1
|
Huang W, Li S, Li S, Laanbroek HJ, Zhang Q. Pro- and eukaryotic keystone taxa as potential bio-indicators for the water quality of subtropical Lake Dongqian. Front Microbiol 2023; 14:1151768. [PMID: 37180236 PMCID: PMC10169824 DOI: 10.3389/fmicb.2023.1151768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/04/2023] [Indexed: 05/16/2023] Open
Abstract
The microbial community plays an important role in the biogeochemical cycles in water aquatic ecosystems, and it is regulated by environmental variables. However, the relationships between microbial keystone taxa and water variables, which play a pivotal role in aquatic ecosystems, has not been clarified in detail. We analyzed the seasonal variation in microbial communities and co-occurrence network in the representative areas taking Lake Dongqian as an example. Both pro- and eukaryotic community compositions were more affected by seasons than by sites, and the prokaryotes were more strongly impacted by seasons than the eukaryotes. Total nitrogen, pH, temperature, chemical oxygen demand, dissolved oxygen and chlorophyll a significantly affected the prokaryotic community, while the eukaryotic community was significantly influenced by total nitrogen, ammonia, pH, temperature and dissolved oxygen. The eukaryotic network was more complex than that of prokaryotes, whereas the number of eukaryotic keystone taxa was less than that of prokaryotes. The prokaryotic keystone taxa belonged mainly to Alphaproteobacteria, Betaproteobacteria, Actinobacteria and Bacteroidetes. It is noteworthy that some of the keystone taxa involved in nitrogen cycling are significantly related to total nitrogen, ammonia, temperature and chlorophyll a, including Polaromonas, Albidiferax, SM1A02 and Leptolyngbya so on. And the eukaryotic keystone taxa were found in Ascomycota, Choanoflagellida and Heterophryidae. The mutualistic pattern between pro- and eukaryotes was more evident than the competitive pattern. Therefore, it suggests that keystone taxa could be as bio-indicators of aquatic ecosystems.
Collapse
Affiliation(s)
- Weihong Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Shuantong Li
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Saisai Li
- Zhejiang Wanli University, Ningbo, China
| | - Hendrikus J. Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, Netherlands
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Qiufang Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
2
|
Zakharova Y, Bashenkhaeva M, Galachyants Y, Petrova D, Tomberg I, Marchenkov A, Kopyrina L, Likhoshway Y. Variability of Microbial Communities in Two Long-Term Ice-Covered Freshwater Lakes in the Subarctic Region of Yakutia, Russia. MICROBIAL ECOLOGY 2022; 84:958-973. [PMID: 34741646 DOI: 10.1007/s00248-021-01912-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Although under-ice microbial communities are subject to a cold environment, low concentrations of nutrients, and a lack of light, they nevertheless take an active part in biogeochemical cycles. However, we still lack an understanding of how high their diversity is and how these communities are distributed during the long-term ice-cover period. Here, we assessed for the first time the composition and distribution of microbial communities during the ice-cover period in two subarctic lakes (Labynkyr and Vorota) located in the area of the lowest temperature in the Northern Hemisphere. The diversity distribution and abundance of main bacterial taxa as well as the composition of microalgae varied by time and habitat. The 16S rRNA gene sequencing method revealed, in general, a high diversity of bacterial communities where Proteobacteria (~ 45%) and Actinobacteria (~ 21%) prevailed. There were significant differences between the communities of the lakes: Chthoniobacteraceae, Moraxellaceae, and Pirellulaceae were abundant in Lake Labynkyr, while Cyanobiaceae, Oligoflexales, Ilumatobacteraceae, and Methylacidiphilaceae were more abundant in Lake Vorota. The most abundant families were evenly distributed in April, May, and June their contribution was different in different habitats. In April, Moraxellaceae and Ilumatobacteraceae were the most abundant in the water column, while Sphingomonadaceae was abundant both in water column and on the ice bottom. In May, the abundance of Comamonadaceae increased and reached the maximum in June, while Cyanobiaceae, Oxalobacteraceae, and Pirellulaceae followed. We found a correlation of the structure of bacterial communities with snow thickness, pH, Nmin concentration, and conductivity. We isolated psychrophilic heterotrophic bacteria both from dominating and minor taxa of the communities studied. This allowed for specifying their ecological function in the under-ice communities. These findings will advance our knowledge of the under-ice microbial life.
