of these classes, type I methanotrophs prevailed in the 16S rRNA gene libraries from the near-bottom area, and type II methanotrophs were detected in minor quantities at different depths. In the analysis of the libraries of the pmoA and mxaF functional genes, we observed the different taxonomic composition of methanotrophic bacteria in the surface and deep layers of the water column. All pmoA sequences from area I were type II methanotrophs and were detected at a depth of 300 m, while sequences of type I methanotrophs were the most abundant in deep layers of the water column of area II. All mxaF gene sequences belonged to Methylobacterium representatives. Based on comparative analyses of 16S rRNA, pmoA, and mxaF gene fragment libraries, we suggest that there must be a wider spectrum of functional genes facilitating methane oxidation that were not detected with the primers used.
Collapse
Affiliation(s)
- Aleksandra S Zakharenko
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia.
| | - Yuriy P Galachyants
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Igor V Morozov
- Siberian Branch of the Russian Academy of Sciences, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Olga V Shubenkova
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Alexey A Morozov
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Vyacheslav G Ivanov
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Nikolay V Pimenov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Andrey Y Krasnopeev
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| | - Tamara I Zemskaya
- Siberian Branch of the Russian Academy of Sciences, Limnological Institute, Ulan-Batorskaya Street 3, 664033, Irkutsk, Russia
| |
Collapse
|
14
|
Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D'Amore DV, Keeling PJ, Hallam SJ, Mohn WW. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO 2, and CH 4 fluxes in temperate rainforest soil. ISME JOURNAL 2018; 13:950-963. [PMID: 30538276 PMCID: PMC6461783 DOI: 10.1038/s41396-018-0334-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 10/12/2018] [Accepted: 12/03/2018] [Indexed: 11/10/2022]
Abstract
The Pacific coastal temperate rainforest (PCTR) is a global hot-spot for carbon cycling and export. Yet the influence of microorganisms on carbon cycling processes in PCTR soil is poorly characterized. We developed and tested a conceptual model of seasonal microbial carbon cycling in PCTR soil through integration of geochemistry, micro-meteorology, and eukaryotic and prokaryotic ribosomal amplicon (rRNA) sequencing from 216 soil DNA and RNA libraries. Soil moisture and pH increased during the wet season, with significant correlation to net CO2 flux in peat bog and net CH4 flux in bog forest soil. Fungal succession in these sites was characterized by the apparent turnover of Archaeorhizomycetes phylotypes accounting for 41% of ITS libraries. Anaerobic prokaryotes, including Syntrophobacteraceae and Methanomicrobia increased in rRNA libraries during the wet season. Putatively active populations of these phylotypes and their biogeochemical marker genes for sulfate and CH4 cycling, respectively, were positively correlated following rRNA and metatranscriptomic network analysis. The latter phylotype was positively correlated to CH4 fluxes (r = 0.46, p < 0.0001). Phylotype functional assignments were supported by metatranscriptomic analysis. We propose that active microbial populations respond primarily to changes in hydrology, pH, and nutrient availability. The increased microbial carbon export observed over winter may have ramifications for climate-soil feedbacks in the PCTR.
Collapse
Affiliation(s)
- David J Levy-Booth
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada
| | - Ian J W Giesbrecht
- Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada.,School of Resource and Environmental Management, Simon Fraser University, Burnaby, BC, Canada
| | - Colleen T E Kellogg
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.,Hakai Institute, Tula Foundation, Heriot Bay, BC, Canada
| | - Thierry J Heger
- The University of Applied Sciences Western Switzerland, CHANGINS, Delémont, Switzerland
| | - David V D'Amore
- U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Juneau, Alaska, USA
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| | - Steven J Hallam
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - William W Mohn
- Department of Microbiology & Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
15
|
Impact of Peat Mining and Restoration on Methane Turnover Potential and Methane-Cycling Microorganisms in a Northern Bog. Appl Environ Microbiol 2018; 84:AEM.02218-17. [PMID: 29180368 DOI: 10.1128/aem.02218-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/16/2017] [Indexed: 11/20/2022] Open
Abstract
Ombrotrophic peatlands are a recognized global carbon reservoir. Without restoration and peat regrowth, harvested peatlands are dramatically altered, impairing their carbon sink function, with consequences for methane turnover. Previous studies determined the impact of commercial mining on the physicochemical properties of peat and the effects on methane turnover. However, the response of the underlying microbial communities catalyzing methane production and oxidation have so far received little attention. We hypothesize that with the return of Sphagnum spp. postharvest, methane turnover potential and the corresponding microbial communities will converge in a natural and restored peatland. To address our hypothesis, we determined the potential methane production and oxidation rates in natural (as a reference), actively mined, abandoned, and restored peatlands over two consecutive years. In all sites, the methanogenic and methanotrophic population sizes were enumerated using quantitative PCR (qPCR) assays targeting the mcrA and pmoA genes, respectively. Shifts in the community composition were determined using Illumina MiSeq sequencing of the mcrA gene and a pmoA-based terminal restriction fragment length polymorphism (t-RFLP) analysis, complemented by cloning and sequence analysis of the mmoX gene. Peat mining adversely affected methane turnover potential, but the rates recovered in the restored site. The recovery in potential activity was reflected in the methanogenic and methanotrophic abundances. However, the microbial community composition was altered, being more pronounced for the methanotrophs. Overall, we observed a lag between the recovery of the methanogenic/methanotrophic activity and the return of the corresponding microbial communities, suggesting that a longer duration (>15 years) is needed to reverse mining-induced effects on the methane-cycling microbial communities.IMPORTANCE Ombrotrophic peatlands are a crucial carbon sink, but this environment is also a source of methane, an important greenhouse gas. Methane emission in peatlands is regulated by methane production and oxidation catalyzed by methanogens and methanotrophs, respectively. Methane-cycling microbial communities have been documented in natural peatlands. However, less is known of their response to peat mining and of the recovery of the community after restoration. Mining exerts an adverse impact on potential methane production and oxidation rates and on methanogenic and methanotrophic population abundances. Peat mining also induced a shift in the methane-cycling microbial community composition. Nevertheless, with the return of Sphagnum spp. in the restored site after 15 years, methanogenic and methanotrophic activity and population abundance recovered well. The recovery, however, was not fully reflected in the community composition, suggesting that >15 years are needed to reverse mining-induced effects.
