1
|
Schrenk D, Bignami M, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Wallace H, Benford D, Hart A, Schroeder H, Rose M, Vrijheid M, Kouloura E, Bordajandi LR, Riolo F, Vleminckx C. Update of the scientific opinion on tetrabromobisphenol A (TBBPA) and its derivatives in food. EFSA J 2024; 22:e8859. [PMID: 39010865 PMCID: PMC11247339 DOI: 10.2903/j.efsa.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The European Commission asked EFSA to update its 2011 risk assessment on tetrabromobisphenol A (TBBPA) and five derivatives in food. Neurotoxicity and carcinogenicity were considered as the critical effects of TBBPA in rodent studies. The available evidence indicates that the carcinogenicity of TBBPA occurs via non-genotoxic mechanisms. Taking into account the new data, the CONTAM Panel considered it appropriate to set a tolerable daily intake (TDI). Based on decreased interest in social interaction in male mice, a lowest observed adverse effect level (LOAEL) of 0.2 mg/kg body weight (bw) per day was identified and selected as the reference point for the risk characterisation. Applying the default uncertainty factor of 100 for inter- and intraspecies variability, and a factor of 3 to extrapolate from the LOAEL to NOAEL, a TDI for TBBPA of 0.7 μg/kg bw per day was established. Around 2100 analytical results for TBBPA in food were used to estimate dietary exposure for the European population. The most important contributors to the chronic dietary LB exposure to TBBPA were fish and seafood, meat and meat products and milk and dairy products. The exposure estimates to TBBPA were all below the TDI, including those estimated for breastfed and formula-fed infants. Accounting for the uncertainties affecting the assessment, the CONTAM Panel concluded with 90%-95% certainty that the current dietary exposure to TBBPA does not raise a health concern for any of the population groups considered. There were insufficient data on the toxicity of any of the TBBPA derivatives to derive reference points, or to allow a comparison with TBBPA that would support assignment to an assessment group for the purposes of combined risk assessment.
Collapse
|
2
|
Han Y, Liu Z, Lu L, Wang B, Li W, Yuan X, Ding J, Zhang H, Liu J. Tetrabromobisphenol A reduces male rats reproductive organ coefficients and disrupting sexual hormone by causing oxidative stress. Toxicology 2024; 505:153837. [PMID: 38763426 DOI: 10.1016/j.tox.2024.153837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Tetrabromobisphenol A (TBBPA) has become a topic of public attention due to its pervasive detection in the environment and organisms in recent decades. However, limited information is available regarding the toxicity of TBBPA on reproductive ability of male mammals. Herein, the reproductive toxicity of TBBPA was investigated in male rats to fill the knowledge gap. In this study, male rats were exposed to TBBPA (0, 10, 100, and 1000 mg/kg) for 6 weeks. Subsequently, body and organ indexes, histopathological evaluation of testis and epididymis, ultrastructural observation of sperm, testosterone and progesterone levels, and oxidative stress indicators were conducted to reveal corresponding mechanisms. Results obtained showed that compare to the control group, the body weight, testes weight, epididymis weight, seminal vesicle and coagulation glands weight of rats in the 1000 mg/kg group lost 8.30%, 16.84%, 20.16%, 19.72% and 26.42%, respectively. Intriguingly, exposure to TBBPA (10, 100, 100 mg/kg) resulted in substantial pathological damage in testis, epididymis and sperm. TBBPA exposure also increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) contents, as well as superoxide dismutase (T-SOD) and catalase (CAT) activities in testicular tissue. What's more, the testosterone and progesterone levels in male rat serum were significantly decreased after exposure to TBBPA for 6 weeks. Meanwhile, results of molecular docking showed that TBBPA has a strong affinity with estrogen receptors (ERs). These findings demonstrated that TBBPA exposure negatively impacts the reproductive ability of male rats, thus providing new insights for risk assessment for reproductive health under TBBPA exposure.
Collapse
Affiliation(s)
- Yu Han
- School of Life Sciences, Central South University, Changsha 410083, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhiquan Liu
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Liping Lu
- School of Public Health Hangzhou Normal University, Hangzhou 311121, China
| | - Binhao Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xia Yuan
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiafeng Ding
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Hangjun Zhang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Jing Liu
- School of Life Sciences, Central South University, Changsha 410083, China; Department of Hematology, the Second Xiangya Hospital, Molecular Biology Research Center, School of Life Sciences, Hunan Province Key Laboratory of Basic and Applied Hematology, Central South University, Changsha 410011, China.
| |
Collapse
|
3
|
Yang Y, Li M, Zheng J, Zhang D, Ding Y, Yu HQ. Environmentally relevant exposure to tetrabromobisphenol A induces reproductive toxicity via regulating glucose-6-phosphate 1-dehydrogenase and sperm activation in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167820. [PMID: 37858812 DOI: 10.1016/j.scitotenv.2023.167820] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a ubiquitous brominated flame-retardant environmental pollutant, has been reported to cause reproductive toxicity by chronic exposure. However, the acute reproductive risk and mechanisms of TBBPA toxicity to individuals, especially at environmentally relevant levels, remains a topic of debate. In this study, Caenorhabditis elegans was used to investigate the reproductive toxicity of acute exposure to TBBPA at environmentally relevant doses. The reproductive end points (embryonic lethality ratio and brood size), oxidative stress, sperm activation, and molecular docking were evaluated. Results showed that, after 24 h of TBBPA treatment, even at the lowest concentration (1 μg/L), the embryonic lethality ratio of C. elegans increased significantly, from 1.63 % to 3.03 %. Furthermore, TBBPA induced oxidative stress with significantly increased expression of sod-3 in C. elegans, which further raised the level of reproductive toxicity through inhibiting the activation of sperm in nematodes. In addition, molecular docking suggested TBBPA might compete for the glucose-6-phosphate-binding site of glucose-6-phosphate 1-dehydrogenase, resulting in oxidative stress generation. Accordingly, our findings indicate that even acute exposure to environmental concentrations of TBBPA may induce reproductive toxicity through reducing sperm activation in nematodes.
Collapse
Affiliation(s)
- Yaning Yang
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Minghui Li
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jun Zheng
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Dewei Zhang
- Anhui Huaqi Environmental Protection Technology Co. Ltd., Ma' Anshan, Anhui 243000, China
| | - Yan Ding
- School of Ecology and Environment, Anhui Normal University, Wuhu 241002, China.
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Moritz L, Schon SB, Rabbani M, Sheng Y, Agrawal R, Glass-Klaiber J, Sultan C, Camarillo JM, Clements J, Baldwin MR, Diehl AG, Boyle AP, O'Brien PJ, Ragunathan K, Hu YC, Kelleher NL, Nandakumar J, Li JZ, Orwig KE, Redding S, Hammoud SS. Sperm chromatin structure and reproductive fitness are altered by substitution of a single amino acid in mouse protamine 1. Nat Struct Mol Biol 2023; 30:1077-1091. [PMID: 37460896 PMCID: PMC10833441 DOI: 10.1038/s41594-023-01033-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 06/12/2023] [Indexed: 08/11/2023]
Abstract
Conventional dogma presumes that protamine-mediated DNA compaction in sperm is achieved by electrostatic interactions between DNA and the arginine-rich core of protamines. Phylogenetic analysis reveals several non-arginine residues conserved within, but not across species. The significance of these residues and their post-translational modifications are poorly understood. Here, we investigated the role of K49, a rodent-specific lysine residue in protamine 1 (P1) that is acetylated early in spermiogenesis and retained in sperm. In sperm, alanine substitution (P1(K49A)) decreases sperm motility and male fertility-defects that are not rescued by arginine substitution (P1(K49R)). In zygotes, P1(K49A) leads to premature male pronuclear decompaction, altered DNA replication, and embryonic arrest. In vitro, P1(K49A) decreases protamine-DNA binding and alters DNA compaction and decompaction kinetics. Hence, a single amino acid substitution outside the P1 arginine core is sufficient to profoundly alter protein function and developmental outcomes, suggesting that protamine non-arginine residues are essential for reproductive fitness.
