1
|
Fuertes-Perez S, Vogel RF, Hilgarth M. Comparative genomics of Photobacterium species from terrestrial and marine habitats. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100087. [PMID: 34950912 PMCID: PMC8671102 DOI: 10.1016/j.crmicr.2021.100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 11/26/2021] [Indexed: 11/28/2022] Open
Abstract
Photobacterium (P.) is a genus widely studied in regards to its association with and ubiquitous presence in marine environments. However, certain species (P. phosphoreum, P. carnosum, P. iliopiscarium) have been recently described to colonize and spoil raw meats without a marine link. We have studied 27 strains from meat as well as 26 strains from marine environments in order to probe for intraspecies marine/terrestrial subpopulations and identify distinct genomic features acquired by environmental adaptation. We have conducted phylogenetic analysis (MLSA, ANI, fur, codon usage), search of plasmids (plasmidSPADES), phages (PHASTER), CRISPR-cas operons (CRISPR-finder) and secondary metabolites gene clusters (antiSMASH, BAGEL), in addition to a targeted gene search for specific pathways (e.g. TCA cycle, pentose phosphate, respiratory chain) and elements relevant for growth, adaptation and competition (substrate utilization, motility, bioluminescence, sodium and iron transport). P. carnosum appears as a conserved single clade, with one isolate from MAP fish clustering apart that doesn't, however, show distinct features that could indicate different adaptation. The species harbors genes for a wide carbon source utilization (glycogen/starch, maltose, pullulan, fucose) for colonization of diverse niches in its genome. P. phosphoreum is represented by two different clades on the phylogenetic analyses not correlating to their origin or distribution of other features analyzed that can be divided into two novel subspecies based on genome-wide values. A more diverse antimicrobial activity (sactipeptides, microcins), production of secondary metabolites (siderophores and arylpolyenes), stress response and adaptation (bioluminescence, sodium transporters, catalase, high affinity for oxygen cytochrome cbb3 oxidase, DMSO reductase and proton translocating NADH dehydrogenase) is predicted compared to the other species. P. iliopiscarium was divided into two clades based on source of isolation correlating with phylogeny and distribution of several traits. The species shows traits common to the other two species, similar carbon utilization/transport gene conservation as P. carnosum for the meat-isolated strains, and predicted utilization of marine-common DMSO and flagellar cluster for the sea-isolated strains. Results additionally suggest that photobacteria are highly prone to horizontal acquisition/loss of genetic material and genetic transduction, and that it might be a strategy for increasing the frequency of strain- or species-specific features that offers a growth/competition advantage.
Collapse
Affiliation(s)
| | - Rudi F. Vogel
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Germany
| | - Maik Hilgarth
- Lehrstuhl für Technische Mikrobiologie, Technische Universität München, Germany
| |
Collapse
|
2
|
Acquisition of bioluminescent trait by non-luminous organisms from luminous organisms through various origins. Photochem Photobiol Sci 2021; 20:1547-1562. [PMID: 34714534 DOI: 10.1007/s43630-021-00124-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/20/2021] [Indexed: 12/20/2022]
Abstract
Bioluminescence is a natural light emitting phenomenon that occurs due to a chemical reaction between luciferin and luciferase. It is primarily an innate and inherited trait in most terrestrial luminous organisms. However, most luminous organisms produce light in the ocean by acquiring luminous symbionts, luciferin (substrate), and/or luciferase (enzyme) through various transmission pathways. For instance, coelenterazine, a well-known luciferin, is obtained by cnidarians, crustaceans, and deep-sea fish through multi-level dietary linkages from coelenterazine producers such as ctenophores, decapods, and copepods. In contrast, some non-luminous Vibrio bacteria became bioluminescent by obtaining lux genes from luminous Vibrio species by horizontal gene transfer. Various examples detailed in this review show how non-luminescent organisms became luminescent by acquiring symbionts, dietary luciferins and luciferases, and genes. This review highlights three modes (symbiosis, ingestion, and horizontal gene transfer) that allow organisms lacking genes for autonomous bioluminescent systems to obtain the ability to produce light. In addition to bioluminescence, this manuscript discusses the acquisition of other traits such as pigments, fluorescence, toxins, and others, to infer the potential processes of acquisition.