Collapse
|
16
|
Ghashghavi M, Jetten MSM, Lüke C. Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express 2017; 7:162. [PMID: 28831762 PMCID: PMC5567572 DOI: 10.1186/s13568-017-0466-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Methane is the second most important greenhouse gas contributing to about 20% of global warming. Its mitigation is conducted by methane oxidizing bacteria that act as a biofilter using methane as their energy and carbon source. Since their first discovery in 1906, methanotrophs have been studied using a complementary array of methods. One of the most used molecular methods involves PCR amplification of the functional gene marker for the diagnostic of copper and iron containing particulate methane monooxygenase. To investigate the diversity of methanotrophs and to extend their possible molecular detection, we designed a new set of degenerate methane monooxygenase primers to target an 850 nucleotide long sequence stretch from pmoC to pmoA. The primers were based on all available full genomic pmoCAB operons. The newly designed primers were tested on various pure cultures, enrichment cultures and environmental samples using PCR. The results demonstrated that this primer set has the ability to correctly amplify the about 850 nucleotide long pmoCA product from Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobia and the NC10 phyla methanotrophs. The new primer set will thus be a valuable tool to screen ecosystems and can be applied in conjunction with previously used pmoA primers to extend the diversity of currently known methane-oxidizing bacteria.
Collapse
|
17
|
Molybdenum-Based Diazotrophy in a Sphagnum Peatland in Northern Minnesota. Appl Environ Microbiol 2017; 83:AEM.01174-17. [PMID: 28667112 DOI: 10.1128/aem.01174-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 06/28/2017] [Indexed: 11/20/2022] Open
Abstract
Microbial N2 fixation (diazotrophy) represents an important nitrogen source to oligotrophic peatland ecosystems, which are important sinks for atmospheric CO2 and are susceptible to the changing climate. The objectives of this study were (i) to determine the active microbial group and type of nitrogenase mediating diazotrophy in an ombrotrophic Sphagnum-dominated peat bog (the S1 peat bog, Marcell Experimental Forest, Minnesota, USA); and (ii) to determine the effect of environmental parameters (light, O2, CO2, and CH4) on potential rates of diazotrophy measured by acetylene (C2H2) reduction and 15N2 incorporation. A molecular analysis of metabolically active microbial communities suggested that diazotrophy in surface peat was primarily mediated by Alphaproteobacteria (Bradyrhizobiaceae and Beijerinckiaceae). Despite higher concentrations of dissolved vanadium ([V] 11 nM) than molybdenum ([Mo] 3 nM) in surface peat, a combination of metagenomic, amplicon sequencing, and activity measurements indicated that Mo-containing nitrogenases dominate over the V-containing form. Acetylene reduction was only detected in surface peat exposed to light, with the highest rates observed in peat collected from hollows with the highest water contents. Incorporation of 15N2 was suppressed 90% by O2 and 55% by C2H2 and was unaffected by CH4 and CO2 amendments. These results suggest that peatland diazotrophy is mediated by a combination of C2H2-sensitive and C2H2-insensitive microbes that are more active at low concentrations of O2 and show similar activity at high and low concentrations of CH4 IMPORTANCE Previous studies indicate that diazotrophy provides an important nitrogen source and is linked to methanotrophy in Sphagnum-dominated peatlands. However, the environmental controls and enzymatic pathways of peatland diazotrophy, as well as the metabolically active microbial populations that catalyze this process, remain in question. Our findings indicate that oxygen levels and photosynthetic activity override low nutrient availability in limiting diazotrophy and that members of the Alphaproteobacteria (Rhizobiales) catalyze this process at the bog surface using the molybdenum-based form of the nitrogenase enzyme.
Collapse
|
18
|
Deng Y, Cui X, Dumont MG. Identification of active aerobic methanotrophs in plateau wetlands using DNA stable isotope probing. FEMS Microbiol Lett 2016; 363:fnw168. [PMID: 27369086 DOI: 10.1093/femsle/fnw168] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2016] [Indexed: 01/21/2023] Open
Abstract
Sedge-dominated wetlands on the Qinghai-Tibetan Plateau are methane emission centers. Methanotrophs at these sites play a role in reducing methane emissions, but relatively little is known about the composition of active methanotrophs in these wetlands. Here, we used DNA stable isotope probing to identify the key active aerobic methanotrophs in three sedge-dominated wetlands on the plateau. We found that Methylocystis species were active in two peatlands, Hongyuan and Dangxiong. Methylobacter species were found to be active only in Dangxiong peat. Hongyuan peat had the highest methane oxidation rate, and cross-feeding of carbon from methanotrophs to methylotrophic Hyphomicrobium species was observed. Owing to a low methane oxidation rate during the incubation, the labeling of methanotrophs in Maduo wetland samples was not detected. Our results indicate that there are large differences in the activity of methanotrophs in the wetlands of this region.
Collapse
Affiliation(s)
- Yongcui Deng
- School of Geography Science Nanjing Normal University, Nanjing 210023, China Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Xiaoyong Cui
- College of Life Sciences University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Marc G Dumont
- Department of Biogeochemistry, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| |
Collapse
|
19
|
Oloo F, Valverde A, Quiroga MV, Vikram S, Cowan D, Mataloni G. Habitat heterogeneity and connectivity shape microbial communities in South American peatlands. Sci Rep 2016; 6:25712. [PMID: 27162086 PMCID: PMC4861955 DOI: 10.1038/srep25712] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/21/2016] [Indexed: 12/31/2022] Open
Abstract
Bacteria play critical roles in peatland ecosystems. However, very little is known of how habitat heterogeneity affects the structure of the bacterial communities in these ecosystems. Here, we used amplicon sequencing of the 16S rRNA and nifH genes to investigate phylogenetic diversity and bacterial community composition in three different sub-Antarctic peat bog aquatic habitats: Sphagnum magellanicum interstitial water, and water from vegetated and non-vegetated pools. Total and putative nitrogen-fixing bacterial communities from Sphagnum interstitial water differed significantly from vegetated and non-vegetated pool communities (which were colonized by the same bacterial populations), probably as a result of differences in water chemistry and biotic interactions. Total bacterial communities from pools contained typically aquatic taxa, and were more dissimilar in composition and less species rich than those from Sphagnum interstitial waters (which were enriched in taxa typically from soils), probably reflecting the reduced connectivity between the former habitats. These results show that bacterial communities in peatland water habitats are highly diverse and structured by multiple concurrent factors.