Collapse
Affiliation(s)
- Lindsay Moritz
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Samantha B Schon
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
| | - Mashiat Rabbani
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Yi Sheng
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ritvija Agrawal
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Juniper Glass-Klaiber
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Caleb Sultan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeannie M Camarillo
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jourdan Clements
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael R Baldwin
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Adam G Diehl
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Alan P Boyle
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Patrick J O'Brien
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | | | - Yueh-Chiang Hu
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Neil L Kelleher
- Departments of Chemistry, Molecular Biosciences, and the National Resource for Translational and Developmental Proteomics, Northwestern University, Evanston, IL, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Z Li
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Kyle E Orwig
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sy Redding
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Saher Sue Hammoud
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA.
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.
- Department of Urology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
An T, Lu L, Li G. Daily exposure to low concentrations Tetrabromobisphenol A interferes with the thyroid hormone pathway in HepG2 cells. FUNDAMENTAL RESEARCH 2023; 3:384-391. [PMID: 38933766 PMCID: PMC11197689 DOI: 10.1016/j.fmre.2022.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 03/04/2022] [Accepted: 03/10/2022] [Indexed: 01/31/2023] Open
Abstract
Tetrabromobisphenol A (TBBPA) is a flame retardant that adversely affects the environment and human health. The present study exposed HepG2 cells to low concentrations of TBBPA daily to investigate the changes in gene regulation, mainly related to pathways associated with the endocrine system. The quantitative polymerase chain reaction (qPCR) confirmed that prolonged exposure gradually activated the thyroid hormone and parathyroid hormone signaling pathways. The expression levels of genes related to the thyroid hormone signaling pathway were upregulated (1.15-8.54 times) after five generations of exposure to 1 and 81 nM TBBPA. Furthermore, co-exposure to 81 nM TBBPA and 0.5 nM thyroid hormone receptor antagonist for five generations significantly reduced the expression of thyroid hormone and parathyroid hormone receptors. Meanwhile, 81 nM TBBPA inhibited the activation of the Ras pathway and downregulated Ras gene expression level (3.7 times), indicating the association between the toxic effect and thyroid hormone receptors. Additionally, our experiments revealed that the thyroid hormone pathway regulated the induction of the Ras signaling pathway by TBBPA. The study thus proves that daily exposure to TBBPA interferes with the thyroid hormone signaling pathway and subsequently the endocrine system.
Collapse
Affiliation(s)
- Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lirong Lu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
6
|
Barańska A, Bukowska B, Michałowicz J. Determination of Apoptotic Mechanism of Action of Tetrabromobisphenol A and Tetrabromobisphenol S in Human Peripheral Blood Mononuclear Cells: A Comparative Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186052. [PMID: 36144785 PMCID: PMC9500834 DOI: 10.3390/molecules27186052] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
Background: Tetrabromobisphenol A (TBBPA) is the most commonly used brominated flame retardant (BFR) in the industry. TBBPA has been determined in environmental samples, food, tap water, dust as well as outdoor and indoor air and in the human body. Studies have also shown the toxic potential of this substance. In search of a better and less toxic BFR, tetrabromobisphenol S (TBBPS) has been developed in order to replace TBBPA in the industry. There is a lack of data on the toxic effects of TBBPS, while no study has explored apoptotic mechanism of action of TBBPA and TBBPS in human leukocytes. Methods: The cells were separated from leucocyte-platelet buffy coat and were incubated with studied compounds in concentrations ranging from 0.01 to 50 µg/mL for 24 h. In order to explore the apoptotic mechanism of action of tested BFRs, phosphatidylserine externalization at cellular membrane (the number of apoptotic cells), cytosolic calcium ion and transmembrane mitochondrial potential levels, caspase-8, -9 and -3 activation, as well as PARP-1 cleavage, DNA fragmentation and chromatin condensation in PBMCs were determined. Results: TBBPA and TBBPS triggered apoptosis in human PBMCs as they changed all tested parameters in the incubated cells. It was also observed that the mitochondrial pathway was mainly involved in the apoptotic action of studied compounds. Conclusions: It was found that TBBPS, and more strongly TBBPA, triggered apoptosis in human PBMCs. Generally, the mitochondrial pathway was involved in the apoptotic action of tested compounds; nevertheless, TBBPS more strongly than TBBPA caused intrinsic pathway activation.
Collapse
|
7
|
Yu Y, Hua X, Chen H, Yang Y, Dang Y, Xiang M. Tetrachlorobisphenol A mediates reproductive toxicity in Caenorhabditis elegans via DNA damage-induced apoptosis. CHEMOSPHERE 2022; 300:134588. [PMID: 35427672 DOI: 10.1016/j.chemosphere.2022.134588] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 06/14/2023]
Abstract
Tetrachlorobisphenol A (TCBPA), an alternative to tetrabromobisphenol A (TBBPA), is ubiquitous in the environment and could potentially impact the reproductive system of organisms. However, the mechanisms underlying TCBPA-mediated reproductive effects remain unclear. Herein, we exposed Caenorhabditis elegans (C. elegans, L4 larvae) to TCBPA at environmentally relevant doses (0-100 μg/L) for 24 h. Exposure to TCBPA at concentrations of 1-100 μg/L impaired fertility of C. elegans, as indicated by brood size. After staining, the number of germline cells decreased in a dose-dependent manner, whereas germline cell corpses increased in exposed nematodes (10-100 μg/L TCBPA). Moreover, the expression of genes related to the germline apoptosis pathway was regulated following exposure to 100 μg/L TCBPA, indicating the potential role of DNA damage in TCBPA-induced apoptosis. Apoptosis was nearly abolished in ced-4 and ced-3 mutants and blocked in hus-1, egl-1, cep-1, and ced-9 mutants. Numerous foci were detected in TCBPA (100 μg/L)-exposed hus-1::GFP strains. These results indicate that TCBPA induces hus-1-mediated DNA damage and further causes apoptosis via a cep-1-dependent pathway. Our data provide evidence that TCBPA causes reproductive toxicity via DNA damage-induced apoptosis.
