1
|
Narwal E, Choudhary J, Kumar M, Amarowicz R, Kumar S, Radha, Chandran D, Dhumal S, Singh S, Senapathy M, Rajalingam S, Muthukumar M, Mekhemar M. Botanicals as promising antimicrobial agents for enhancing oral health: a comprehensive review. Crit Rev Microbiol 2025; 51:84-107. [PMID: 38546272 DOI: 10.1080/1040841x.2024.2321489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 01/28/2025]
Abstract
The mouth houses the second largest diversity of microorganisms in the body, harboring more than 700 bacterial species colonizing the soft mucosa and hard tooth surfaces. Microbes are the cause of several health-related problems, such as dental carries, gingivitis, periodontitis, etc., in the mouth across different age groups and socioeconomic/demographic groups. Oral infections are major health problems that affect the standard of living. Compromised oral health is related to chronic conditions and systemic disorders. Microbes responsible for dental caries are acid-producing and aciduric Gram-positive bacteria (Streptococci, Lactobacilli). Gram-negative bacteria (Porphyromonas, Prevotella, Actinobacillus, and Fusobacterium) capable of growing in anaerobic environments are responsible for periodontal diseases. Due to the high prevalence of oral diseases, negative effects associated with the use of antimicrobial agents and increased antibiotic resistance in oral pathogens, suitable alternative methods (effective, economical and safe) to suppress microbes disturbing oral health need to be adopted. Side effects associated with the chemical antimicrobial agents are vomiting, diarrhea and tooth staining. Several researchers have studied the antimicrobial properties of plant extracts and phytochemicals and have used them as indigenous practices to control several infections. Therefore, phytochemicals extracted from plants can be suitable alternatives. This review focuses on the various phytochemical/plant extracts suppressing the growth of oral pathogens either by preventing their attachment to the surfaces or by preventing biofilm formation or other mechanisms.
Collapse
Affiliation(s)
- Ekta Narwal
- ICAR - Indian Institute of Agricultural Biotechnology, Ranchi, India
| | - Jairam Choudhary
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, India
| | - Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Sunil Kumar
- ICAR - Indian Institute of Farming Systems Research, New Delhi, India
| | - Radha
- School of Biological and Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan, India
| | - Deepak Chandran
- Department of Animal Husbandry, Government of Kerala, Palakkad, India
| | - Sangram Dhumal
- Division of Horticulture, RCSM College of Agriculture, Kolhapur, India
| | - Surinder Singh
- Dr. S. S. Bhatnagar University Institute of Chemical Engineering and Technology, Panjab University, Chandigarh, India
| | - Marisennayya Senapathy
- Department of Rural Development and Agricultural Extension, College of Agriculture, Wolaita Sodo University, SNNPR, Sodo, Ethiopia
| | - Sureshkumar Rajalingam
- Department of Agronomy, Amrita School of Agricultural Sciences, Amrita Vishwa Vidyapeetham University, Coimbatore, India
| | - Muthamilselvan Muthukumar
- Department of Agricultural Entomology, SRM College of Agricultural Sciences, SRM Institute of Science and Technology, Chengalpattu, India
| | - Mohamed Mekhemar
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian-Albrecht's University, Kiel, Germany
| |
Collapse
|
2
|
Sun Y, Wen M, Liu Y, Wang Y, Jing P, Gu Z, Jiang T, Wang W. The human microbiome: A promising target for lung cancer treatment. Front Immunol 2023; 14:1091165. [PMID: 36817461 PMCID: PMC9936316 DOI: 10.3389/fimmu.2023.1091165] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/16/2023] [Indexed: 01/31/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, and insights into its underlying mechanisms as well as potential therapeutic strategies are urgently needed. The microbiome plays an important role in human health, and is also responsible for the initiation and progression of lung cancer through its induction of inflammatory responses and participation in immune regulation, as well as for its role in the generation of metabolic disorders and genotoxicity. Here, the distribution of human microflora along with its biological functions, the relationship between the microbiome and clinical characteristics, and the role of the microbiome in clinical treatment of lung cancer were comprehensively reviewed. This review provides a basis for the current understanding of lung cancer mechanisms with a focus on the microbiome, and contributes to future decisions on treatment management.