Collapse
Affiliation(s)
- Felix Oloo
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Angel Valverde
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - María Victoria Quiroga
- Instituto de Investigaciones Biotecnológicas-Instituto Tecnológico de Chascomús (IIB-INTECH), Universidad Nacional de San Martín - Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina
| | - Surendra Vikram
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Don Cowan
- Centre for Microbial Ecology and Genomics (CMEG), Department of Genetics, University of Pretoria, Pretoria, South Africa
| | - Gabriela Mataloni
- Instituto de Investigación e Ingeniería Ambiental (3iA), Universidad Nacional de San Martín, Buenos Aires, Argentina
| |
Collapse
|
20
|
Alpha- and Gammaproteobacterial Methanotrophs Codominate the Active Methane-Oxidizing Communities in an Acidic Boreal Peat Bog. Appl Environ Microbiol 2016; 82:2363-2371. [PMID: 26873322 DOI: 10.1128/aem.03640-15] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 02/03/2016] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to characterize metabolically active, aerobic methanotrophs in an ombrotrophic peatland in the Marcell Experimental Forest, in Minnesota. Methanotrophs were investigated in the field and in laboratory incubations using DNA-stable isotope probing (SIP), expression studies on particulate methane monooxygenase (pmoA) genes, and amplicon sequencing of 16S rRNA genes. Potential rates of oxidation ranged from 14 to 17 μmol of CH4g dry weight soil(-1)day(-1) Within DNA-SIP incubations, the relative abundance of methanotrophs increased from 4% in situ to 25 to 36% after 8 to 14 days. Phylogenetic analysis of the(13)C-enriched DNA fractions revealed that the active methanotrophs were dominated by the genera Methylocystis(type II;Alphaproteobacteria),Methylomonas, and Methylovulum(both, type I;Gammaproteobacteria). In field samples, a transcript-to-gene ratio of 1 to 2 was observed for pmoA in surface peat layers, which attenuated rapidly with depth, indicating that the highest methane consumption was associated with a depth of 0 to 10 cm. Metagenomes and sequencing of cDNA pmoA amplicons from field samples confirmed that the dominant active methanotrophs were Methylocystis and Methylomonas Although type II methanotrophs have long been shown to mediate methane consumption in peatlands, our results indicate that members of the genera Methylomonas and Methylovulum(type I) can significantly contribute to aerobic methane oxidation in these ecosystems.
Collapse
|
21
|
Pandit PS, Rahalkar MC, Dhakephalkar PK, Ranade DR, Pore S, Arora P, Kapse N. Deciphering Community Structure of Methanotrophs Dwelling in Rice Rhizospheres of an Indian Rice Field Using Cultivation and Cultivation-Independent Approaches. MICROBIAL ECOLOGY 2016; 71:634-644. [PMID: 26547567 DOI: 10.1007/s00248-015-0697-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Methanotrophs play a crucial role in filtering out methane from habitats, such as flooded rice fields. India has the largest area under rice cultivation in the world; however, to the best of our knowledge, methanotrophs have not been isolated and characterized from Indian rice fields. A cultivation strategy composing of a modified medium, longer incubation time, and serial dilutions in microtiter plates was used to cultivate methanotrophs from a rice rhizosphere sample from a flooded rice field in Western India. We compared the cultured members with the uncultured community as revealed by three culture-independent methods. A novel type Ia methanotroph (Sn10-6), at the rank of a genus, and a putative novel species of a type II methanotroph (Sn-Cys) were cultivated from the terminal positive dilution (10(-6)). From lower dilution (10(-4)), a strain of Methylomonas spp. was cultivated. All the three culture-independent analyses, i.e., pmoA clone library, terminal restriction fragment length polymorphism (T-RFLP), and metagenomics approach, revealed the dominance of type I methanotrophs. Only metagenomic analysis showed significant presence of type II methanotrophs, albeit in lower proportion (37 %). All the three isolates showed relevance to the methanotrophic community as depicted by uncultured methods; however, the cultivated members might not be the most dominant ones. In conclusion, a combined cultivation and cultivation-independent strategy yielded us a broader picture of the methanotrophic community from rice rhizospheres of a flooded rice field in India.
Collapse
Affiliation(s)
- Pranitha S Pandit
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Monali C Rahalkar
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India.
| | | | - Dilip R Ranade
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
- Microbial Culture Collection, NCCS, Sai-Trinity Building Garware Circle, Pashan, Pune, Maharashtra, 411021, India
| | - Soham Pore
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Preeti Arora
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| | - Neelam Kapse
- MACS Agharkar Research Institute, G.G. Agarkar Road, Pune, Maharashtra, 411004, India
| |
Collapse
|
22
|
Pelikan C, Herbold CW, Hausmann B, Müller AL, Pester M, Loy A. Diversity analysis of sulfite- and sulfate-reducing microorganisms by multiplex dsrA and dsrB amplicon sequencing using new primers and mock community-optimized bioinformatics. Environ Microbiol 2016; 18:2994-3009. [PMID: 26625892 DOI: 10.1111/1462-2920.13139] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/18/2015] [Indexed: 01/03/2023]
Abstract
Genes encoding dissimilatory sulfite reductase (DsrAB) are commonly used as diagnostic markers in ecological studies of sulfite- and sulfate-reducing microorganisms. Here, we developed new high-coverage primer sets for generation of reductive bacterial-type dsrA and dsrB polymerase chain reaction (PCR) products for highly parallel amplicon sequencing and a bioinformatics workflow for processing and taxonomic classification of short dsrA and dsrB reads. We employed two diverse mock communities that consisted of 45 or 90 known dsrAB sequences derived from environmental clones to precisely evaluate the performance of individual steps of our amplicon sequencing approach on the Illumina MiSeq platform. Although PCR cycle number, gene-specific primer mismatches and stringent filtering for high-quality sequences had notable effects on the observed dsrA and dsrB community structures, recovery of most mock community sequences was generally proportional to their relative input abundances. Successful dsrA and dsrB diversity analysis in selected environmental samples further proved that the multiplex amplicon sequencing approach is adequate for monitoring spatial distribution and temporal abundance dynamics of dsrAB-containing microorganisms. Although tested for reductive bacterial-type dsrAB, this method is readily applicable for oxidative-type dsrAB of sulfur-oxidizing bacteria and also provides guidance for processing short amplicon reads of other functional genes.
Collapse
Affiliation(s)
- Claus Pelikan
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.,Austrian Polar Research Institute, Vienna, Austria
| | - Craig W Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria
| | - Bela Hausmann
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.,Department of Biology, University of Konstanz, Konstanz, Germany
| | - Albert L Müller
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria.,Austrian Polar Research Institute, Vienna, Austria
| | - Michael Pester
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Alexander Loy
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network Chemistry Meets Microbiology, University of Vienna, Vienna, Austria. .,Austrian Polar Research Institute, Vienna, Austria.
| |
Collapse
|
23
|
Ruiz-Herrera J, León-Ramírez C, Vera-Nuñez A, Sánchez-Arreguín A, Ruiz-Medrano R, Salgado-Lugo H, Sánchez-Segura L, Peña-Cabriales JJ. A novel intracellular nitrogen-fixing symbiosis made by Ustilago maydis and Bacillus spp. THE NEW PHYTOLOGIST 2015; 207:769-777. [PMID: 25754368 DOI: 10.1111/nph.13359] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
We observed that the maize pathogenic fungus Ustilago maydis grew in nitrogen (N)-free media at a rate similar to that observed in media containing ammonium nitrate, suggesting that it was able to fix atmospheric N2 . Because only prokaryotic organisms have the capacity to reduce N2 , we entertained the possibility that U. maydis was associated with an intracellular bacterium. The presence of nitrogenase in the fungus was analyzed by acetylene reduction, and capacity to fix N2 by use of (15) N2 . Presence of an intracellular N2 -fixing bacterium was analyzed by PCR amplification of bacterial 16S rRNA and nifH genes, and by microscopic observations. Nitrogenase activity and (15) N incorporation into the cells proved that U. maydis fixed N2 . Light and electron microscopy, and fluorescence in situ hybridization (FISH) experiments revealed the presence of intracellular bacteria related to Bacillus pumilus, as evidenced by sequencing of the PCR-amplified fragments. These observations reveal for the first time the existence of an endosymbiotic N2 -fixing association involving a fungus and a bacterium.