Collapse
Affiliation(s)
- Yunjiang Yu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Xin Hua
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, Southeast University, Nanjing, 210009, China
| | - Haibo Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, PR China
| | - Yue Yang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China; School of Public Health, China Medical University, Liaoning, 110122, China
| | - Yao Dang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Mingdeng Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| |
Collapse
|
8
|
Barańska A, Woźniak A, Mokra K, Michałowicz J. Genotoxic Mechanism of Action of TBBPA, TBBPS and Selected Bromophenols in Human Peripheral Blood Mononuclear Cells. Front Immunol 2022; 13:869741. [PMID: 35493487 PMCID: PMC9039255 DOI: 10.3389/fimmu.2022.869741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/21/2022] [Indexed: 11/27/2022] Open
Abstract
Bromophenolic flame retardants (BFRs) are a large group of synthetic substances used in the industry in order to reduce the flammability of synthetic materials used in electrical and electronic devices, textiles, furniture and other everyday products. The presence of BFRs has been documented in the environment, food, drinking water, inhaled dust and the human body. Due to the widespread exposure of the general population to BFRs and insufficient knowledge on their toxic action, including genotoxic potential, we have compared the effect of tetrabromobisphenol A (TBBPA), tetrabromobisphenol S (TBBPS), 2,4,6,-tribromophenol (2,4,6-TBP) and pentabromophenol (PBP) on DNA damage in human peripheral blood mononuclear cells (PBMCs) (playing a crucial role in the immune system) as well as examined underlying mechanism of action of these substances. The cells were incubated for 24 h with studied compounds in the concentrations ranging from 0.01 to 10 µg/mL. The study has shown that examined BFRs induced single and, to a lesser extent, double strand-breaks formation and caused oxidative damage to pyrimidines, and particularly to purines in the incubated cells. PBMCs efficiently repaired the DNA strand-breaks induced by BFRs, but they were unable to remove completely damaged DNA (except cells treated with TBBPS). The greatest changes in the above-mentioned parameters were observed in cells incubated with TBBPA, while the smallest in PBMCs treated with TBBPS. The results have also revealed that tested compounds do not form adducts with DNA in PBMCs, while the observed changes were the most probably induced by indirect DNA-damaging agents, such as ROS and other reactive species.
Collapse
Affiliation(s)
- Anna Barańska
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Agnieszka Woźniak
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Katarzyna Mokra
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Jaromir Michałowicz
- Department of Biophysics of Environmental Pollution, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| |
Collapse
|
9
|
Xiong F, Zhou B, Wu NX, Deng LJ, Xie JY, Li XJ, Chen YJ, Wang YX, Zeng Q, Yang P. The Association of Certain Seminal Phthalate Metabolites on Spermatozoa Apoptosis: An Exploratory Mediation Analysis via Sperm Protamine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118969. [PMID: 35157934 DOI: 10.1016/j.envpol.2022.118969] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 01/23/2022] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Earlier studies have suggested that exposure to phthalates (PAEs) may induce spermatozoa apoptosis. Sperm protamine as a molecular biomarker during spermatozoa apoptotic processes may mediate the association between PAE exposure and spermatozoa apoptosis. This study aimed to explore whether sperm protamine mediates the association of PAE exposure with spermatozoa apoptosis. We determined sperm protamine levels, 8 PAE metabolite concentrations in seminal plasma, and 3 spermatozoa apoptosis parameters among 111 men from an infertility clinic. The associations of PAEs as individual chemicals and mixtures with sperm protamine were determined. The mediating roles of protamine in the associations between PAEs and spermatozoa apoptosis parameters were examined by mediation analysis. After adjusting for confounders, we observed positive correlations between seminal plasma concentrations of mono(2-ethylhexyl) phthalate (MEHP) and sperm protamine-1 and protamine ratio. Estimates comparing highest vs. lowest quartiles of MEHP concentration were 4.65% (95% CI: 1.47%, 7.82%) for protamine-1 and 25.86% (95% CI: 3.05%, 53.73%) for protamine ratio. The quantile g-computation models showed that the adjusted protamine-1 per quartile increase in PAE mixture was 9.42% (95% CI: 1.00, 20.92) with MEHP being the major contributor. Although the joint association between PAE mixture and protamine ratio was negligible, MEHP was still identified as the main contributor. Furthermore, we found that protamine-2 and protamine ratio levels in the highest quartiles exhibited a decrease of 43.45% (95% CI: 60.54%, -19.75%) and an increase of 122.55% (95% CI: 60.00%, 209.57%) in Annexin V+/PI- spermatozoa relative to the lowest quartiles, respectively. Mediation analysis revealed that protamine ratio significantly mediated 55.6% of the association between MEHP and Annexin V+/PI- spermatozoa elevation (5.13%; 95% CI: 0.04%, 10.52%). Our findings provided evidence that human exposure to PAEs was associated with increased protamine levels which may mediate the process of spermatozoa apoptosis.
Collapse
Affiliation(s)
- Feng Xiong
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Bin Zhou
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, PR China
| | - Nan-Xin Wu
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Lang-Jing Deng
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Jin-Ying Xie
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Xiao-Jie Li
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China
| | - Ying-Jun Chen
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, 510515, Guangdong Province, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Qiang Zeng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, Hubei, PR China
| | - Pan Yang
- Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, PR China; Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, 510632, Guangdong, PR China.
| |
Collapse
|
10
|
Sunday OE, Bin H, Guanghua M, Yao C, Zhengjia Z, Xian Q, Xiangyang W, Weiwei F. Review of the environmental occurrence, analytical techniques, degradation and toxicity of TBBPA and its derivatives. ENVIRONMENTAL RESEARCH 2022; 206:112594. [PMID: 34973196 DOI: 10.1016/j.envres.2021.112594] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/08/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
BFRs (brominated flame retardants) are a class of compounds that are added to or applied to polymeric materials to avoid or reduce the spread of fire. Tetrabromobisphenol A (TBBPA) is one of the known BFR used many in industries today. Due to its wide application as an additive flame retardant in commodities, TBBPA has become a common indoor contaminant. Recent researches have raised concerns about the possible hazardous effect of exposure to TBBPA and its derivatives in humans and wildlife. This review gives a thorough assessment of the literature on TBBPA and its derivatives, as well as environmental levels and human exposure. Several analytical techniques/methods have been developed for sensitive and accurate analysis of TBBPA and its derivatives in different compartments. These chemicals have been detected in practically every environmental compartment globally, making them a ubiquitous pollutant. TBBPA may be subject to adsorption, biological degradation or photolysis, photolysis after being released into the environment. Treatment of TBBPA-containing waste, as well as manufacturing and usage regulations, can limit the release of these chemicals to the environment and the health hazards associated with its exposure. Several methods have been successfully employed for the treatment of TBBPA including but not limited to adsorption, ozonation, oxidation and anaerobic degradation. Previous studies have shown that TBBPA and its derivative cause a lot of toxic effects. Diet and dust ingestion and have been identified as the main routes of TBBPA exposure in the general population, according to human exposure studies. Toddlers are more vulnerable than adults to be exposed to indoor dust through inadvertent ingestion. Furthermore, TBBP-A exposure can occur during pregnancy and through breast milk. This review will go a long way in closing up the knowledge gap on the silent and over ignored deadly effects of TBBPA and its derivatives and their attendant consequences.