Collapse
Affiliation(s)
- Yulia Zakharova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Maria Bashenkhaeva
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia.
| | - Yuri Galachyants
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Darya Petrova
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Irina Tomberg
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Artyom Marchenkov
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| | - Liubov Kopyrina
- Institute for Biological Problems of Cryolithozone, Siberian Branch of the Russian Academy of Sciences, 41 Lenin Ave, Yakutsk, 677980, Russia
| | - Yelena Likhoshway
- Limnological Institute, Siberian Branch of the Russian Academy of Sciences, 3 Ulan-Batorskaya Street, Irkutsk, 664033, Russia
| |
Collapse
|
3
|
Some Mixotrophic Flagellate Species Selectively Graze on Archaea. Appl Environ Microbiol 2016; 83:AEM.02317-16. [PMID: 27815273 DOI: 10.1128/aem.02317-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 10/31/2016] [Indexed: 11/20/2022] Open
Abstract
Many phototrophic flagellates ingest prokaryotes. This mixotrophic trait becomes a critical aspect of the microbial loop in planktonic food webs because of the typical high abundance of these flagellates. Our knowledge of their selective feeding upon different groups of prokaryotes, particularly under field conditions, is still quite limited. In this study, we investigated the feeding behavior of three species (Rhodomonas sp., Cryptomonas ovata, and Dinobryon cylindricum) via their food vacuole content in field populations of a high mountain lake. We used the catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) protocol with probes specific for the domain Archaea and three groups of Eubacteria: Betaproteobacteria, Actinobacteria, and Cytophaga-Flavobacteria of Bacteroidetes Our results provide field evidence that contrasting selective feeding exists between coexisting mixotrophic flagellates under the same environmental conditions and that some prokaryotic groups may be preferentially impacted by phagotrophic pressure in aquatic microbial food webs. In our study, Archaea were the preferred prey, chiefly in the case of Rhodomonas sp., which rarely fed on any other prokaryotic group. In general, prey selection did not relate to prey size among the grazed groups. However, Actinobacteria, which were clearly avoided, mostly showed a size of <0.5 μm, markedly smaller than cells from the other groups. IMPORTANCE That mixotrophic flagellates are not randomly feeding in the main prokaryotic groups under field conditions is a pioneer finding in species-specific behavior that paves the way for future studies according to this new paradigm. The particular case that Archaea were preferentially affected in the situation studied shows that phagotrophic pressure cannot be disregarded when considering the distribution of this group in freshwater oligotrophic systems.
Collapse
|
4
|
|
5
|
Bižić-Ionescu M, Amann R, Grossart HP. Massive regime shifts and high activity of heterotrophic bacteria in an ice-covered lake. PLoS One 2014; 9:e113611. [PMID: 25419654 PMCID: PMC4242651 DOI: 10.1371/journal.pone.0113611] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 10/29/2014] [Indexed: 12/03/2022] Open
Abstract
In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 µg C L−1 d−1, ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems.
Collapse
Affiliation(s)
- Mina Bižić-Ionescu
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Hans-Peter Grossart
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechlin, Germany
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research (BBIB), Berlin, Germany
- * E-mail:
| |
Collapse
|
6
|
Restrepo-Ortiz CX, Casamayor EO. Environmental distribution of two widespread uncultured freshwater Euryarchaeota clades unveiled by specific primers and quantitative PCR. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:861-867. [PMID: 24249295 DOI: 10.1111/1758-2229.12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 07/19/2013] [Indexed: 06/02/2023]
Abstract
Quantitative environmental distribution of two widely distributed uncultured freshwater Euryarchaeota with unknown functional role was explored by newly designed quantitative PCR primers targeting the 16S rRNA gene of clades Miscellaneous Euryarchaeota Group (MEG, containing the groups pMC2A384 and VALII/Eury4) and Deep-Sea Euryarchaeotal Groups (DSEG, targeting the cluster named VALIII containing the DHVE-3/DSEG, BC07-2A-27/DSEG-3 and DSEG-2 groups), respectively. The summer surface plankton of 28 lakes was analysed, and one additional dimictic deep alpine lake, Lake Redon, was temporally and vertically surveyed covering seasonal limnological variability. A trophic range between 0.2 and 5.2 μg l(-1) Chl a, and pH span from 3.8 to 9.5 was explored at altitudes between 632 and 2590 m above sea level. The primers showed to be highly selective with c. 85% coverage and 100% specificity. Only pH significantly explained the changes observed in gene abundances and environment. In Lake Redon, DSEG bloomed in deep stratified waters both in summer and early spring, and MEG at intermediate depths during the ice-cover period. Overall, MEG and DSEG showed a differential ecological distribution although correlational analyses indicated lack of coupling of both Euryarchaeota with phytoplankton (chlorophyll a). However, an intriguing positive and significant relationship was found between DSEG and putative ammonia oxidizing thaumarchaeota.