Collapse
Affiliation(s)
- José Ruiz-Herrera
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Claudia León-Ramírez
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Antonio Vera-Nuñez
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Alejandro Sánchez-Arreguín
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Unidad Zacatenco, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, México
| | - Holjes Salgado-Lugo
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| | - Juan José Peña-Cabriales
- Departamento de Biotecnología y Bioquímica, Unidad Irapuato, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Irapuato, Guanajuato, México
| |
Collapse
|
24
|
Jiang T, Mandal RK, Wideman RF, Khatiwara A, Pevzner I, Min Kwon Y. Molecular survey of bacterial communities associated with bacterial chondronecrosis with osteomyelitis (BCO) in broilers. PLoS One 2015; 10:e0124403. [PMID: 25881241 PMCID: PMC4400152 DOI: 10.1371/journal.pone.0124403] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 03/13/2015] [Indexed: 01/13/2023] Open
Abstract
Bacterial chondronecrosis with osteomyelitis (BCO) is recognized as an important cause of lameness in commercial broiler chickens (meat-type chickens). Relatively little is known about the microbial communities associated with BCO. This study was conducted to increase our understanding of the microbial factors associated with BCO using a culture-independent approach. Using Illumina sequencing of the hyper-variable region V6 in the 16S rRNA gene, we characterized the bacterial communities in 97 femoral or tibial heads from normal and lame broilers carefully selected to represent diverse variations in age, line, lesion type, floor type, clinical status and bone type. Our in-depth survey based on 14 million assembled sequence reads revealed that complex bacterial communities exist in all samples, including macroscopically normal bones from clinically healthy birds. Overall, Proteobacteria (mean 90.9%) comprised the most common phylum, followed by Firmicutes (6.1%) and Actinobacteria (2.6%), accounting for more than 99% of all reads. Statistical analyses demonstrated that there are differences in bacterial communities in different types of bones (femur vs. tibia), lesion types (macroscopically normal femora or tibiae vs. those with pathognomonic BCO lesions), and among individual birds. This analysis also showed that BCO samples overrepresented genera Staphylococcus, whose species have been frequently isolated in BCO samples in previous studies. Rarefaction analysis demonstrated the general tendency that increased severities of BCO lesions were associated with reduced species diversity in both femoral and tibial samples when compared to macroscopically normal samples. These observations suggest that certain bacterial subgroups are preferentially selected in association with the development of BCO lesions. Understanding the microbial species associated with BCO will identify opportunities for understanding and modulating the pathogenesis of this form of lameness in broilers.
Collapse
Affiliation(s)
- Tieshan Jiang
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
- * E-mail:
| | - Rabindra K. Mandal
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Robert F. Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Anita Khatiwara
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
| | - Igal Pevzner
- Cobb-Vantress Inc., Siloam Springs, Arkansas, United States of America
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, Arkansas, United States of America
| |
Collapse
|
25
|
Lau E, Iv EJN, Dillard ZW, Dague RD, Semple AL, Wentzell WL. High Throughput Sequencing to Detect Differences in Methanotrophic Methylococcaceae and Methylocystaceae in Surface Peat, Forest Soil, and Sphagnum Moss in Cranesville Swamp Preserve, West Virginia, USA. Microorganisms 2015; 3:113-36. [PMID: 27682082 PMCID: PMC5023241 DOI: 10.3390/microorganisms3020113] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 02/23/2015] [Accepted: 03/26/2015] [Indexed: 01/08/2023] Open
Abstract
Northern temperate forest soils and Sphagnum-dominated peatlands are a major source and sink of methane. In these ecosystems, methane is mainly oxidized by aerobic methanotrophic bacteria, which are typically found in aerated forest soils, surface peat, and Sphagnum moss. We contrasted methanotrophic bacterial diversity and abundances from the (i) organic horizon of forest soil; (ii) surface peat; and (iii) submerged Sphagnum moss from Cranesville Swamp Preserve, West Virginia, using multiplex sequencing of bacterial 16S rRNA (V3 region) gene amplicons. From ~1 million reads, >50,000 unique OTUs (Operational Taxonomic Units), 29 and 34 unique sequences were detected in the Methylococcaceae and Methylocystaceae, respectively, and 24 potential methanotrophs in the Beijerinckiaceae were also identified. Methylacidiphilum-like methanotrophs were not detected. Proteobacterial methanotrophic bacteria constitute <2% of microbiota in these environments, with the Methylocystaceae one to two orders of magnitude more abundant than the Methylococcaceae in all environments sampled. The Methylococcaceae are also less diverse in forest soil compared to the other two habitats. Nonmetric multidimensional scaling analyses indicated that the majority of methanotrophs from the Methylococcaceae and Methylocystaceae tend to occur in one habitat only (peat or Sphagnum moss) or co-occurred in both Sphagnum moss and peat. This study provides insights into the structure of methanotrophic communities in relationship to habitat type, and suggests that peat and Sphagnum moss can influence methanotroph community structure and biogeography.
Collapse
Affiliation(s)
- Evan Lau
- Department of Natural Sciences and Mathematics, West Liberty University, 208 University Drive, CUB#139, West Liberty, WV 26074, USA.
| | - Edward J Nolan Iv
- Department of Natural Sciences and Mathematics, West Liberty University, 208 University Drive, CUB#139, West Liberty, WV 26074, USA
| | - Zachary W Dillard
- Department of Natural Sciences and Mathematics, West Liberty University, 208 University Drive, CUB#139, West Liberty, WV 26074, USA.
| | - Ryan D Dague
- Department of Natural Sciences and Mathematics, West Liberty University, 208 University Drive, CUB#139, West Liberty, WV 26074, USA.
| | - Amanda L Semple
- Department of Natural Sciences and Mathematics, West Liberty University, 208 University Drive, CUB#139, West Liberty, WV 26074, USA.
| | - Wendi L Wentzell
- Department of Natural Sciences and Mathematics, West Liberty University, 208 University Drive, CUB#139, West Liberty, WV 26074, USA.