Collapse
Affiliation(s)
- Okeke Emmanuel Sunday
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China; Department of Biochemistry, Faculty of Biological Sciences & Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001, Enugu State, Nigeria
| | - Huang Bin
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Mao Guanghua
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Chen Yao
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Zeng Zhengjia
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Qian Xian
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China
| | - Wu Xiangyang
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| | - Feng Weiwei
- Institute of Environmental Health and Ecological Security, School of Environment and Safety Engineering, Jiangsu University, 212013, PR China.
| |
Collapse
|
11
|
Reed JM, Spinelli P, Falcone S, He M, Goeke CM, Susiarjo M. Evaluating the Effects of BPA and TBBPA Exposure on Pregnancy Loss and Maternal-Fetal Immune Cells in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:37010. [PMID: 35343813 PMCID: PMC8959013 DOI: 10.1289/ehp10640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/22/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) exposure has been linked to miscarriages and pregnancy complications in humans. In contrast, the potential reproductive toxicity of BPA analogs, including tetrabromobisphenol A (TBBPA), is understudied. Furthermore, although environmental exposure has been linked to altered immune mediators, the effects of BPA and TBBPA on maternal-fetal immune tolerance during pregnancy have not been studied. The present study investigated whether exposure resulted in higher rates of pregnancy loss in mice, lower number of regulatory T cells (Tregs), and lower indoleamine 2,3 deoxygenase 1 (Ido1) expression, which provided evidence for mechanisms related to immune tolerance in pregnancy. OBJECTIVES The purpose of this investigation was to characterize the effects of BPA and TBBPA exposure on pregnancy loss in mice and to study the percentage and number of Tregs and Ido1 expression and DNA methylation. METHODS Analysis of fetal resorption and quantification of maternal and fetal immune cells by flow cytometry were performed in allogeneic and syngeneic pregnancies. Ido1 mRNA and protein expression, and DNA methylation in placentas from control and BPA- and TBBPA-exposed mice were analyzed using real-time quantitative polymerase chain reaction, immunofluorescence, and bisulfite sequencing analyses. RESULTS BPA and TBBPA exposure resulted in higher rates of hemorrhaging in early allogeneic, but not syngeneic, conceptuses. In allogeneic pregnancies, BPA and TBBPA exposure was associated with higher fetal resorption rates and lower maternal Treg number. Importantly, these differences were associated with lower IDO1 protein expression in trophoblast giant cells and higher mean percentage Ido1 DNA methylation in embryonic day 9.5 placentas from BPA- and TBBPA-exposed mice. DISCUSSION BPA- and TBBPA-induced pregnancy loss in mice was associated with perturbed IDO1-dependent maternal immune tolerance. https://doi.org/10.1289/EHP10640.
Collapse
Affiliation(s)
- Jasmine M. Reed
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Calla M. Goeke
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|
12
|
Ješeta M, Navrátilová J, Franzová K, Fialková S, Kempisty B, Ventruba P, Žáková J, Crha I. Overview of the Mechanisms of Action of Selected Bisphenols and Perfluoroalkyl Chemicals on the Male Reproductive Axes. Front Genet 2021; 12:692897. [PMID: 34646297 PMCID: PMC8502804 DOI: 10.3389/fgene.2021.692897] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Male fertility has been deteriorating worldwide for considerable time, with the greatest deterioration recorded mainly in the United States, Europe countries, and Australia. That is, especially in countries where an abundance of chemicals called endocrine disruptors has repeatedly been reported, both in the environment and in human matrices. Human exposure to persistent and non-persistent chemicals is ubiquitous and associated with endocrine-disrupting effects. This group of endocrine disrupting chemicals (EDC) can act as agonists or antagonists of hormone receptors and can thus significantly affect a number of physiological processes. It can even negatively affect human reproduction with an impact on the development of gonads and gametogenesis, fertilization, and the subsequent development of embryos. The negative effects of endocrine disruptors on sperm gametogenesis and male fertility in general have been investigated and repeatedly demonstrated in experimental and epidemiological studies. Male reproduction is affected by endocrine disruptors via their effect on testicular development, impact on estrogen and androgen receptors, potential epigenetic effect, production of reactive oxygen species or direct effect on spermatozoa and other cells of testicular tissue. Emerging scientific evidence suggests that the increasing incidence of male infertility is associated with the exposure to persistent and non-persistent endocrine-disrupting chemicals such as bisphenols and perfluoroalkyl chemicals (PFAS). These chemicals may impact men’s fertility through various mechanisms. This study provides an overview of the mechanisms of action common to persistent (PFAS) and nonpersistent (bisphenols) EDC on male fertility.
Collapse
Affiliation(s)
- Michal Ješeta
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Veterinary Sciences, Czech University of Life Sciences Prague, Prague, Czechia
| | - Jana Navrátilová
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Kateřina Franzová
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Sandra Fialková
- RECETOX Centre, Faculty of Science, Masaryk University, Brno, Czechia
| | - Bartozs Kempisty
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland.,Department of Anatomy, Poznan University of Medical Sciences, Poznan, Poland.,Department of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland.,Prestage Department of Poultry Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States
| | - Pavel Ventruba
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Jana Žáková
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia
| | - Igor Crha
- Department of Obstetrics and Gynecology, Faculty of Medicine Masaryk University and University Hospital Brno, Brno, Czechia.,Department of Nursing and Midwifery, Faculty of Medicine, Masaryk University, Brno, Czechia
| |
Collapse
|
13
|
Wu H, Wang J, Xiang Y, Li L, Qie H, Ren M, Lin A, Qi F. Effects of tetrabromobisphenol A (TBBPA) on the reproductive health of male rodents: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146745. [PMID: 33794456 DOI: 10.1016/j.scitotenv.2021.146745] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a type of brominated flame retardant widely detected in the environment and organisms. It has been reported to cause cytotoxicity and disrupt endocrine system of animals. However, the effect of TBBPA on the reproductive system of male rodents is still controversial. Hence, this meta-analysis aims to determine whether TBBPA exposure damage to the reproductive system of male rodents. In this study, a thorough search of literatures was undertaken to select papers published before December 1st, 2020. The standard mean difference (SMD) and 95% confidence interval (CI) were calculated by random model. The results showed a statistically significant association between TBBPA exposure and the reproductive system health of male rodents (SMD = -0.35, 95% CI -0.50 to -0.19). The SMD for the reproductive system index organ weight, sperm quality, hormone levels, and gene expression were 0.03 (95% CI -0.18 to 0.23), -0.47 (95% CI -0.78 to -0.16), -0.51 (95% CI -0.75 to -0.27), and -0.98 (95% CI -1.36 to -0.60), respectively. There was a significant dose-effect relationship between TBBPA exposure and the reproductive health of male rodents, with the SMD values of low, medium, and high doses -0.20 (95% CI -0.34 to -0.05), -0.24 (95% CI -0.56 to 0.07), and -0.48 (95% CI -0.83 to -0.13), respectively. For exposure duration of TBBPA, an exposure time of >10 weeks (SMD = -0.33, 95% CI -0.54 to -0.12) showed more significant effect than an exposure time of ≤10 weeks (SMD = -0.22, 95% CI -0.43 to -0.02). Moreover, TBBPA exposure exhibited significant negative effects on sperm count (SMD = -0.49, 95% CI -0.82 to -0.17) while also reduced the content of triiodothyronine (T3), thyroxine (T4), and thyroid stimulating hormone (TSH) hormones. To summarize, our meta-analysis indicated that TBBPA had a toxicity effect to the reproductive system of male rodents.