Collapse
Affiliation(s)
- Ying Sun
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Miaomiao Wen
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yue Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Yu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Pengyu Jing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| | - Wenchen Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
3
|
Dong J, Li W, Wang Q, Chen J, Zu Y, Zhou X, Guo Q. Relationships Between Oral Microecosystem and Respiratory Diseases. Front Mol Biosci 2022; 8:718222. [PMID: 35071321 PMCID: PMC8767498 DOI: 10.3389/fmolb.2021.718222] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/09/2021] [Indexed: 02/05/2023] Open
Abstract
Oral microecosystem is a very complicated ecosystem that is located in the mouth and comprises oral microbiome, diverse anatomic structures of oral cavity, saliva and interactions between oral microbiota and between oral microbiota and the host. More and more evidence from studies of epidemiology, microbiology and molecular biology is establishing a significant link between oral microecosystem and respiratory diseases. Microbiota settling down in oral microecosystem is known as the main source of lung microbiome and has been associated with the occurrence and development of respiratory diseases like pneumonia, chronic obstructive pulmonary disease, lung cancer, cystic fibrosis lung disease and asthma. In fact, it is not only indigenous oral microbes promote or directly cause respiratory infection and inflammation when inhaled into the lower respiratory tract, but also internal environment of oral microecosystem serves as a reservoir for opportunistic respiratory pathogens. Moreover, poor oral health and oral diseases caused by oral microecological dysbiosis (especially periodontal disease) are related with risk of multiple respiratory diseases. Here, we review the research status on the respiratory diseases related with oral microecosystem. Potential mechanisms on how respiratory pathogens colonize oral microecosystem and the role of indigenous oral microbes in pathogenesis of respiratory diseases are also summarized and analyzed. Given the importance of oral plaque control and oral health interventions in controlling or preventing respiratory infection and diseases, we also summarize the oral health management measures and attentions, not only for populations susceptible to respiratory infection like the elderly and hospitalized patients, but also for dentist or oral hygienists who undertake oral health care. In conclusion, the relationship between respiratory diseases and oral microecosystem has been established and supported by growing body of literature. However, etiological evidence on the role of oral microecosystem in the development of respiratory diseases is still insufficient. Further detailed studies focusing on specific mechanisms on how oral microecosystem participate in the pathogenesis of respiratory diseases could be helpful to prevent and treat respiratory diseases.
Collapse
Affiliation(s)
- Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qi Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiahao Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yue Zu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiang Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Fernández-Barat L, Alcaraz-Serrano V, Amaro R, Torres A. Pseudomonas aeruginosa in Bronchiectasis. Semin Respir Crit Care Med 2021; 42:587-594. [PMID: 34261182 DOI: 10.1055/s-0041-1730921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Pseudomonas aeruginosa (PA) in patients with bronchiectasis (BE) is associated with a poor outcome and quality of life, and its presence is considered a marker of disease severity. This opportunistic pathogen is known for its ability to produce biofilms on biotic or abiotic surfaces and to survive environmental stress exerted by antimicrobials, inflammation, and nutrient or oxygen depletion. The presence of PA biofilms has been linked to chronic respiratory infection in cystic fibrosis but not in BE. There is considerable inconsistency in the reported infection/eradication rates of PA and chronic PA. In addition, inadequate antimicrobial treatment may potentiate the progression from intermittent to chronic infection and also the emergence of antibiotic resistance. A better comprehension of the pathophysiology of PA infections and its implications for BE is urgently needed. This can drive improvements in diagnostic accuracy, can move us toward a new consensus definition of chronic infection, can better define the follow-up of patients at risk of PA, and can achieve more successful eradication rates. In addition, the new technological advances regarding molecular diagnostics, -omics, and biomarkers require us to reconsider our traditional concepts.
