1
|
Li Y, Yang KD, Kong DC, Ye JF. Advances in phage display based nano immunosensors for cholera toxin. Front Immunol 2023; 14:1224397. [PMID: 37781379 PMCID: PMC10534012 DOI: 10.3389/fimmu.2023.1224397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Cholera, a persistent global public health concern, continues to cause outbreaks in approximately 30 countries and territories this year. The imperative to safeguard water sources and food from Vibrio cholerae, the causative pathogen, remains urgent. The bacterium is mainly disseminated via ingestion of contaminated water or food. Despite the plate method's gold standard status for detection, its time-consuming nature, taking several days to provide results, remains a challenge. The emergence of novel virulence serotypes raises public health concerns, potentially compromising existing detection methods. Hence, exploiting Vibrio cholerae toxin testing holds promise due to its inherent stability. Immunobiosensors, leveraging antibody specificity and sensitivity, present formidable tools for detecting diverse small molecules, encompassing drugs, hormones, toxins, and environmental pollutants. This review explores cholera toxin detection, highlighting phage display-based nano immunosensors' potential. Engineered bacteriophages exhibit exceptional cholera toxin affinity, through specific antibody fragments or mimotopes, enabling precise quantification. This innovative approach promises to reshape cholera toxin detection, offering an alternative to animal-derived methods. Harnessing engineered bacteriophages aligns with ethical detection and emphasizes sensitivity and accuracy, a pivotal stride in the evolution of detection strategies. This review primarily introduces recent advancements in phage display-based nano immunosensors for cholera toxin, encompassing technical aspects, current challenges, and future prospects.
Collapse
Affiliation(s)
- Yang Li
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
- School of Nursing, Jilin University, Changchun, China
| | - Kai-di Yang
- School of Nursing, Jilin University, Changchun, China
| | - De-cai Kong
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| | - Jun-feng Ye
- General Surgery Center, First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
2
|
Escobar V, Scaramozzino N, Vidic J, Buhot A, Mathey R, Chaix C, Hou Y. Recent Advances on Peptide-Based Biosensors and Electronic Noses for Foodborne Pathogen Detection. BIOSENSORS 2023; 13:bios13020258. [PMID: 36832024 PMCID: PMC9954637 DOI: 10.3390/bios13020258] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/07/2023] [Indexed: 05/26/2023]
Abstract
Foodborne pathogens present a serious issue around the world due to the remarkably high number of illnesses they cause every year. In an effort to narrow the gap between monitoring needs and currently implemented classical detection methodologies, the last decades have seen an increased development of highly accurate and reliable biosensors. Peptides as recognition biomolecules have been explored to develop biosensors that combine simple sample preparation and enhanced detection of bacterial pathogens in food. This review first focuses on the selection strategies for the design and screening of sensitive peptide bioreceptors, such as the isolation of natural antimicrobial peptides (AMPs) from living organisms, the screening of peptides by phage display and the use of in silico tools. Subsequently, an overview on the state-of-the-art techniques in the development of peptide-based biosensors for foodborne pathogen detection based on various transduction systems was given. Additionally, limitations in classical detection strategies have led to the development of innovative approaches for food monitoring, such as electronic noses, as promising alternatives. The use of peptide receptors in electronic noses is a growing field and the recent advances of such systems for foodborne pathogen detection are presented. All these biosensors and electronic noses are promising alternatives for the pathogen detection with high sensitivity, low cost and rapid response, and some of them are potential portable devices for on-site analyses.
Collapse
Affiliation(s)
- Vanessa Escobar
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
- Grenoble Alpes University, CNRS, LIPhy, 38000 Grenoble, France
| | | | - Jasmina Vidic
- INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Arnaud Buhot
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| | - Raphaël Mathey
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| | - Carole Chaix
- Institute of Analytical Sciences, University of Lyon, CNRS, Claude Bernard Lyon 1 University, UMR 5280, 69100 Villeurbanne, France
| | - Yanxia Hou
- Grenoble Alpes University, CEA, CNRS, IRIG-SyMMES, 17 Rue des Martyrs, 38000 Grenoble, France
| |
Collapse
|
3
|
Charlermroj R, Makornwattana M, Phuengwas S, Karoonuthaisiri N. A rapid colorimetric lateral flow test strip for detection of live Salmonella Enteritidis using whole phage as a specific binder. Front Microbiol 2022; 13:1008817. [PMID: 36246228 PMCID: PMC9556839 DOI: 10.3389/fmicb.2022.1008817] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Specific antibodies are essential components of immunoassay, which can be applied for the detection of pathogens. However, producing an antibody specific to live bacterial pathogens by the classical method of immunizing animals with live pathogens can be impractical. Phage display technology is an effective alternative method to obtain antibodies with the desired specificity against selected antigenic molecules. In this study, we demonstrated the power of a microarray-based technique for obtaining specific phage-derived antibody fragments against Salmonella, an important foodborne pathogen. The selected phage-displayed antibody fragments were subsequently employed to develop a lateral flow test strip assay for the detection of live Salmonella. The test strips showed specificity to Salmonella Enteritidis without cross-reactivity to eight serovars of Salmonella or other bacteria strains. The test strip assay requires 15 min, whereas the conventional biochemical and serological confirmation test requires at least 24 h. The microarray screening technique for specific phage-based binders and the test strip method can be further applied to other foodborne pathogens.