Collapse
Affiliation(s)
- Huihui Wu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Jinhang Wang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Ying Xiang
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lu Li
- Chinese Academy for Environmental Planning, Beijing 100012, PR China
| | - Hantong Qie
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Ren
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Aijun Lin
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Fangjie Qi
- Global Centre for Environmental Remediation, ATC Building, Faculty of Science, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
14
|
Bajard L, Negi CK, Mustieles V, Melymuk L, Jomini S, Barthelemy-Berneron J, Fernandez MF, Blaha L. Endocrine disrupting potential of replacement flame retardants - Review of current knowledge for nuclear receptors associated with reproductive outcomes. ENVIRONMENT INTERNATIONAL 2021; 153:106550. [PMID: 33848905 DOI: 10.1016/j.envint.2021.106550] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIM Endocrine disrupting chemicals (EDCs) constitute a major public health concern because they can induce a large spectrum of adverse effects by interfering with the hormonal system. Rapid identification of potential EDCs using in vitro screenings is therefore critical, particularly for chemicals of emerging concerns such as replacement flame retardants (FRs). The review aimed at identifying (1) data gaps and research needs regarding endocrine disrupting (ED) properties of replacement FRs and (2) potential EDCs among these emerging chemicals. METHODS A systematic search was performed from open literature and ToxCast/Tox21 programs, and results from in vitro tests on the activities of 52 replacement FRs towards five hormone nuclear receptors (NRs) associated with reproductive outcomes (estrogen, androgen, glucocorticoid, progesterone, and aryl hydrocarbon receptors) were compiled and organized into tables. Findings were complemented with information from structure-based in silico model predictions and in vivo information when relevant. RESULTS For the majority of the 52 replacement FRs, experimental in vitro data on activities towards these five NRs were either incomplete (15 FRs) or not found (24 FRs). Within the replacement FRs for which effect data were found, some appeared as candidate EDCs, such as triphenyl phosphate (TPhP) and tris(1,3-dichloropropyl)phosphate (TDCIPP). The search also revealed shared ED profiles. For example, anti-androgenic activity was reported for 19 FRs and predicted for another 21 FRs. DISCUSSION This comprehensive review points to critical gaps in knowledge on ED potential for many replacement FRs, including chemicals to which the general population is likely exposed. Although this review does not cover all possible characteristics of ED, it allowed the identification of potential EDCs associated with reproductive outcomes, calling for deeper evaluation and possibly future regulation of these chemicals. By identifying shared ED profiles, this work also raises concerns for mixture effects since the population is co-exposed to several FRs and other chemicals.
Collapse
Affiliation(s)
- Lola Bajard
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Chander K Negi
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Vicente Mustieles
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Ciber de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain; Instituto de Investigacion Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Lisa Melymuk
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia
| | - Stéphane Jomini
- ANSES, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, Direction de l'Evaluation des Risques, Unité Evaluation des Substances Chimiques, 14 rue Pierre Marie Curie. 94701 Maisons-Alfort Cedex, France
| | - Johanna Barthelemy-Berneron
- ANSES, Agence Nationale de Sécurité Sanitaire de l'alimentation, de l'environnement et du travail, Direction de l'Evaluation des Risques, Unité Evaluation des Substances Chimiques, 14 rue Pierre Marie Curie. 94701 Maisons-Alfort Cedex, France
| | - Mariana F Fernandez
- University of Granada, Center for Biomedical Research (CIBM), Granada, Spain; Ciber de Epidemiologia y Salud Publica (CIBERESP), Madrid, Spain; Instituto de Investigacion Biosanitaria de Granada (ibs. GRANADA), Granada, Spain
| | - Ludek Blaha
- Masaryk University, Faculty of Science, RECETOX, Kamenice 5, CZ62500 Brno, Czechia.
| |
Collapse
|
15
|
Zhang W, Li A, Pan Y, Wang F, Li M, Liang Y, Yao X, Song J, Song M, Jiang G. Tetrabromobisphenol A induces THR β-mediated inflammation and uterine injury in mice at environmentally relevant exposure concentrations. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124859. [PMID: 33360189 DOI: 10.1016/j.jhazmat.2020.124859] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/19/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a widely used flame retardant, but the adverse outcomes induced by TBBPA has not been fully elucidated. In this study, TBBPA was detected in 54.9% of 102 female Chinese volunteers with an average serum concentration of 0.34 ng/mL. To investigate whether TBBPA induces adverse outcomes at environmentally relevant exposure doses, the mice were exposed to TBBPA for 14 and 28 days. The internal doses of TBBPA in mice serum were nearly the internal doses in volunteers. TBBPA significantly increased the secretion of some pro-inflammatory cytokines and suppressed immune responses in mice under such serum concentrations after 14- and 28-days exposure. Interestingly, uterine edema was observed in TBBPA-treated mice. In primary uterine cells model, the results showed TBBPA exposure suppressed THRβ expression, leading to the activation of the inflammatory PI3K/NF-κB signaling pathway. Our findings indicated that the uterus is the susceptible target organ of TBBPA and TBBPA exposure might increase risk of uterine cancer through deregulating inflammation pathways.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, PR China
| | - Aijing Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Yu Pan
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, PR China
| | - Fengbang Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ming Li
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, PR China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, Hubei, PR China
| | - Xinglei Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Jinghai Song
- Department of General Surgery, Beijing Hospital, National Center of Gerontology, Beijing 1000730, PR China
| | - Maoyong Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| |
Collapse
|
16
|
Zatecka E, Bohuslavova R, Valaskova E, Margaryan H, Elzeinova F, Kubatova A, Hylmarova S, Peknicova J, Pavlinkova G. The Transgenerational Transmission of the Paternal Type 2 Diabetes-Induced Subfertility Phenotype. Front Endocrinol (Lausanne) 2021; 12:763863. [PMID: 34803926 PMCID: PMC8602877 DOI: 10.3389/fendo.2021.763863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/20/2021] [Indexed: 12/26/2022] Open
Abstract
Diabetes is a chronic metabolic disorder characterized by hyperglycemia and associated with many health complications due to the long-term damage and dysfunction of various organs. A consequential complication of diabetes in men is reproductive dysfunction, reduced fertility, and poor reproductive outcomes. However, the molecular mechanisms responsible for diabetic environment-induced sperm damage and overall decreased reproductive outcomes are not fully established. We evaluated the effects of type 2 diabetes exposure on the reproductive system and the reproductive outcomes of males and their male offspring, using a mouse model. We demonstrate that paternal exposure to type 2 diabetes mediates intergenerational and transgenerational effects on the reproductive health of the offspring, especially on sperm quality, and on metabolic characteristics. Given the transgenerational impairment of reproductive and metabolic parameters through two generations, these changes likely take the form of inherited epigenetic marks through the germline. Our results emphasize the importance of improving metabolic health not only in women of reproductive age, but also in potential fathers, in order to reduce the negative impacts of diabetes on subsequent generations.
Collapse
Affiliation(s)
- Eva Zatecka
- Laboratory of Reproductive Biology, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
| | - Hasmik Margaryan
- Laboratory of Reproductive Biology, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
| | - Fatima Elzeinova
- Laboratory of Reproductive Biology, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
| | - Alena Kubatova
- Laboratory of Reproductive Biology, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
| | - Simona Hylmarova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
- Department of Internal Medicine, Second Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czechia
| | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology Czech Academy of Sciences (CAS), Biotechnology and Biomedicine Center of the Academy of Sciences and Charles University in Vestec (BIOCEV), Vestec, Czechia
- *Correspondence: Gabriela Pavlinkova,
| |
Collapse
|
17
|
Zhou H, Yin N, Faiola F. Tetrabromobisphenol A (TBBPA): A controversial environmental pollutant. J Environ Sci (China) 2020; 97:54-66. [PMID: 32933740 DOI: 10.1016/j.jes.2020.04.039] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 06/11/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is one of the most widely used brominated flame retardants and is extensively used in electronic equipment, furniture, plastics, and textiles. It is frequently detected in water, soil, air, and organisms, including humans, and has raised concerns in the scientific community regarding its potential adverse health effects. Human exposure to TBBPA is mainly via diet, respiration, and skin contact. Various in vivo and in vitro studies based on animal and cell models have demonstrated that TBBPA can induce multifaceted effects in cells and animals, and potentially exert hepatic, renal, neural, cardiac, and reproductive toxicities. Nevertheless, other reports have claimed that TBBPA might be a safe chemical. In this review, we re-evaluated most of the published TBBPA toxicological assessments with the goal of reaching a conclusion about its potential toxicity. We concluded that, although low TBBPA exposure levels and rapid metabolism in humans may signify that TBBPA is a safe chemical for the general population, particular attention should be paid to the potential effects of TBBPA on early developmental stages.