Collapse
Affiliation(s)
- Laia Fernández-Barat
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Victoria Alcaraz-Serrano
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Rosanel Amaro
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| | - Antoni Torres
- Cellex Laboratory, CibeRes (Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, 06/06/0028), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,School of Medicine, University of Barcelona, Barcelona, Spain.,Department of Pneumology, Respiratory Institute, Hospital Clinic of Barcelona, Spain
| |
Collapse
|
5
|
Wu X, Al Farraj DA, Rajaselvam J, Alkufeidy RM, Vijayaraghavan P, Alkubaisi NA, Agastian P, Alshammari MK. Characterization of biofilm formed by multidrug resistant Pseudomonas aeruginosa DC-17 isolated from dental caries. Saudi J Biol Sci 2020; 27:2955-2960. [PMID: 33100852 PMCID: PMC7569125 DOI: 10.1016/j.sjbs.2020.07.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/12/2020] [Accepted: 07/14/2020] [Indexed: 02/08/2023] Open
Abstract
The present work reports with the screening of biofilm-producing bacteria from the dental caries. The dental pathogens showed resistance against various antibiotics and biofilm forming ability at various levels. Among the bacterial strain, Pseudomonas aeruginosa DC-17 showed enhanced biofilm production. Extracellular polymeric substance (EPS) was synthesized by the selected bacterial isolate considerably and contributed as the major component of biofilm. EPS composed of eDNA, proteins and lipids. The total protein content of the EPS was found to be 1.928 mg/mL and was the major component than carbohydrate and DNA. Carbohydrate content was 162.3 mg/L and DNA content of EPS was 4.95 μg/mL. These macromolecules interacted in the matrix to develop dynamic and specific interactions to signalling biofilm to differentiating various environments. Also, the isolated bacteria showed resistant against various commercially available antibiotics. The isolates showed more resistance against penicillin (98%) and were sensitive against amoxicillin. Among the factors, temperature, pH and sugar concentration influenced biofilm formation. Biofilm forming ability of the selected bacterial stain was tested at various pH values and alkaline pH was favoured for biofilm production. Biofilm production was found to be maximum at 40 °C and 8% sucrose enhanced biofilm formation. Biofilm formed by P. aeruginosa DC-17 was resistant against various tested antimicrobials and chemicals.
Collapse
Affiliation(s)
- Xiaojuan Wu
- Department of Pharmacy, The First Affiliated Hospital of Nanhua University, Hengyang, Hunan 421001, China
| | - Dunia A Al Farraj
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | | | - Roua M Alkufeidy
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Ponnuswamy Vijayaraghavan
- Bioprocess Engineering Division, Smykon Biotech Pvt LtD, Nagercoil, Kanyakumari, Tamil Nadu 629201, India
| | - Noorah A Alkubaisi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - P Agastian
- Department of Plant Biology and Biotechnology, Loyola College (Autonomous), Affiliated to University of Madras, Chennai 600034, Tamil Nadu, India
| | - Maryam K Alshammari
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
6
|
Liu T, Liu J, Liu J, Yang R, Lu X, He X, Shi W, Guo L. Interspecies Interactions Between Streptococcus Mutans and Streptococcus Agalactiae in vitro. Front Cell Infect Microbiol 2020; 10:344. [PMID: 32733820 PMCID: PMC7358462 DOI: 10.3389/fcimb.2020.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/04/2020] [Indexed: 01/30/2023] Open
Abstract
Streptococcus mutans is an oral species closely associated with dental caries. As an early oral colonizer, S. mutans utilizes interspecies coaggregation to promote the colonization of subsequent species and affect polymicrobial pathogenesis. Previous studies have confirmed several adhering partner species of S. mutans, including Candida albicans and Fusobacterium nucleatum. In this study, we discovered new intergeneric co-adherence between S. mutans and the saliva isolate Streptococcus agalactiae (GBS-SI101). Research shows that GBS typically colonizes the human gastrointestinal and vaginal tracts. It is responsible for adverse pregnancy outcomes and life-threatening infections in neonates and immunocompromised people. Our results revealed that GtfB and GtfC of S. mutans, which contributed to extracellular polysaccharide synthesis, promoted coaggregation of S. mutans with GBS-SI101. In addition, oral streptococci, including Streptococcus sanguinis, Streptococcus gordonii and S. mutans, barely inhibited the growth of GBS-SI101. This study indicated that S. mutans could help GBS integrate into the Streptococcus-associated oral polymicrobial community and become a resident species in the oral cavity, increasing the risk of oral infections.