| |
Collapse
|
26
|
Yun J, Zhang H, Deng Y, Wang Y. Aerobic methanotroph diversity in Sanjiang wetland, Northeast China. MICROBIAL ECOLOGY 2015; 69:567-576. [PMID: 25351140 DOI: 10.1007/s00248-014-0506-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
Aerobic methanotrophs present in wetlands can serve as a methane filter and thereby significantly reduce methane emissions. Sanjiang wetland is a major methane source and the second largest wetland in China, yet little is known about the characteristics of aerobic methanotrophs in this region. In the present study, we investigated the diversity and abundance of methanotrophs in marsh soils from Sanjiang wetland with three different types of vegetation by 16S ribosomal RNA (rRNA) and pmoA gene analysis. Quantitative polymerase chain reaction analysis revealed the highest number of pmoA gene copies in marsh soils vegetated with Carex lasiocarpa (10(9) g(-1) dry soil), followed by Carex meyeriana, and the least with Deyeuxia angustifolia (10(8) g(-1) dry soil). Consistent results were obtained using Sanger sequencing and pyrosequencing techniques, both indicating the codominance of Methylobacter and Methylocystis species in Sanjiang wetland. Other less abundant methanotrophy, including cultivated Methylomonas and Methylosinus genus, and uncultured clusters such as LP20 and JR-1, were also detected in the wetland. Methanotroph diversity was almost the same in three different vegetation covered soils, suggesting that vegetation types had very little influence on the methanotroph diversity. Our study gives an in-depth insight into the community composition of aerobic methanotrophs in the Sanjiang wetland.
Collapse
Affiliation(s)
- Juanli Yun
- College of Resources and Environment, University of Chinese Academy of Sciences, 19A Yuquan Road, 100049, Beijing, China
| | | | | | | |
Collapse
|
27
|
Insights into functional bacterial diversity and its effects on Alpine bog ecosystem functioning. Sci Rep 2014; 3:1955. [PMID: 23739741 PMCID: PMC6504810 DOI: 10.1038/srep01955] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/17/2013] [Indexed: 11/20/2022] Open
Abstract
Plant-associated bacteria are important for the growth and health of their host, but little is known about its functional diversity and impact on ecosystem functioning. We studied bacterial nitrogen fixation and methane oxidation from indicator Sphagnum mosses in Alpine bogs to test a hypothesis that the plant microbiome contained different functional patterns depending on their functions within the ecosystem. A high abundance and diversity of nitrogenase genes were detected, mostly specific for each Sphagnum. In contrast, methanotrophs formed highly similar patterns despite a high abundance and diversity of methane monooxygenase genes. Our hypothesis was supported by these contrasting functional patterns together with the result that the Sphagnum sporophyte contained a high proportion of specific diazotrophs (45.5%) but no potential methanotrophs. While essential for plant growth under nutrient-limited conditions, nitrogen-fixing bacteria were highly specific and transferred with the sporophyte unlike the ubiquitous methanotrophs which are important for the climate-relevant ecosystem itself.
Collapse
|
28
|
Danilova OV, Dedysh SN. Abundance and diversity of methanotrophic Gammaproteobacteria in northern wetlands. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714020040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L, Tuittila ES, Fritze H. Peatland succession induces a shift in the community composition of Sphagnum-associated active methanotrophs. FEMS Microbiol Ecol 2014; 88:596-611. [PMID: 24701995 DOI: 10.1111/1574-6941.12327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/10/2014] [Accepted: 03/10/2014] [Indexed: 01/01/2023] Open
Abstract
Sphagnum-associated methanotrophs (SAM) are an important sink for the methane (CH4) formed in boreal peatlands. We aimed to reveal how peatland succession, which entails a directional change in several environmental variables, affects SAM and their activity. Based on the pmoA microarray results, SAM community structure changes when a peatland develops from a minerotrophic fen to an ombrotrophic bog. Methanotroph subtypes Ia, Ib, and II showed slightly contrasting patterns during succession, suggesting differences in their ecological niche adaptation. Although the direct DNA-based analysis revealed a high diversity of type Ib and II methanotrophs throughout the studied peatland chronosequence, stable isotope probing (SIP) of the pmoA gene indicated they were active mainly during the later stages of succession. In contrast, type Ia methanotrophs showed active CH4 consumption in all analyzed samples. SIP-derived (13)C-labeled 16S rRNA gene clone libraries revealed a high diversity of SAM in every succession stage including some putative Methylocella/Methyloferula methanotrophs that are not detectable with the pmoA-based approach. In addition, a high diversity of 16S rRNA gene sequences likely representing cross-labeled nonmethanotrophs was discovered, including a significant proportion of Verrucomicrobia-related sequences. These results help to predict the effects of changing environmental conditions on SAM communities and activity.
Collapse
Affiliation(s)
- Anuliina Putkinen
- Southern Finland Regional Unit, Finnish Forest Research Institute, Vantaa, Finland
| | | | | | | | | | | | | |
Collapse
|
30
|
Single clinical isolates from acute uncomplicated urinary tract infections are representative of dominant in situ populations. mBio 2014; 5:e01064-13. [PMID: 24570371 PMCID: PMC3940035 DOI: 10.1128/mbio.01064-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Urinary tract infections (UTIs) are one of the most commonly acquired bacterial infections in humans, and uropathogenic Escherichia coli strains are responsible for over 80% of all cases. The standard method for identification of uropathogens in clinical laboratories is cultivation, primarily using solid growth media under aerobic conditions, coupled with morphological and biochemical tests of typically a single isolate colony. However, these methods detect only culturable microorganisms, and characterization is phenotypic in nature. Here, we explored the genotypic identity of communities in acute uncomplicated UTIs from 50 individuals by using culture-independent amplicon pyrosequencing and whole-genome and metagenomic shotgun sequencing. Genus-level characterization of the UTI communities was achieved using the 16S rRNA gene (V8 region). Overall UTI community richness was very low in comparison to other human microbiomes. We strain-typed Escherichia-dominated UTIs using amplicon pyrosequencing of the fimbrial adhesin gene, fimH. There were nine highly abundant fimH types, and each UTI sample was dominated by a single type. Molecular analysis of the corresponding clinical isolates revealed that in the majority of cases the isolate was representative of the dominant taxon in the community at both the genus and the strain level. Shotgun sequencing was performed on a subset of eight E. coli urine UTI and isolate pairs. The majority of UTI microbial metagenomic sequences mapped to isolate genomes, confirming the results obtained using phylogenetic markers. We conclude that for the majority of acute uncomplicated E. coli-mediated UTIs, single cultured isolates are diagnostic of the infection. In clinical practice, the diagnosis and treatment of acute uncomplicated urinary tract infection (UTI) are based on analysis of a single bacterial isolate cultured from urine, and it is assumed that this isolate represents the dominant UTI pathogen. However, these methods detect only culturable bacteria, and the existence of multiple pathogens as well as strain diversity within a single infection is not examined. Here, we explored bacteria present in acute uncomplicated UTIs using culture-independent sequence-based methods. Escherichia coli was the most common organism identified, and analysis of E. coli dominant UTI samples and their paired clinical isolates revealed that in the majority of infections the cultured isolate was representative of the dominant taxon at both the genus and the strain level. Our data demonstrate that in most cases single cultured isolates are diagnostic of UTI and are consistent with the notion of bottlenecks that limit strain diversity during UTI pathogenesis.