Collapse
Affiliation(s)
- Hui Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nuoya Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Francesco Faiola
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Brown PR, Gillera SEA, Fenton SE, Yao HHC. Developmental Exposure to Tetrabromobisphenol A Has Minimal Impact on Male Rat Reproductive Health. Reprod Toxicol 2020; 95:59-65. [PMID: 32416200 PMCID: PMC7323851 DOI: 10.1016/j.reprotox.2020.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 11/18/2022]
Abstract
The flame retardant and plasticizer, tetrabromobisphenol-A (TBBPA) has rapidly become a common component in the manufacture of circuit boards and plastics worldwide. It is also an analog of bisphenol A (BPA), an endocrine disrupting chemical identified by the Endocrine Society. As such, TBBPA needs to be investigated for similar potential human health risks. Using rats as a model, we exposed pregnant dams and their progeny to 0, 0.1, 25, or 250 mg TBBPA/kg of body weight until the offspring reached adulthood and assessed the first generation of males for any reproductive tract abnormalities. We found no differences in the morphology of testes, sperm, prostates, or secondary sex organs from post-natal day 21 through one-year of age. A delay in the time to preputial separation was found with the 250 mg/kg treatment. Also, minor differences of sperm count at one-year old with the 25 mg/kg treatment and expression levels of two steroidogenic pathway enzymes at either post-natal day 90 or one-year old in the 250 mg/kg treatment group were detected, but spermatogenesis was not disrupted. While these results may lead to the supposition that TBBPA is less harmful than its parent compound BPA, more studies need to be conducted to assess long-term exposure effects.
Collapse
Affiliation(s)
- Paula R Brown
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sagi Enicole A Gillera
- Reproductive Endocrinology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Suzanne E Fenton
- Reproductive Endocrinology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Humphrey Hung-Chang Yao
- Reproductive Developmental Biology Group, Reproduction and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
19
|
Lyu L, Jin X, Li Z, Liu S, Li Y, Su R, Su H. TBBPA regulates calcium-mediated lysosomal exocytosis and thereby promotes invasion and migration in hepatocellular carcinoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 192:110255. [PMID: 32018154 DOI: 10.1016/j.ecoenv.2020.110255] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/22/2020] [Accepted: 01/26/2020] [Indexed: 06/10/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and its derivatives are the common flame-retardants that may increase the risk of development of many types of cancers, including liver cancer. However, the effects of TBBPA in the development and progression of liver cancer remains unknown. This study investigated the potential effects of TBBPA on a metastatic phenotype of hepatocellular carcinoma cell line-HepG2. Our results revealed that TBBPA significantly promoted the migration and invasion via affecting the number and distribution of lysosomes in HepG2 cells in a dose-dependent manner. Moreover, TBBPA decreased the intracellular protein levels of Beta-Hexosaminidase (HEXB), Cathepsin B (CTSB) and Cathepsin D (CTSD) while increased the extracellular CTSB and CTSD. It entailed that TBBPA exposure could promote the lysosomal exocytosis in cancer cells. The reversal results were obtained after adding lysosomal exocytosis inhibitor vacuolin-1. Docking results suggested that TBBPA could bind to TRPML1. It was consistent with the binding position of agonist ML-SA1. TRPML1 knockdown significantly decreased the invasion and migration, and the results were reversed when TBBPA was added. The results were indicated that TRPML1 was critical in lysosomal exocytosis. In addition, our results showed that TBBPA-TRPML1 complex regulated the calcium-mediated lysosomal exocytosis, thereby promoting the metastasis in liver cancer cells. It was expected that our data could provide important basis for understanding the molecular mechanism(s) of TBBPA promoting invasion and migration of hepatoma cells and give rise to profound concerns of TBBPA exposure on human health.
Collapse
Affiliation(s)
- Liang Lyu
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Xiaoting Jin
- Institutes of Biomedical Sciences, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China; School of Life Science, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Jiefang nan Road 85, Taiyuan Shanxi Prov, 030001, Taiyuan, China.
| | - Yi Li
- Department of Computer Science, Technische Universität Darmstadt, Hochschulstraße 10, 64289, Darmstadt, Germany.
| | - Ruijun Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| | - Huilan Su
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Wucheng Road 92, Taiyuan Shanxi Prov, 030006, Taiyuan, China.
| |
Collapse
|
20
|
DNA fragmentation index (DFI) as a measure of sperm quality and fertility in mice. Sci Rep 2020; 10:3833. [PMID: 32123279 PMCID: PMC7052244 DOI: 10.1038/s41598-020-60876-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/17/2020] [Indexed: 12/12/2022] Open
Abstract
Although thousands of genetically modified mouse strains have been cryopreserved by sperm freezing, the likelihood of cryorecovery success cannot be accurately predicted using conventional sperm parameters. The objective of the present study was to assess the extent to which measurement of a sperm DNA fragmentation index (DFI) can predict sperm quality and fertility after cryopreservation. Using a modified TUNEL assay, we measured and correlated the DFI of frozen-thawed sperm from 83 unique mutant mouse strains with sperm count, motility and morphology. We observed a linear inverse correlation between sperm DFI and sperm morphology and motility. Further, sperm DFI was significantly higher from males with low sperm counts compared to males with normal sperm counts (P < 0.0001). Additionally, we found that viable embryos derived using sperm from males with high DFI (62.7 ± 7.2% for IVF and 73.3 ± 8.1% for ICSI) failed to litter after embryo transfer compared to embryos from males with low DFI (20.4 ± 7.9% for IVF and 28.1 ± 10.7 for ICSI). This study reveals that measurement of DFI provides a simple, informative and reliable measure of sperm quality and can accurately predict male mouse fertility.