Collapse
Affiliation(s)
- Tingjun Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jia Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Jianwei Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Ruiqi Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xianjun Lu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuesong He
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Wenyuan Shi
- The Forsyth Institute, Cambridge, MA, United States
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA, United States
| | - Lihong Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
7
|
Khalid M, Bilal M, Munir H, Shah SZH, Khurshid M, El-Shazly M, Iqbal HM. In-vitro Evaluation of Anti-Bacterial, Anti-biofilm and Cytotoxic Activity of Naturally Inspired Juglans regia, Tamarix aphylla L., and Acacia modesta with Medicinal Potentialities. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020; 14:1133-1142. [DOI: 10.22207/jpam.14.2.08] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
8
|
Philip N, Suneja B, Walsh LJ. Ecological Approaches to Dental Caries Prevention: Paradigm Shift or Shibboleth? Caries Res 2018; 52:153-165. [PMID: 29320767 DOI: 10.1159/000484985] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Contemporary paradigms of dental caries aetiology focus on the ecology of the dental plaque biofilm and how local environmental factors can modulate this to cause disease. The crucial role that a healthy oral microbiome plays in preventing caries and promoting oral health is also being increasingly recognized. Based on these concepts, several ecological preventive approaches have been developed that could potentially broaden the arsenal of currently available caries-preventive measures. Many of these ecological approaches aim for long-term caries control by either disrupting cariogenic virulence factors without affecting bacterial viability, or include measures that can enhance the growth of health-associated, microbially diverse communities in the oral microbiome. This paper argues for the need to develop ecological preventive measures that go beyond conventional caries-preventive methods, and discusses whether these ecological approaches can be effective in reducing the severity of caries by promoting stable, health-associated oral biofilm communities.
Collapse
Affiliation(s)
- Nebu Philip
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | | | | |
Collapse
|
9
|
Scoffield JA, Duan D, Zhu F, Wu H. A commensal streptococcus hijacks a Pseudomonas aeruginosa exopolysaccharide to promote biofilm formation. PLoS Pathog 2017; 13:e1006300. [PMID: 28448633 PMCID: PMC5407764 DOI: 10.1371/journal.ppat.1006300] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/16/2017] [Indexed: 02/05/2023] Open
Abstract
Pseudomonas aeruginosa causes devastating chronic pulmonary infections in cystic fibrosis (CF) patients. Although the CF airway is inhabited by diverse species of microorganisms interlaced within a biofilm, many studies focus on the sole contribution of P. aeruginosa pathogenesis in CF morbidity. More recently, oral commensal streptococci have been identified as cohabitants of the CF lung, but few studies have explored the role these bacteria play within the CF biofilm. We examined the interaction between P. aeruginosa and oral commensal streptococci within a dual species biofilm. Here we report that the CF P. aeruginosa isolate, FRD1, enhances biofilm formation and colonization of Drosophila melanogaster by the oral commensal Streptococcus parasanguinis. Moreover, production of the P. aeruginosa exopolysaccharide, alginate, is required for the promotion of S. parasanguinis biofilm formation and colonization. However, P. aeruginosa is not promoted in the dual species biofilm. Furthermore, we show that the streptococcal adhesin, BapA1, mediates alginate-dependent enhancement of the S. parasanguinis biofilm in vitro, and BapA1 along with another adhesin, Fap1, are required for the in vivo colonization of S. parasanguinis in the presence of FRD1. Taken together, our study highlights a new association between streptococcal adhesins and P. aeruginosa alginate, and reveals a mechanism by which S. parasanguinis potentially colonizes the CF lung and interferes with the pathogenesis of P. aeruginosa.