Collapse
Affiliation(s)
- Claudia X Restrepo-Ortiz
- Limnological Observatory of the Pyrenees (LOOP)-Biogeodynamics & Biodiversity Interactions Group, Centro de Estudios Avanzados de Blanes, CEAB-CSIC, Accés Cala Sant Francesc, 14, Blanes, Girona, 17300, Spain
| | | |
Collapse
|
7
|
Bartrons M, Catalan J, Casamayor EO. High bacterial diversity in epilithic biofilms of oligotrophic mountain lakes. MICROBIAL ECOLOGY 2012; 64:860-869. [PMID: 22622765 DOI: 10.1007/s00248-012-0072-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 03/25/2012] [Indexed: 06/01/2023]
Abstract
Benthic microbial biofilms attached to rocks (epilithic) are major sites of carbon cycling and can dominate ecosystem primary production in oligotrophic lakes. We studied the bacterial community composition of littoral epilithic biofilms in five connected oligotrophic high mountain lakes located at different altitudes by genetic fingerprinting and clone libraries of the 16S rRNA gene. Different intra-lake samples were analyzed, and consistent changes in community structure (chlorophyll a and organic matter contents, and bacterial community composition) were observed along the altitudinal gradient, particularly related with the location of the lake above or below the treeline. Epilithic biofilm genetic fingerprints were both more diverse among lakes than within lakes and significantly different between montane (below the tree line) and alpine lakes (above the tree line). The genetic richness in the epilithic biofilm was much higher than in the plankton of the same lacustrine area studied in previous works, with significantly idiosyncratic phylogenetic composition (specifically distinct from lake plankton or mountain soils). Data suggest the coexistence of aerobic, anaerobic, phototrophic, and chemotrophic microorganisms in the biofilm, Bacteroidetes and Cyanobacteria being the most important bacterial taxa, followed by Alpha-, Beta-, Gamma-, and Deltaproteobacteria, Chlorobi, Planctomycetes, and Verrucomicrobia. The degree of novelty was especially high for epilithic Bacteroidetes, and up to 50 % of the sequences formed monophyletic clusters distantly related to any previously reported sequence. More than 35 % of the total sequences matched at <95 % identity to any previously reported 16S rRNA gene, indicating that alpine epilithic biofilms are unexplored habitats that contain a substantial degree of novelty within a short geographical distance. Further research is needed to determine whether these communities are involved in more biogeochemical pathways than previously thought.
Collapse
MESH Headings
- Altitude
- Bacteria, Aerobic/classification
- Bacteria, Aerobic/genetics
- Bacteria, Aerobic/growth & development
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/growth & development
- Biofilms/growth & development
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/genetics
- Ecosystem
- Genes, rRNA
- Lakes/microbiology
- Molecular Sequence Data
- Phylogeny
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Spain
Collapse
Affiliation(s)
- Mireia Bartrons
- Biogeodynamics and Biodiversity Group, Centre for Advanced Studies of Blanes, CEAB-CSIC, Spanish Council for Scientific Research, Accés Cala St. Francesc 14, 17300 Blanes, Spain
| | | | | |
Collapse
|
8
|
Vertical segregation and phylogenetic characterization of ammonia-oxidizing Archaea in a deep oligotrophic lake. ISME JOURNAL 2012; 6:1786-97. [PMID: 22495069 DOI: 10.1038/ismej.2012.33] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Freshwater habitats have been identified as one of the largest reservoirs of archaeal genetic diversity, with specific lineages of ammonia-oxidizing archaea (AOA) populations different from soils and seas. The ecology and biology of lacustrine AOA is, however, poorly known. In the present study, vertical changes in archaeal abundance by CARD-FISH, quantitative PCR (qPCR) analyses and identity by clone libraries were correlated with environmental parameters in the deep glacial high-altitude Lake Redon. The lake is located in the central Spanish Pyrenees where atmospheric depositions are the main source of reactive nitrogen. Strong correlations were found between abundance of thaumarchaeotal 16S rRNA gene, archaeal amoA gene and nitrite concentrations, indicating an ammonium oxidation potential by these microorganisms. The bacterial amoA gene was not detected. Three depths with potential ammonia-oxidation activity were unveiled along the vertical gradient, (i) on the top of the lake in winter-spring (that is, the 0 (o)C slush layers above the ice-covered sheet), (ii) at the thermocline and (iii) the bottom waters in summer-autumn. Overall, up to 90% of the 16S rRNA gene sequences matched Thaumarchaeota, mostly from both the Marine Group (MG) 1.1a (Nitrosoarchaeum-like) and the sister clade SAGMGC-1 (Nitrosotalea-like). Clone-libraries analysis showed the two clades changed their relative abundances with water depth being higher in surface and lower in depth for SAGMGC-1 than for MG 1.1a, reflecting a vertical phylogenetic segregation. Overall, the relative abundance and recurrent appearance of SAGMGC-1 suggests a significant environmental role of this clade in alpine lakes. These results expand the set of ecological and thermal conditions where Thaumarchaeota are distributed, unveiling vertical positioning in the water column as a key factor to understand the ecology of different thaumarchaeotal clades in lacustrine environments.
Collapse
|