Collapse
|
31
|
Yoshida N, Iguchi H, Yurimoto H, Murakami A, Sakai Y. Aquatic plant surface as a niche for methanotrophs. Front Microbiol 2014; 5:30. [PMID: 24550901 PMCID: PMC3909826 DOI: 10.3389/fmicb.2014.00030] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 01/17/2014] [Indexed: 11/13/2022] Open
Abstract
This study investigated the potential local CH4 sink in various plant parts as a boundary environment of CH4 emission and consumption. By comparing CH4 consumption activities in cultures inoculated with parts from 39 plant species, we observed significantly higher consumption of CH4 associated with aquatic plants than other emergent plant parts such as woody plant leaves, macrophytic marine algae, and sea grass. In situ activity of CH4 consumption by methanotrophs associated with different species of aquatic plants was in the range of 3.7–37 μmol·h−1·g−1 dry weight, which was ca 5.7–370-fold higher than epiphytic CH4 consumption in submerged parts of emergent plants. The qPCR-estimated copy numbers of the particulate methane monooxygenase-encoding gene pmoA were variable among the aquatic plants and ranged in the order of 105–107 copies·g−1 dry weight, which correlated with the observed CH4 consumption activities. Phylogenetic identification of methanotrophs on aquatic plants based on the pmoA sequence analysis revealed a predominance of diverse gammaproteobacterial type-I methanotrophs, including a phylotype of a possible plant-associated methanotroph with the closest identity (86–89%) to Methylocaldum gracile.
Collapse
Affiliation(s)
- Naoko Yoshida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan ; Center for Fostering Young and Innovative Researchers, Nagoya Institute of Technology, Nagoya Aichi, Japan
| | - Hiroyuki Iguchi
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan
| | - Hiroya Yurimoto
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan
| | - Akio Murakami
- Kobe University Research Center for Inland Seas Awaji, Hyogo, Japan ; Japan Science and Technology Agency, CREST Awaji, Hyogo, Japan
| | - Yasuyoshi Sakai
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University Kyoto, Japan ; Advanced Low Carbon Technology Research and Development Program, Japan Science and Technology Agency Tokyo, Japan
| |
Collapse
|
32
|
刘 建. The Application of High-Throughput Sequencing Technologies in the Research of Wetland Microbiology. INTERNATIONAL JOURNAL OF ECOLOGY 2014. [DOI: 10.12677/ije.2014.34009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
33
|
Ferrera I, Borrego CM, Salazar G, Gasol JM. Marked seasonality of aerobic anoxygenic phototrophic bacteria in the coastal NW Mediterranean Sea as revealed by cell abundance, pigment concentration and pyrosequencing of pufM gene. Environ Microbiol 2013; 16:2953-65. [PMID: 24131493 DOI: 10.1111/1462-2920.12278] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/01/2013] [Accepted: 09/06/2013] [Indexed: 11/28/2022]
Abstract
The abundance and diversity of aerobic anoxygenic phototrophs (AAPs) were studied for a year cycle at the Blanes Bay Microbial Observatory (NW Mediterranean) and their potential links to an array of environmental variables were explored. Cell numbers were low in winter and peaked in summer, showing a marked seasonality that positively correlated with day length and light at the surface. Bacteriochlorophyll a concentration, their light-harvesting pigment, was only detected between April and October, and pigment cell quota showed large variations during this period. Pyrosequencing analysis of the pufM gene revealed that the most abundant operational taxonomic units (OTUs) were affiliated to phylogroup K (Gammaproteobacteria) and uncultured phylogroup C, although they were outnumbered by alphaproteobacterial OTUs in spring. Overall, richness was higher in winter than in summer, showing an opposite trend to abundance and day length. Clustering of samples by multivariate analyses showed a clear seasonality that suggests a succession of different AAP subpopulations over time. Temperature, chlorophyll a and day length were the environmental drivers that best explained the distribution of AAP assemblages. These results indicate that AAP bacteria are highly dynamic and undergo seasonal variations in diversity and abundance mostly dictated by environmental conditions as exemplified by light availability.
Collapse
Affiliation(s)
- Isabel Ferrera
- Department de Biologia Marina i Oceanografia, Institut de Ciències del Mar, CSIC, Barcelona, Catalunya, Spain
| | | | | | | |
Collapse
|
34
|
Kolb S, Stacheter A. Prerequisites for amplicon pyrosequencing of microbial methanol utilizers in the environment. Front Microbiol 2013; 4:268. [PMID: 24046766 PMCID: PMC3763247 DOI: 10.3389/fmicb.2013.00268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 08/19/2013] [Indexed: 01/06/2023] Open
Abstract
The commercial availability of next generation sequencing (NGS) technologies facilitated the assessment of functional groups of microorganisms in the environment with high coverage, resolution, and reproducibility. Soil methylotrophs were among the first microorganisms in the environment that were assessed with molecular tools, and nowadays, as well with NGS technologies. Studies in the past years re-attracted notice to the pivotal role of methylotrophs in global conversions of methanol, which mainly originates from plants, and is involved in oxidative reactions and ozone formation in the atmosphere. Aerobic methanol utilizers belong to Bacteria, yeasts, Ascomycota, and molds. Numerous bacterial methylotrophs are facultatively aerobic, and also contribute to anaerobic methanol oxidation in the environment, whereas strict anaerobic methanol utilizers belong to methanogens and acetogens. The diversity of enzymes catalyzing the initial oxidation of methanol is considerable, and comprises at least five different enzyme types in aerobes, and one in strict anaerobes. Only the gene of the large subunit of pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase (MDH; mxaF) has been analyzed by environmental pyrosequencing. To enable a comprehensive assessment of methanol utilizers in the environment, new primers targeting genes of the PQQ MDH in Methylibium (mdh2), of the nicotinamide adenine dinucleotide-dependent MDH (mdh), of the methanol oxidoreductase of Actinobacteria (mdo), of the fungal flavin adenine nucleotide-dependent alcohol oxidase (mod1, mod2, and homologs), and of the gene of the large subunit of the methanol:corrinoid methyltransferases (mtaC) in methanogens and acetogens need to be developed. Combined stable isotope probing of nucleic acids or proteins with amplicon-based NGS are straightforward approaches to reveal insights into functions of certain methylotrophic taxa in the global methanol cycle.