Collapse
Affiliation(s)
- Jessica A. Scoffield
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Dingyu Duan
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- State Key Laboratory of Oral Diseases, Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Fan Zhu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hui Wu
- Department of Pediatric Dentistry, School of Dentistry, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
10
|
Precision-guided antimicrobial peptide as a targeted modulator of human microbial ecology. Proc Natl Acad Sci U S A 2015; 112:7569-74. [PMID: 26034276 DOI: 10.1073/pnas.1506207112] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
One major challenge to studying human microbiome and its associated diseases is the lack of effective tools to achieve targeted modulation of individual species and study its ecological function within multispecies communities. Here, we show that C16G2, a specifically targeted antimicrobial peptide, was able to selectively kill cariogenic pathogen Streptococcus mutans with high efficacy within a human saliva-derived in vitro oral multispecies community. Importantly, a significant shift in the overall microbial structure of the C16G2-treated community was revealed after a 24-h recovery period: several bacterial species with metabolic dependency or physical interactions with S. mutans suffered drastic reduction in their abundance, whereas S. mutans' natural competitors, including health-associated Streptococci, became dominant. This study demonstrates the use of targeted antimicrobials to modulate the microbiome structure allowing insights into the key community role of specific bacterial species and also indicates the therapeutic potential of C16G2 to achieve a healthy oral microbiome.
Collapse
|
11
|
Kumar PS, Mason MR. Mouthguards: does the indigenous microbiome play a role in maintaining oral health? Front Cell Infect Microbiol 2015; 5:35. [PMID: 26000251 PMCID: PMC4422079 DOI: 10.3389/fcimb.2015.00035] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 03/25/2015] [Indexed: 01/23/2023] Open
Abstract
The existence of symbiotic relationships between bacteria and their hosts in various ecosystems have long been known to science. The human body also hosts vast numbers of bacteria in several habitats. Emerging evidence from the gastro-intestinal tract, genito-urinary tract and respiratory indicates that there are several health benefits to hosting a complex and diverse microbial community. Bacteria colonize the oral cavity within a few minutes after birth and form stable communities. Our knowledge of the oral microbiome has expanded exponentially with development of novel exploratory methods that allow us to examine diversity, structure, function, and topography without the need to cultivate the individual components of the biofilm. The purpose of this perspective, therefore, is to examine the strength of current evidence supporting a role for the oral microbiome in maintaining oral health. While several lines of evidence are emerging to suggest that indigenous oral microbiota may have a role in immune education and preventing pathogen expansion, much more work is needed to definitively establish whether oral bacteria do indeed contribute to sustaining oral health, and if so, the mechanisms underlying this role.