Collapse
|
3
|
Vannier T, Hingamp P, Turrel F, Tanet L, Lescot M, Timsit Y. Diversity and evolution of bacterial bioluminescence genes in the global ocean. NAR Genom Bioinform 2020; 2:lqaa018. [PMID: 33575578 PMCID: PMC7671414 DOI: 10.1093/nargab/lqaa018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/14/2020] [Accepted: 03/06/2020] [Indexed: 12/19/2022] Open
Abstract
Although bioluminescent bacteria are the most abundant and widely distributed of all light-emitting organisms, the biological role and evolutionary history of bacterial luminescence are still shrouded in mystery. Bioluminescence has so far been observed in the genomes of three families of Gammaproteobacteria in the form of canonical lux operons that adopt the CDAB(F)E(G) gene order. LuxA and luxB encode the two subunits of bacterial luciferase responsible for light-emission. Our deep exploration of public marine environmental databases considerably expands this view by providing a catalog of new lux homolog sequences, including 401 previously unknown luciferase-related genes. It also reveals a broader diversity of the lux operon organization, which we observed in previously undescribed configurations such as CEDA, CAED and AxxCE. This expanded operon diversity provides clues for deciphering lux operon evolution and propagation within the bacterial domain. Leveraging quantitative tracking of marine bacterial genes afforded by planetary scale metagenomic sampling, our study also reveals that the novel lux genes and operons described herein are more abundant in the global ocean than the canonical CDAB(F)E(G) operon.
Collapse
Affiliation(s)
- Thomas Vannier
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Pascal Hingamp
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Floriane Turrel
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Lisa Tanet
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
| | - Magali Lescot
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| | - Youri Timsit
- Aix Marseille Univ, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France
- Research Federation for the study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, 3 rue Michel-Ange, 75016 Paris, France
| |
Collapse
|
4
|
Xuan G, Xiao Q, Wang J, Lin H, Pavase T. Expression of genes encoding the luciferase from Photobacterium leiognathi in Escherichia coli Rosetta (DE3) and its application in NADH detection. LUMINESCENCE 2018; 33:1010-1018. [PMID: 29920921 DOI: 10.1002/bio.3501] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/22/2018] [Accepted: 04/06/2018] [Indexed: 02/01/2023]
Abstract
Cloning of genes encoding the luciferase from Photobacterium leiognathi YL in Escherichia coli Rosetta (DE3) was performed successfully and the expressed forms of lux AB were purified to homogeneity. Experimental measurements revealed that luciferase from Photobacterium leiognathi YL has good thermal stability and a high residual activity at extreme pH values, which are extremely important for its various ecological, industrial and medical applications. Furthermore, we made a first attempt for quantitative detection of NADH by recombinant E. coli Rosetta (DE3) coupled enzyme system. A good linear relationship between luminescence intensity and NADH with low (1-12 nmol/L) and high (10-500 nmol/L) concentration was observed, whose standard curve was y = 772.97× + 4041.1, R2 = 0.9884 and y = 1710× + 4.99 × 105 , R2 = 0.9727, respectively. Our results demonstrate a high sensitivity of recombinant E. coli coupled enzyme system to NADH on the basis of high soluble expression of recombinant luciferase and continuous and stable expression of some NAD(P)H-dependent flavin mononucleotide (FMN) reductases.
Collapse
Affiliation(s)
- Guanhua Xuan
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Qilin Xiao
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Jingxue Wang
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Hong Lin
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| | - Tushar Pavase
- Food Safety Laboratory, College of Food Science and Engineering, Ocean University of China, Qingdao, P. R. China
| |
Collapse
|
5
|
Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int J Food Microbiol 2018; 280:87-99. [PMID: 29478710 DOI: 10.1016/j.ijfoodmicro.2017.12.029] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 12/21/2017] [Accepted: 12/30/2017] [Indexed: 01/12/2023]
Abstract
Seafood comprising of both vertebrate and invertebrate aquatic organisms are nutritious, rich in omega-3 fatty acids, essential vitamins, proteins, minerals and form part of healthy diet. However, despite the health and nutritional benefits, seafood is highly perishable. Spoilage of seafood could be as a result of microbial activity, autolysis or chemical oxidation. Microbial activity constitutes more spoilage than others. Spoilage bacteria are commonly Gram negative and produce off odours and flavours in seafood as a result of their metabolic activities. Storage temperature, handling and packaging conditions affect microbial growth and thus the shelf-life of seafood. Due to the complexity of the microbial communities in seafood, culture dependent methods of detection may not be useful, hence the need for culture independent methods are necessary to understand the diversity of microbiota and spoilage process. Similarly, the volatile organic compounds released by spoilage bacteria are not fully understood in some seafood. This review therefore highlights current knowledge and understanding of seafood spoilage microbiota, volatile organic compounds, effects of storage temperature and packaging conditions on quality of seafood.