Collapse
Affiliation(s)
- Steffen Kolb
- Department of Ecological Microbiology, University of Bayreuth Bayreuth, Germany
| | | |
Collapse
|
35
|
Deng Y, Cui X, Lüke C, Dumont MG. Aerobic methanotroph diversity in Riganqiao peatlands on the Qinghai-Tibetan Plateau. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:566-574. [PMID: 23864571 DOI: 10.1111/1758-2229.12046] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 02/28/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Abstract
The Zoige Plateau is characterized by its high altitude, low latitude and low annual mean temperature of approximately 1°C and is a major source of atmospheric methane in the Qinghai-Tibetan Plateau. Methanotrophs play an important role in the global cycling of CH4, but the diversity, identity and activity of methanotrophs in this region are poorly characterized. Soils were collected from hummocks and hollows in the Riganqiao peatland and the methanotroph community was analysed by qPCR and sequencing methane monooxygenase (pmoA and mmoX) genes. The pmoA genes ranged between 10(7) and 10(8) copies g(-1) fresh soil, with a somewhat greater abundance in hummocks than hollows. The pmoA genes were analysed by amplicon pyrosequencing and the mmoX genes by cloning and sequencing. Methylocystis species were found to be the most abundant methanotrophs, but numerous clades were present including three novel pmoA and three novel mmoX clusters. There were differences between the methanotroph communities in the hummocks and hollows, with the most significant being an increased abundance of uncultivated type Ib methanotrophs in the hollows. The results indicate that aerobic methanotrophs are abundant in Riganqiao peatland and include previously undetected clades in this geographically isolated and distinctive environment.
Collapse
Affiliation(s)
- Yongcui Deng
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | | | | | | |
Collapse
|
36
|
Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PLE, Trotsenko YA, Dedysh SN. Methylomonas paludis sp. nov., the first acid-tolerant member of the genus
Methylomonas
, from an acidic wetland. Int J Syst Evol Microbiol 2013; 63:2282-2289. [DOI: 10.1099/ijs.0.045658-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic methanotrophic bacterium was isolated from an acidic (pH 3.9) Sphagnum peat bog in north-eastern Russia and designated strain MG30T. Cells of this strain were Gram-negative, pale pink-pigmented, non-motile, thick rods that were covered by large polysaccharide capsules and contained an intracytoplasmic membrane system typical of type I methanotrophs. They possessed a particulate methane monooxygenase enzyme (pMMO) and utilized only methane and methanol. Carbon was assimilated via the ribulose-monophosphate pathway; nitrogen was fixed via an oxygen-sensitive nitrogenase. Strain MG30T was able to grow at a pH range of 3.8–7.3 (optimum pH 5.8–6.4) and at temperatures between 8 and 30 °C (optimum 20–25 °C). The major cellular fatty acids were C16 : 1ω5t, C16 : 1ω8c, C16 : 1ω7c and C14 : 0; the DNA G+C content was 48.5 mol%. The isolate belongs to the family
Methylococcaceae
of the class
Gammaproteobacteria
and displayed 94.7–96.9 % 16S rRNA gene sequence similarity to members of the genus
Methylomonas
. However, strain MG30T differed from all taxonomically characterized members of this genus by the absence of motility, the ability to grow in acidic conditions and low DNA G+C content. Therefore, we propose to classify this strain as representing a novel, acid-tolerant species of the genus
Methylomonas
, Methylomonas paludis sp. nov. Strain MG30T ( = DSM 24973T = VKM B-2745T) is the type strain.
Collapse
Affiliation(s)
- Olga V. Danilova
- S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Irina S. Kulichevskaya
- S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Olga N. Rozova
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, 142292, Russia
| | - Ekaterina N. Detkova
- S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Paul L. E. Bodelier
- Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, PO Box 50 6700AB, The Netherlands
| | - Yuri A. Trotsenko
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow region, 142292, Russia
| | - Svetlana N. Dedysh
- S.N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, Moscow 117312, Russia
| |
Collapse
|
37
|
Dutilh BE, Backus L, van Hijum SAFT, Tjalsma H. Screening metatranscriptomes for toxin genes as functional drivers of human colorectal cancer. Best Pract Res Clin Gastroenterol 2013; 27:85-99. [PMID: 23768555 DOI: 10.1016/j.bpg.2013.03.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 03/14/2013] [Indexed: 02/06/2023]
Abstract
The colonic mucosa is in constant physical interaction with a dense and complex bacterial community that comprises health-promoting and pathogenic microbes. Here, we highlight important clinical studies and experimental models that have linked the intestinal microbiota to the development of colorectal cancer (CRC). Moreover, we use recently published metatranscriptome sequencing data to test whether potentially carcinogenic toxin genes exhibit higher expression levels in human CRC tissue compared to adjacent non-malignant mucosa. Our analyses show a large variation in expression of toxin(-related) genes from different species. Surprisingly, Enterobacterial toxins were among the highest expressed, while Enterobacteria were not among the most abundant species in these samples. Although we can differentiate on- and off-tumour sites based on toxin reads, the read depth profiles are quite similar and show only limited coverage of the toxin genes. Thus, extended metagenomic studies are needed to obtain a high-resolution picture of host-pathogen interactions during human CRC.
Collapse
Affiliation(s)
- Bas E Dutilh
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
38
|
Saidi-Mehrabad A, He Z, Tamas I, Sharp CE, Brady AL, Rochman FF, Bodrossy L, Abell GC, Penner T, Dong X, Sensen CW, Dunfield PF. Methanotrophic bacteria in oilsands tailings ponds of northern Alberta. ISME JOURNAL 2012; 7:908-21. [PMID: 23254511 DOI: 10.1038/ismej.2012.163] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We investigated methanotrophic bacteria in slightly alkaline surface water (pH 7.4-8.7) of oilsands tailings ponds in Fort McMurray, Canada. These large lakes (up to 10 km(2)) contain water, silt, clay and residual hydrocarbons that are not recovered in oilsands mining. They are primarily anoxic and produce methane but have an aerobic surface layer. Aerobic methane oxidation was measured in the surface water at rates up to 152 nmol CH4 ml(-1) water d(-1). Microbial diversity was investigated via pyrotag sequencing of amplified 16S rRNA genes, as well as by analysis of methanotroph-specific pmoA genes using both pyrosequencing and microarray analysis. The predominantly detected methanotroph in surface waters at all sampling times was an uncultured species related to the gammaproteobacterial genus Methylocaldum, although a few other methanotrophs were also detected, including Methylomonas spp. Active species were identified via (13)CH4 stable isotope probing (SIP) of DNA, combined with pyrotag sequencing and shotgun metagenomic sequencing of heavy (13)C-DNA. The SIP-PCR results demonstrated that the Methylocaldum and Methylomonas spp. actively consumed methane in fresh tailings pond water. Metagenomic analysis of DNA from the heavy SIP fraction verified the PCR-based results and identified additional pmoA genes not detected via PCR. The metagenome indicated that the overall methylotrophic community possessed known pathways for formaldehyde oxidation, carbon fixation and detoxification of nitrogenous compounds but appeared to possess only particulate methane monooxygenase not soluble methane monooxygenase.