Collapse
Affiliation(s)
- Purnima S. Kumar
- Division of Periodontology, College of Dentistry, The Ohio State UniversityColumbus, OH, USA
| | - Matthew R. Mason
- Division of Biosciences, College of Dentistry, The Ohio State UniversityColumbus, OH, USA
| |
Collapse
|
12
|
Scoffield JA, Wu H. Oral streptococci and nitrite-mediated interference of Pseudomonas aeruginosa. Infect Immun 2015; 83:101-7. [PMID: 25312949 PMCID: PMC4288860 DOI: 10.1128/iai.02396-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/04/2014] [Indexed: 12/13/2022] Open
Abstract
The oral cavity harbors a diverse community of microbes that are physiologically unique. Oral microbes that exist in this polymicrobial environment can be pathogenic or beneficial to the host. Numerous oral microbes contribute to the formation of dental caries and periodontitis; however, there is little understanding of the role these microbes play in systemic infections. There is mounting evidence that suggests that oral commensal streptococci are cocolonized with Pseudomonas aeruginosa during cystic fibrosis pulmonary infections and that the presence of these oral streptococci contributes to improved lung function. The goal of this study was to examine the underlying mechanism by which Streptococcus parasanguinis antagonizes pathogenic P. aeruginosa. In this study, we discovered that oral commensal streptococci, including Streptococcus parasanguinis, Streptococcus sanguinis, and Streptococcus gordonii, inhibit the growth of P. aeruginosa and that this inhibition is mediated by the presence of nitrite and the production of hydrogen peroxide (H2O2) by oral streptococci. The requirement of both H2O2 and nitrite for the inhibition of P. aeruginosa is due to the generation of reactive nitrogenous intermediates (RNI), including peroxynitrite. Transposon mutagenesis showed that a P. aeruginosa mutant defective in a putative ABC transporter permease is resistant to both streptococcus/nitrite- and peroxynitrite-mediated killing. Furthermore, S. parasanguinis protects Drosophila melanogaster from killing by P. aeruginosa in a nitrite-dependent manner. Our findings suggest that the combination of nitrite and H2O2 may represent a unique anti-infection strategy by oral streptococci during polymicrobial infections.
Collapse
Affiliation(s)
- Jessica A Scoffield
- University of Alabama at Birmingham, Department of Pediatric Dentistry, Birmingham, Alabama, USA
| | - Hui Wu
- University of Alabama at Birmingham, Department of Pediatric Dentistry, Birmingham, Alabama, USA
| |
Collapse
|
13
|
|
14
|
Henrich B, Rumming M, Sczyrba A, Velleuer E, Dietrich R, Gerlach W, Gombert M, Rahn S, Stoye J, Borkhardt A, Fischer U. Mycoplasma salivarium as a dominant coloniser of Fanconi anaemia associated oral carcinoma. PLoS One 2014; 9:e92297. [PMID: 24642836 PMCID: PMC3958540 DOI: 10.1371/journal.pone.0092297] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 02/20/2014] [Indexed: 01/01/2023] Open
Abstract
Mycoplasma salivarium belongs to the class of the smallest self-replicating Tenericutes and is predominantly found in the oral cavity of humans. In general it is considered as a non-pathogenic commensal. However, some reports point to an association with human diseases. M. salivarium was found e.g. as causative agent of a submasseteric abscess, in necrotic dental pulp, in brain abscess and clogged biliary stent. Here we describe the detection of M. salivarium on the surface of a squamous cell carcinoma of the tongue of a patient with Fanconi anaemia (FA). FA is an inherited bone marrow failure syndrome based on defective DNA-repair that increases the risk of carcinomas especially oral squamous cell carcinoma. Employing high coverage, massive parallel Roche/454-next-generation-sequencing of 16S rRNA gene amplicons we analysed the oral microbiome of this FA patient in comparison to that of an FA patient with a benign leukoplakia and five healthy individuals. The microbiota of the FA patient with leukoplakia correlated well with that of the healthy controls. A dominance of Streptococcus, Veillonella and Neisseria species was typically observed. In contrast, the microbiome of the cancer bearing FA patient was dominated by Pseudomonas aeruginosa at the healthy sites, which changed to a predominance of 98% M. salivarium on the tumour surface. Quantification of the mycoplasma load in five healthy, two tumour- and two leukoplakia-FA patients by TaqMan-PCR confirmed the prevalence of M. salivarium at the tumour sites. These new findings suggest that this mycoplasma species with its reduced coding capacity found ideal breeding grounds at the tumour sites. Interestingly, the oral cavity of all FA patients and especially samples at the tumour sites were in addition positive for Candida albicans. It remains to be elucidated in further studies whether M. salivarium can be used as a predictive biomarker for tumour development in these patients.