Collapse
|
6
|
Machado H, Gram L. Comparative Genomics Reveals High Genomic Diversity in the Genus Photobacterium. Front Microbiol 2017; 8:1204. [PMID: 28706512 PMCID: PMC5489566 DOI: 10.3389/fmicb.2017.01204] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 06/13/2017] [Indexed: 11/13/2022] Open
Abstract
Vibrionaceae is a large marine bacterial family, which can constitute up to 50% of the prokaryotic population in marine waters. Photobacterium is the second largest genus in the family and we used comparative genomics on 35 strains representing 16 of the 28 species described so far, to understand the genomic diversity present in the Photobacterium genus. Such understanding is important for ecophysiology studies of the genus. We used whole genome sequences to evaluate phylogenetic relationships using several analyses (16S rRNA, MLSA, fur, amino-acid usage, ANI), which allowed us to identify two misidentified strains. Genome analyses also revealed occurrence of higher and lower GC content clades, correlating with phylogenetic clusters. Pan- and core-genome analysis revealed the conservation of 25% of the genome throughout the genus, with a large and open pan-genome. The major source of genomic diversity could be traced to the smaller chromosome and plasmids. Several of the physiological traits studied in the genus did not correlate with phylogenetic data. Since horizontal gene transfer (HGT) is often suggested as a source of genetic diversity and a potential driver of genomic evolution in bacterial species, we looked into evidence of such in Photobacterium genomes. Genomic islands were the source of genomic differences between strains of the same species. Also, we found transposase genes and CRISPR arrays that suggest multiple encounters with foreign DNA. Presence of genomic exchange traits was widespread and abundant in the genus, suggesting a role in genomic evolution. The high genetic variability and indications of genetic exchange make it difficult to elucidate genome evolutionary paths and raise the awareness of the roles of foreign DNA in the genomic evolution of environmental organisms.
Collapse
Affiliation(s)
- Henrique Machado
- Department of Biotechnology and Biomedicine, Technical University of Denmark, MatematiktorvetKgs Lyngby, Denmark.,Novo Nordisk Foundation Center for Biosustainability, Technical University of DenmarkHørsholm, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, MatematiktorvetKgs Lyngby, Denmark
| |
Collapse
|
7
|
Kacar B, Ge X, Sanyal S, Gaucher EA. Experimental Evolution of Escherichia coli Harboring an Ancient Translation Protein. J Mol Evol 2017; 84:69-84. [PMID: 28233029 PMCID: PMC5371648 DOI: 10.1007/s00239-017-9781-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 01/30/2017] [Indexed: 01/20/2023]
Abstract
The ability to design synthetic genes and engineer biological systems at the genome scale opens new means by which to characterize phenotypic states and the responses of biological systems to perturbations. One emerging method involves inserting artificial genes into bacterial genomes and examining how the genome and its new genes adapt to each other. Here we report the development and implementation of a modified approach to this method, in which phylogenetically inferred genes are inserted into a microbial genome, and laboratory evolution is then used to examine the adaptive potential of the resulting hybrid genome. Specifically, we engineered an approximately 700-million-year-old inferred ancestral variant of tufB, an essential gene encoding elongation factor Tu, and inserted it in a modern Escherichia coli genome in place of the native tufB gene. While the ancient homolog was not lethal to the cell, it did cause a twofold decrease in organismal fitness, mainly due to reduced protein dosage. We subsequently evolved replicate hybrid bacterial populations for 2000 generations in the laboratory and examined the adaptive response via fitness assays, whole genome sequencing, proteomics, and biochemical assays. Hybrid lineages exhibit a general adaptive strategy in which the fitness cost of the ancient gene was ameliorated in part by upregulation of protein production. Our results suggest that an ancient-modern recombinant method may pave the way for the synthesis of organisms that exhibit ancient phenotypes, and that laboratory evolution of these organisms may prove useful in elucidating insights into historical adaptive processes.