Collapse
|
21
|
Cho JH, Lee S, Jeon H, Kim AH, Lee W, Lee Y, Yang S, Yun J, Jung YS, Lee J. Tetrabromobisphenol A-Induced Apoptosis in Neural Stem Cells Through Oxidative Stress and Mitochondrial Dysfunction. Neurotox Res 2020; 38:74-85. [DOI: 10.1007/s12640-020-00179-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/28/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
|
22
|
Sheikh IA, Beg MA. Structural binding interactions of tetrabromobisphenol A with sex steroid nuclear receptors and sex hormone‐binding globulin. J Appl Toxicol 2020; 40:832-842. [DOI: 10.1002/jat.3947] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/22/2019] [Accepted: 01/07/2020] [Indexed: 11/12/2022]
Affiliation(s)
- Ishfaq A. Sheikh
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
- Department of Medical Laboratory Technology, Faculty of Applied Medical SciencesKing Abdulaziz University Jeddah Saudi Arabia
| | - Mohd A. Beg
- King Fahd Medical Research CenterKing Abdulaziz University Jeddah Saudi Arabia
| |
Collapse
|
23
|
Liu A, Zhao Z, Qu G, Shen Z, Liang X, Shi J, Jiang G. Identification of transformation/degradation products of tetrabromobisphenol A and its derivatives. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Zhang H, Liu W, Chen B, He J, Chen F, Shan X, Du Q, Li N, Jia X, Tang J. Differences in reproductive toxicity of TBBPA and TCBPA exposure in male Rana nigromaculata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:394-403. [PMID: 30199813 DOI: 10.1016/j.envpol.2018.08.086] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 08/04/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Tetrabromobisphenol A (TBBPA) and tetrachlorobisphenol A (TCBPA) are persistent toxic environmental pollutants that cause severe reproductive toxicity in animals. The goal of this study was to compare the reproductive toxic effects of TBBPA and TCBPA on male Rana nigromaculata and to expound on the mechanisms leading to these effects. Healthy adult frogs were exposed to 0, 0.001, 0.01, 0.1, and 1 mg/L of TBBPA and TCBPA for 14 days. Sperm numbers were counted by erythrometry. Sperm mobility and deformities were observed under a light microscope (400 × ). We used commercial ELISA kits to determine the serum content of testosterone (T), estradiol (E2), luteinizing hormone (LH) and follicle stimulating hormone (FSH). Expression of androgen receptor (AR) mRNA was detected using real-time qPCR. Sperm numbers and sperm mobility were significantly decreased and sperm deformity was significantly increased in a concentration dependent manner following exposure to TBBPA and TCBPA. Sperm deformity was significantly greater in the 1 mg/L TCBPA (0.549) treatment group than in the 1 mg/L TBBPA (0.397) treatment group. Serum T content was significantly greater in the 0.01, 0.1 and 1 mg/L TBBPA and TCBPA experimental groups compared with controls, while E2 content was significantly greater in only the 1 mg/L TBBPA and TCBPA experimental groups. Expression levels of LH and FSH significantly decreased in the 1 mg/L TBBPA and TCBPA treatment groups. AR mRNA expression decreased markedly in all the treated groups. Our results indicated that TBBPA and TCBPA induced reproductive toxicity in a dose-dependent manner, with TCBPA having greater toxicity than TBBPA. Furthermore, changes in T, E2, LH, and FSH levels induced by TBBPA and TCBPA exposure, which led to endocrine disorders, also caused disturbance of spermatogenesis through abnormal gene expressions of AR in the testes.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China; Guangzhou Key Laboratory of Environmental Exposure and Health, School of Environment, Jinan University, Guangzhou, 510632, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wenli Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Bin Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Jianbo He
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Feifei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xiaodong Shan
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Qiongxia Du
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Ning Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Xiuying Jia
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China
| | - Juan Tang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou, Zhejiang Province, 310036, China.
| |
Collapse
|
25
|
Balhorn R, Steger K, Bergmann M, Schuppe HC, Neuhauser S, Balhorn MC. New monoclonal antibodies specific for mammalian protamines P1 and P2. Syst Biol Reprod Med 2018; 64:424-447. [DOI: 10.1080/19396368.2018.1510063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Rod Balhorn
- Briar Patch Biosciences LLC, Livermore, CA, USA
| | - Klaus Steger
- Department of Urology, Pediatric Urology and Andrology, Section Molecular Andrology, Justus Liebig University, Giessen, Germany
| | - Martin Bergmann
- Department of Veterinary Anatomy, Histology and Embryology, Giessen, Germany
| | | | - Stefanie Neuhauser
- Pferdezentrum Bad Saarow, Veterinary Faculty of the University, Berlin, Germany
| | | |
Collapse
|
26
|
Barrachina F, Anastasiadi D, Jodar M, Castillo J, Estanyol JM, Piferrer F, Oliva R. Identification of a complex population of chromatin-associated proteins in the European sea bass (Dicentrarchus labrax) sperm. Syst Biol Reprod Med 2018; 64:502-517. [PMID: 29939100 DOI: 10.1080/19396368.2018.1482383] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A very common conception about the function of the spermatozoon is that its unique role is to transmit the paternal genome to the next generation. Most of the sperm genome is known to be condensed in many species by protamines, which are small and extremely positively charged proteins (50-70% arginine) with the functions of streamlining the sperm cell and protecting its DNA. However, more recently, it has been shown in mammals that 2-10% of its mature sperm chromatin is also associated to a complex population of histones and chromatin-associated proteins differentially distributed in the genome. These proteins are transferred to the oocyte upon fertilization and may be involved in the epigenetic marking of the paternal genome. However, little information is so far available on the additional potential sperm chromatin proteins present in other protamine-containing non-mammalian vertebrates detected through high-throughput mass spectrometry. Thus, we started the present work with the goal of characterizing the mature sperm proteome of the European sea bass, with a particular focus on the sperm chromatin, chosen as a representative of non-mammalian vertebrate protamine-containing species. Proteins were isolated by acidic extraction from purified sperm cells and from purified sperm nuclei, digested with trypsin, and subsequently the peptides were separated using liquid chromatography and identified through tandem mass spectrometry. A total of 296 proteins were identified. Of interest, the presence of 94 histones and other chromatin-associated proteins was detected, in addition to the protamines. These results provide phylogenetically strategic information, indicating that the coexistence of histones, additional chromatin proteins, and protamines in sperm is not exclusive of mammals, but is also present in other protamine-containing vertebrates. Thus, it indicates that the epigenetic marking of the sperm chromatin, first demonstrated in mammals, could be more fundamental and conserved than previously thought. Abbreviations: AU-PAGE: acetic acid-urea polyacrylamide gel electrophoresis; CPC: chromosomal passenger complex; DTT: dithiothreitol; EGA: embryonic genome activation; FDR: false discovery rate; GO: Gene Ontology; IAA: iodoacetamide; LC: liquid chromatography; LC-MS/MS: liquid chromatography coupled to tandem mass spectrometry; MS: mass spectrometry; MS/MS: tandem mass spectrometry; MW: molecular weight; PAGE: polyacrylamide gel electrophoresis; PBS: phosphate buffered saline; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate polyacrylamide gel electrophoresis; TCA: trichloroacetic acid.
Collapse
Affiliation(s)
- Ferran Barrachina
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Dafni Anastasiadi
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Meritxell Jodar
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Judit Castillo
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| | - Josep Maria Estanyol
- d Proteomics Unit, Scientific and Technological Centers from the University of Barcelona , University of Barcelona , Barcelona , Spain
| | - Francesc Piferrer
- c Institut de Ciències del Mar , Consejo Superior de Investigaciones Científicas , Barcelona , Spain
| | - Rafael Oliva
- a Molecular Biology of Reproduction and Development Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Faculty of Medicine and Health Sciences , University of Barcelona , Barcelona , Spain.,b Biochemistry and Molecular Genetics Service , Hospital Clínic , Barcelona , Spain
| |
Collapse
|
27
|
Siracusa JS, Yin L, Measel E, Liang S, Yu X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod Toxicol 2018; 79:96-123. [PMID: 29925041 DOI: 10.1016/j.reprotox.2018.06.005] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 04/24/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022]
Abstract
Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments.