Collapse
|
39
|
Putkinen A, Larmola T, Tuomivirta T, Siljanen HMP, Bodrossy L, Tuittila ES, Fritze H. Water dispersal of methanotrophic bacteria maintains functional methane oxidation in sphagnum mosses. Front Microbiol 2012; 3:15. [PMID: 22291695 PMCID: PMC3263434 DOI: 10.3389/fmicb.2012.00015] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/09/2012] [Indexed: 11/16/2022] Open
Abstract
It is known that Sphagnum associated methanotrophy (SAM) changes in relation to the peatland water table (WT) level. After drought, rising WT is able to reactivate SAM. We aimed to reveal whether this reactivation is due to activation of indigenous methane (CH4) oxidizing bacteria (MOB) already present in the mosses or to MOB present in water. This was tested through two approaches: in a transplantation experiment, Sphagna lacking SAM activity were transplanted into flark water next to Sphagna oxidizing CH4. Already after 3 days, most of the transplants showed CH4 oxidation activity. Microarray showed that the MOB community compositions of the transplants and the original active mosses had become more similar within 28 days thus indicating MOB movement through water between mosses. Methylocystis-related type II MOB dominated the community. In a following experiment, SAM inactive mosses were bathed overnight in non-sterile and sterile-filtered SAM active site flark water. Only mosses bathed with non-sterile flark water became SAM active, which was also shown by the pmoA copy number increase of over 60 times. Thus, it was evident that MOB present in the water can colonize Sphagnum mosses. This colonization could act as a resilience mechanism for peatland CH4 dynamics by allowing the re-emergence of CH4 oxidation activity in Sphagnum.
Collapse
Affiliation(s)
- Anuliina Putkinen
- Finnish Forest Research Institute, Southern Finland Regional Unit Vantaa, Finland
| | | | | | | | | | | | | |
Collapse
|
40
|
Pester M, Rattei T, Flechl S, Gröngröft A, Richter A, Overmann J, Reinhold-Hurek B, Loy A, Wagner M. amoA-based consensus phylogeny of ammonia-oxidizing archaea and deep sequencing of amoA genes from soils of four different geographic regions. Environ Microbiol 2011; 14:525-39. [PMID: 22141924 PMCID: PMC3328746 DOI: 10.1111/j.1462-2920.2011.02666.x] [Citation(s) in RCA: 314] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ammonia-oxidizing archaea (AOA) play an important role in nitrification and many studies exploit their amoA genes as marker for their diversity and abundance. We present an archaeal amoA consensus phylogeny based on all publicly available sequences (status June 2010) and provide evidence for the diversification of AOA into four previously recognized clusters and one newly identified major cluster. These clusters, for which we suggest a new nomenclature, harboured 83 AOA species-level OTU (using an inferred species threshold of 85% amoA identity). 454 pyrosequencing of amoA amplicons from 16 soils sampled in Austria, Costa Rica, Greenland and Namibia revealed that only 2% of retrieved sequences had no database representative on the species-level and represented 30–37 additional species-level OTUs. With the exception of an acidic soil from which mostly amoA amplicons of the Nitrosotalea cluster were retrieved, all soils were dominated by amoA amplicons from the Nitrososphaera cluster (also called group I.1b), indicating that the previously reported AOA from the Nitrosopumilus cluster (also called group I.1a) are absent or represent minor populations in soils. AOA richness estimates on the species level ranged from 8–83 co-existing AOAs per soil. Presence/absence of amoA OTUs (97% identity level) correlated with geographic location, indicating that besides contemporary environmental conditions also dispersal limitation across different continents and/or historical environmental conditions might influence AOA biogeography in soils.
Collapse
Affiliation(s)
- Michael Pester
- Departments of Microbial Ecology, Computational Systems Biology Chemical Ecology and Ecosystem Research, University of Vienna, Althanstrasse 14, Vienna, Austria
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
van Kessel MAHJ, Dutilh BE, Neveling K, Kwint MP, Veltman JA, Flik G, Jetten MSM, Klaren PHM, Op den Camp HJM. Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express 2011; 1:41. [PMID: 22093413 PMCID: PMC3226434 DOI: 10.1186/2191-0855-1-41] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Accepted: 11/18/2011] [Indexed: 11/19/2022] Open
Abstract
The microbes in the gastrointestinal (GI) tract are of high importance for the health of the host. In this study, Roche 454 pyrosequencing was applied to a pooled set of different 16S rRNA gene amplicons obtained from GI content of common carp (Cyprinus carpio) to make an inventory of the diversity of the microbiota in the GI tract. Compared to other studies, our culture-independent investigation reveals an impressive diversity of the microbial flora of the carp GI tract. The major group of obtained sequences belonged to the phylum Fusobacteria. Bacteroidetes, Planctomycetes and Gammaproteobacteria were other well represented groups of micro-organisms. Verrucomicrobiae, Clostridia and Bacilli (the latter two belonging to the phylum Firmicutes) had fewer representatives among the analyzed sequences. Many of these bacteria might be of high physiological relevance for carp as these groups have been implicated in vitamin production, nitrogen cycling and (cellulose) fermentation.
Collapse
|
42
|
Detection, isolation, and characterization of acidophilic methanotrophs from Sphagnum mosses. Appl Environ Microbiol 2011; 77:5643-54. [PMID: 21724892 DOI: 10.1128/aem.05017-11] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphagnum peatlands are important ecosystems in the methane cycle. Methane-oxidizing bacteria in these ecosystems serve as a methane filter and limit methane emissions. Yet little is known about the diversity and identity of the methanotrophs present in and on Sphagnum mosses of peatlands, and only a few isolates are known. The methanotrophic community in Sphagnum mosses, originating from a Dutch peat bog, was investigated using a pmoA microarray. A high biodiversity of both gamma- and alphaproteobacterial methanotrophs was found. With Sphagnum mosses as the inoculum, alpha- and gammaproteobacterial acidophilic methanotrophs were isolated using established and newly designed media. The 16S rRNA, pmoA, pxmA, and mmoX gene sequences showed that the alphaproteobacterial isolates belonged to the Methylocystis and Methylosinus genera. The Methylosinus species isolated are the first acid-tolerant members of this genus. Of the acidophilic gammaproteobacterial strains isolated, strain M5 was affiliated with the Methylomonas genus, and the other strain, M200, may represent a novel genus, most closely related to the genera Methylosoma and Methylovulum. So far, no acidophilic or acid-tolerant methanotrophs in the Gammaproteobacteria class are known. All strains showed the typical features of either type I or II methanotrophs and are, to the best of our knowledge, the first isolated (acidophilic or acid-tolerant) methanotrophs from Sphagnum mosses.
Collapse
|