Collapse
Affiliation(s)
- Betül Kacar
- NASA Astrobiology Institute, Mountain View, CA, 94035, USA.
- Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA.
| | - Xueliang Ge
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box-596, 75124, Uppsala, Sweden
| | - Suparna Sanyal
- Department of Cell and Molecular Biology, Uppsala University, BMC, Box-596, 75124, Uppsala, Sweden
| | - Eric A Gaucher
- School of Biology, Georgia Institute of Technology, 950 Atlantic Drive, Atlanta, GA, 30332, USA
- Petit H. Parker Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
8
|
Abstract
Riboflavin derivatives are essential cofactors for a myriad of flavoproteins. In bacteria, flavins importance extends beyond their role as intracellular protein cofactors, as secreted flavins are a key metabolite in a variety of physiological processes. Bacteria obtain riboflavin through the endogenous riboflavin biosynthetic pathway (RBP) or by the use of importer proteins. Bacteria frequently encode multiple paralogs of the RBP enzymes and as for other micronutrient supply pathways, biosynthesis and uptake functions largely coexist. It is proposed that bacteria shut down biosynthesis and would rather uptake riboflavin when the vitamin is environmentally available. Recently, the overlap of riboflavin provisioning elements has gained attention and the functions of duplicated paralogs of RBP enzymes started to be addressed. Results point towards the existence of a modular structure in the bacterial riboflavin supply pathways. Such structure uses subsets of RBP genes to supply riboflavin for specific functions. Given the importance of riboflavin in intra and extracellular bacterial physiology, this complex array of riboflavin provision pathways may have developed to contend with the various riboflavin requirements. In riboflavin-prototrophic bacteria, riboflavin transporters could represent a module for riboflavin provision for particular, yet unidentified processes, rather than substituting for the RBP as usually assumed.
Collapse
Affiliation(s)
- Víctor Antonio García-Angulo
- a Microbiology and Mycology Program, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile , Santiago , Chile
| |
Collapse
|
9
|
Draft Genome Sequences of Histamine- and Non-Histamine-Producing Photobacterium Strains. GENOME ANNOUNCEMENTS 2016; 4:4/5/e01008-16. [PMID: 27660786 PMCID: PMC5034137 DOI: 10.1128/genomea.01008-16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Histamine-producing bacteria (HPBs) have recently been identified from the marine environment. The identification and characterization of HPBs is important to developing effective mitigation strategies for scombrotoxin fish poisoning. We report here the draft genomes of seven histamine-producing and two non-histamine-producing marine Photobacterium strains.
Collapse
|
10
|
Jérôme M, Macé S, Dousset X, Pot B, Joffraud JJ. Genetic diversity analysis of isolates belonging to the Photobacterium phosphoreum species group collected from salmon products using AFLP fingerprinting. Int J Food Microbiol 2015; 217:101-9. [PMID: 26513249 DOI: 10.1016/j.ijfoodmicro.2015.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/24/2015] [Accepted: 10/17/2015] [Indexed: 11/16/2022]
Abstract
An accurate amplified fragment length polymorphism (AFLP) method, including three primer sets for the selective amplification step, was developed to display the phylogenetic position of Photobacterium isolates collected from salmon products. This method was efficient for discriminating the three species Photobacterium phosphoreum, Photobacterium iliopiscarium and Photobacterium kishitanii, until now indistinctly gathered in the P. phosphoreum species group known to be strongly responsible for seafood spoilage. The AFLP fingerprints enabled the isolates to be separated into two main clusters that, according to the type strains, were assigned to the two species P. phosphoreum and P. iliopiscarium. P. kishitanii was not found in the collection. The accuracy of the method was validated by using gyrB-gene sequencing and luxA-gene PCR amplification, which confirmed the species delineation. Most of the isolates of each species were clonally distinct and even those that were isolated from the same source showed some diversity. Moreover, this AFLP method may be an excellent tool for genotyping isolates in bacterial communities and for clarifying our knowledge of the role of the different members of the Photobacterium species group in seafood spoilage.