Collapse
Affiliation(s)
- Jacob Steven Siracusa
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Lei Yin
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States; ReproTox Biotech LLC, Athens 30602, GA, United States
| | - Emily Measel
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Shenuxan Liang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States
| | - Xiaozhong Yu
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
28
|
Steves AN, Bradner JM, Fowler KL, Clarkson-Townsend D, Gill BJ, Turry AC, Caudle WM, Miller GW, Chan AWS, Easley CA. Ubiquitous Flame-Retardant Toxicants Impair Spermatogenesis in a Human Stem Cell Model. iScience 2018; 3:161-176. [PMID: 29901031 PMCID: PMC5994764 DOI: 10.1016/j.isci.2018.04.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 01/08/2023] Open
Abstract
Sperm counts have rapidly declined in Western males over the past four decades. This rapid decline remains largely unexplained, but exposure to environmental toxicants provides one potential explanation for this decline. Flame retardants are highly prevalent and persistent in the environment, but many have not been assessed for their effects on human spermatogenesis. Using a human stem cell-based model of spermatogenesis, we evaluated two major flame retardants, hexabromocyclododecane (HBCDD) and tetrabromobisphenol A (TBBPA), under acute conditions simulating occupational-level exposures. Here we show that HBCDD and TBBPA are human male reproductive toxicants in vitro. Although these toxicants do not specifically affect the survival of haploid spermatids, they affect spermatogonia and primary spermatocytes through mitochondrial membrane potential perturbation and reactive oxygen species generation, ultimately causing apoptosis. Taken together, these results show that HBCDD and TBBPA affect human spermatogenesis in vitro and potentially implicate this highly prevalent class of toxicants in the decline of Western males' sperm counts.
Collapse
Affiliation(s)
- Alyse N Steves
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA
| | - Joshua M Bradner
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Kristen L Fowler
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Danielle Clarkson-Townsend
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Brittany J Gill
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - Adam C Turry
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA
| | - W Michael Caudle
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Gary W Miller
- Department of Environmental Health Science, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - Anthony W S Chan
- Genetics and Molecular Biology Program, Laney Graduate School, Emory University, Atlanta, GA 30322, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA; Department of Human Genetics, Emory University, Atlanta, GA 30322, USA
| | - Charles A Easley
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA; Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Division of Neuropharmacology and Neurologic Diseases, Yerkes National Primate Research Center, GA 30322, USA.
| |
Collapse
|
29
|
Pavlinkova G, Margaryan H, Zatecka E, Valaskova E, Elzeinova F, Kubatova A, Bohuslavova R, Peknicova J. Transgenerational inheritance of susceptibility to diabetes-induced male subfertility. Sci Rep 2017; 7:4940. [PMID: 28694462 PMCID: PMC5504044 DOI: 10.1038/s41598-017-05286-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/25/2017] [Indexed: 11/09/2022] Open
Abstract
Male infertility is a worldwide problem associated with genetic background, environmental factors, and diseases. One of the suspected contributing factors to male infertility is diabetes mellitus. We investigated the molecular and morphological changes in sperms and testicular tissue of diabetic males. The study was performed in streptozotocin-induced type 1 diabetes mouse model. Diabetes decreased sperm concentration and viability and increased sperm apoptosis. Changes in protamine 1/protamine 2 ratio indicated reduced sperm quality. The testicular tissue of diabetic males showed significant tissue damage, disruption of meiotic progression, and changes in the expression of genes encoding proteins important for spermiogenesis. Paternal diabetes altered sperm quality and expression pattern in the testes in offspring of two subsequent generations. Our study revealed that paternal diabetes increased susceptibility to infertility in offspring through gametic alternations. Our data also provide a mechanistic basis for transgenerational inheritance of diabetes-associated pathologies since protamines may be involved in epigenetic regulations.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia.
| | - Hasmik Margaryan
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Eva Zatecka
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Eliska Valaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Fatima Elzeinova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Alena Kubatova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| | - Jana Peknicova
- Laboratory of Reproductive Biology, Institute of Biotechnology CAS, BIOCEV, Vestec, Czechia
| |
Collapse
|
30
|
Metabolomics approach reveals metabolic disorders and potential biomarkers associated with the developmental toxicity of tetrabromobisphenol A and tetrachlorobisphenol A. Sci Rep 2016; 6:35257. [PMID: 27734936 PMCID: PMC5062249 DOI: 10.1038/srep35257] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/26/2016] [Indexed: 12/18/2022] Open
Abstract
Tetrabromobisphenol A and tetrachlorobisphenol A are halogenated bisphenol A (H-BPA), and has raised concerns about their adverse effects on the development of fetuses and infants, however, the molecular mechanisms are unclear, and related metabolomics studies are limited. Accordingly, a metabolomics study based on gas chromatography-mass spectrometry was employed to elucidate the molecular developmental toxicology of H-BPA using the marine medaka (Oryzias melastigmas) embryo model. Here, we revealed decreased synthesis of nucleosides, amino acids and lipids, and disruptions in the TCA (tricarboxylic acid) cycle, glycolysis and lipid metabolism, thus inhibiting the developmental processes of embryos exposed to H-BPA. Unexpectedly, we observed enhanced neural activity accompanied by lactate accumulation and accelerated heart rates due to an increase in dopamine pathway and a decrease in inhibitory neurotransmitters following H-BPA exposure. Notably, disorders of the neural system, and disruptions in glycolysis, the TCA cycle, nucleoside metabolism, lipid metabolism, glutamate and aspartate metabolism induced by H-BPA exposure were heritable. Furthermore, lactate and dopa were identified as potential biomarkers of the developmental toxicity of H-BPA and related genetic effects. This study has demonstrated that the metabolomics approach is a useful tool for obtaining comprehensive and novel insights into the molecular developmental toxicity of environmental pollutants.
Collapse
|
31
|
Castillo J, Estanyol JM, Ballescá JL, Oliva R. Human sperm chromatin epigenetic potential: genomics, proteomics, and male infertility. Asian J Androl 2016; 17:601-9. [PMID: 25926607 PMCID: PMC4492051 DOI: 10.4103/1008-682x.153302] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The classical idea about the function of the mammalian sperm chromatin is that it serves to transmit a highly protected and transcriptionally inactive paternal genome, largely condensed by protamines, to the next generation. In addition, recent sperm chromatin genome-wide dissection studies indicate the presence of a differential distribution of the genes and repetitive sequences in the protamine-condensed and histone-condensed sperm chromatin domains, which could be potentially involved in regulatory roles after fertilization. Interestingly, recent proteomic studies have shown that sperm chromatin contains many additional proteins, in addition to the abundant histones and protamines, with specific modifications and chromatin affinity features which are also delivered to the oocyte. Both gene and protein signatures seem to be altered in infertile patients and, as such, are consistent with the potential involvement of the sperm chromatin landscape in early embryo development. This present work reviews the available information on the composition of the human sperm chromatin and its epigenetic potential, with a particular focus on recent results derived from high-throughput genomic and proteomic studies. As a complement, we provide experimental evidence for the detection of phosphorylations and acetylations in human protamine 1 using a mass spectrometry approach. The available data indicate that the sperm chromatin is much more complex than what it was previously thought, raising the possibility that it could also serve to transmit crucial paternal epigenetic information to the embryo.
Collapse
Affiliation(s)
| | | | | | - Rafael Oliva
- Human Genetics Research Group, IDIBAPS, Faculty of Medicine, University of Barcelona, Casanova 143; Biochemistry and Molecular Genetics Service, Biomedical Diagnostic Centre, Hospital Clinic, Villarroel 170, 08036 Barcelona, Spain
| |
Collapse
|