Collapse
Affiliation(s)
- Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- * E-mail:
| | - Madis Rumming
- Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
- Computational Metagenomics, Faculty of Technology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Alexander Sczyrba
- Computational Metagenomics, Faculty of Technology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Eunike Velleuer
- Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Wolfgang Gerlach
- Genome Informatics, Faculty of Technology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Michael Gombert
- Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Sebastian Rahn
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Jens Stoye
- Genome Informatics, Faculty of Technology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Ute Fischer
- Department of Paediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
15
|
Kacerovsky M, Celec P, Vlkova B, Skogstrand K, Hougaard DM, Cobo T, Jacobsson B. Amniotic fluid protein profiles of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria. PLoS One 2013; 8:e60399. [PMID: 23555967 PMCID: PMC3608618 DOI: 10.1371/journal.pone.0060399] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 02/25/2013] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the amniotic fluid protein profiles and the intensity of intraamniotic inflammatory response to Ureaplasma spp. and other bacteria, using the multiplex xMAP technology. METHODS A retrospective cohort study was undertaken in the Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Czech Republic. A total of 145 pregnant women with preterm prelabor rupture of membranes between gestational age 24+0 and 36+6 weeks were included in the study. Amniocenteses were performed. The presence of Ureaplasma spp. and other bacteria was evaluated using 16S rRNA gene sequencing. The levels of specific proteins were determined using multiplex xMAP technology. RESULTS The presence of Ureaplasma spp. and other bacteria in the amniotic fluid was associated with increased levels of interleukin (IL)-6, IL-8, IL-10, brain-derived neurotropic factor, granulocyte macrophage colony stimulating factor, monocyte chemotactic protein-1, macrophage inflammatory protein-1, and matrix metalloproteinasis-9. Ureaplasma spp. were also associated with increased levels of neurotropin-3 and triggering receptor expressed on myeloid cells-1. CONCLUSIONS The presence of Ureaplasma spp. in the amniotic fluid is associated with a slightly different protein profile of inflammatory response, but the intensity of inflammatory response to Ureaplasma spp. is comparable with the inflammatory response to other bacteria.
Collapse
Affiliation(s)
- Marian Kacerovsky
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
16
|
Isolation and characterization of biofilm-forming bacteria and associated extracellular polymeric substances from oral cavity. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0618-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
17
|
Faran Ali SM, Tanwir F. Oral microbial habitat a dynamic entity. J Oral Biol Craniofac Res 2012; 2:181-7. [PMID: 25737863 PMCID: PMC3941266 DOI: 10.1016/j.jobcr.2012.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 07/30/2012] [Indexed: 01/03/2023] Open
Abstract
Oral microbial habitat is composed of wide variety of species. These species play a significant role in maintaining the well being of the oral cavity by contributing in various ways. However the proper functioning of these oral microbes can be detrimental for the human oral cavity if the conditions are not suitable such as redox potential (Eh), pH of a site, the activity of the host defenses, and the presence of antimicrobial agents. The oral microbial community represents the best-characterized group associated with the human host. There are strong correlations between the qualitative composition of the oral microbiota and clinically healthy or diseased states. Amongst the bacteria of more than 700 species now identified within the human oral microbiota, it is the streptococci that are numerically predominant. Interactions between mucosal surfaces and microbial microbiota are key to host defense, health, and disease. These surfaces are exposed to high numbers of microbes and must be capable of distinguishing between those that are beneficial or avirulent and those that will invade and cause disease. Our understanding of the mechanisms involved in these discriminatory processes has recently begun to expand as new studies bring to light the importance of epithelial cells and novel immune cell subsets such as T(h)17 T cells in these processes. In this review article we have tried to find out the factors responsible for maintaining oral microbial habitat intact and the reasons which cause changes in its composition.
Collapse
Affiliation(s)
- Syed Muhammad Faran Ali
- Department of Oral Biology, Ziauddin College of Dentistry, Ziauddin Medical University, 4/B Shahrah e Ghalib, Block 6, Clifton, Karachi 75600, Pakistan
| | - Farzeen Tanwir
- Department of Periodontology, Ziauddin College of Dentistry, Ziauddin Medical University, Karachi, Pakistan
| |
Collapse
|