Collapse
Affiliation(s)
- Marc Jérôme
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies (EM(3)B), BP21105, 44311 Nantes, France
| | - Sabrina Macé
- University of Liège, Food Science Department, Fundamental and Applied Research for Animal and Health, Food Microbiology, Sart-Tilman B43b, B-4000 Liège, Belgium
| | - Xavier Dousset
- LUNAM Université, Oniris, UMR1014, Secalim, Nantes, France
| | - Bruno Pot
- Applied Maths NV, Keistraat 120, Sint-Martens-Latem, Belgium
| | - Jean-Jacques Joffraud
- Ifremer, Laboratoire Ecosystèmes Microbiens et Molécules Marines pour les Biotechnologies (EM(3)B), BP21105, 44311 Nantes, France.
| |
Collapse
|
11
|
Urbanczyk Y, Ogura Y, Hayashi T, Urbanczyk H. Description of a novel marine bacterium, Vibrio hyugaensis sp. nov., based on genomic and phenotypic characterization. Syst Appl Microbiol 2015; 38:300-4. [PMID: 25952324 DOI: 10.1016/j.syapm.2015.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/06/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Three luminous bacteria strains have been isolated from seawater samples collected in the coastal regions of the Miyazaki prefecture in Japan. Analysis of the 16S rRNA gene sequences identified the three strains as members of the genus Vibrio (Vibrionaceae, Gammaproteobacteria), closely related to bacteria in the so-called 'Harveyi clade.' The genomes of the three strains were estimated to be between 5.49Mbp and 5.95Mbp, with average G+C of 43.91%. The genome sequence data was used to estimate relatedness of the three strains to related Vibrio bacteria, including estimation of frequency of recombination events, calculation of average nucleotide identity (ANI), and a phylogenetic analysis based on concatenated alignment of nucleotide sequences of 135 protein coding genes. Results of these analyses in all cases showed the three strains forming a group clearly separate from previously described Vibrio species. A phenotypic analysis revealed that the three strains have character similar to Vibrio bacteria in the 'Harveyi clade', but can be differentiated from previously described species by testing for hydrolysis of esculin. Based on results of genomic, phylogenetic and phenotypic analyses presented in this study, it can be concluded that the three strains represent a novel species, for which the name Vibrio hyugaensis sp. nov. is proposed. The type strain is 090810a(T) (=LMG 28466(T)=NBRC 110633(T)).
Collapse
Affiliation(s)
- Yoshiko Urbanczyk
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan
| | - Yoshitoshi Ogura
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan; Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Tetsuya Hayashi
- Division of Microbial Genomics, Department of Genomics and Bioenvironmental Science, Frontier Science Research Center, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan; Division of Microbiology, Department of Infectious Diseases, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki 889-1692, Japan
| | - Henryk Urbanczyk
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Gakuen-kibanadai-nishi-1-1, Miyazaki 889-2192, Japan.
| |
Collapse
|
12
|
Dunlap P. Biochemistry and Genetics of Bacterial Bioluminescence. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:37-64. [DOI: 10.1007/978-3-662-43385-0_2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
13
|
Santiago-Rodriguez TM, Patrício AR, Rivera JI, Coradin M, Gonzalez A, Tirado G, Cano RJ, Toranzos GA. luxS in bacteria isolated from 25- to 40-million-year-old amber. FEMS Microbiol Lett 2013; 350:117-24. [PMID: 24102660 DOI: 10.1111/1574-6968.12275] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 09/03/2013] [Accepted: 09/04/2013] [Indexed: 12/31/2022] Open
Abstract
Interspecies bacterial communication is mediated by autoinducer-2, whose synthesis depends on luxS. Due to the apparent universality of luxS (present in more than 40 bacterial species), it may have an ancient origin; however, no direct evidence is currently available. We amplified luxS in bacteria isolated from 25- to 40-million-year-old amber. The phylogenies and molecular clocks of luxS and the 16S rRNA gene from ancient and extant bacteria were determined as well. Luminescence assays using Vibrio harveyi BB170 aimed to determine the activity of luxS. While the phylogeny of luxS was very similar to that of extant Bacillus spp., amber isolates exhibited unique 16S rRNA gene phylogenies. This suggests that luxS may have been acquired by horizontal transfer millions of years ago. Molecular clocks of luxS suggest slow evolutionary rates, similar to those of the 16S rRNA gene and consistent with a conserved gene. Dendograms of the 16S rRNA gene and luxS show two separate clusters for the extant and ancient bacteria, confirming the uniqueness of the latter group.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodriguez
- Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rico, San Juan, Puerto Rico; Department of Pathology, University of California, San Diego, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|