Collapse
Affiliation(s)
- Ratthaphol Charlermroj
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- *Correspondence: Ratthaphol Charlermroj,
| | - Manlika Makornwattana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Sudtida Phuengwas
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, Thailand
- International Joint Research Center on Food Security, Pathum Thani, Thailand
- Institute for Global Food Security, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Xu P, Ghosh S, Gul AR, Bhamore JR, Park JP, Park TJ. Screening of specific binding peptides using phage-display techniques and their biosensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
5
|
Jones HJ, Shield CG, Swift BM. The Application of Bacteriophage Diagnostics for Bacterial Pathogens in the Agricultural Supply Chain: From Farm-to-Fork. PHAGE (NEW ROCHELLE, N.Y.) 2020; 1:176-188. [PMID: 36147287 PMCID: PMC9041468 DOI: 10.1089/phage.2020.0042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bacteriophages (phages) have great potential not only as therapeutics but as diagnostics. Indeed, they have been developed and used to diagnose and detect bacterial infections, primarily in human clinical settings. The ability to rapidly detect and control bacterial pathogens in agriculture is of primary importance to maintain food security, improve animal health, and prevent the passage of zoonotic pathogens into the human population. Culture-based detection methods are often labor-intensive, and require further confirmatory tests, increasing costs and processing times needed for diagnostics. Molecular detection methods such as polymerase chain reaction are commonly used to determine the safety of food, however, a major drawback is their inability to differentiate between viable and nonviable bacterial pathogens in food. Phage diagnostics have been proven to be rapid, capable of identifying viable pathogens and do not require cultivation to detect bacteria. Phage detection takes advantage of the specificity of interaction between phage and their hosts. Furthermore, phage detection is cost effective, which is vitally important in agricultural supply chains where there is a drive to keep costs down to ensure that the cost of food does not increase. The full potential of phage detection/diagnostics is not wholly realized or commercialized. This review explores the current use and potential future scope of phage diagnostics and their application to various bacterial pathogens across agriculture and food supply chains.
Collapse
Affiliation(s)
- Helen J. Jones
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Christopher G. Shield
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| | - Benjamin M.C. Swift
- Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
| |
Collapse
|
6
|
Production of Phage Display-Derived Peptide and the Application for Detecting Vibrio parahaemolyticus by Combined PCR Technology. FOOD ANAL METHOD 2020. [DOI: 10.1007/s12161-020-01800-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Peltomaa R, Benito-Peña E, Barderas R, Moreno-Bondi MC. Phage Display in the Quest for New Selective Recognition Elements for Biosensors. ACS OMEGA 2019; 4:11569-11580. [PMID: 31460264 PMCID: PMC6682082 DOI: 10.1021/acsomega.9b01206] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 06/21/2019] [Indexed: 05/10/2023]
Abstract
Phages are bacterial viruses that have gained a significant role in biotechnology owing to their widely studied biology and many advantageous characteristics. Perhaps the best-known application of phages is phage display that refers to the expression of foreign peptides or proteins outside the phage virion as a fusion with one of the phage coat proteins. In 2018, one half of the Nobel prize in chemistry was awarded jointly to George P. Smith and Sir Gregory P. Winter "for the phage display of peptides and antibodies." The outstanding technology has evolved and developed considerably since its first description in 1985, and today phage display is commonly used in a wide variety of disciplines, including drug discovery, enzyme optimization, biomolecular interaction studies, as well as biosensor development. A cornerstone of all biosensors, regardless of the sensor platform or transduction scheme used, is a sensitive and selective bioreceptor, or a recognition element, that can provide specific binding to the target analyte. Many environmentally or pharmacologically interesting target analytes might not have naturally appropriate binding partners for biosensor development, but phage display can facilitate the production of novel receptors beyond known biomolecular interactions, or against toxic or nonimmunogenic targets, making the technology a valuable tool in the quest of new recognition elements for biosensor development.
Collapse
Affiliation(s)
- Riikka Peltomaa
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elena Benito-Peña
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Rodrigo Barderas
- Chronic
Disease Programme (UFIEC), Instituto de
Salud Carlos III, Ctra.
Majadahonda-Pozuelo Km 2.2, 28220 Madrid, Spain
| | - María C. Moreno-Bondi
- Chemical
Optosensors & Applied Photochemistry Group (GSOLFA), Department
of Analytical Chemistry, Faculty of Chemistry, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
8
|
De Plano LM, Fazio E, Rizzo MG, Franco D, Carnazza S, Trusso S, Neri F, Guglielmino SPP. Phage-based assay for rapid detection of bacterial pathogens in blood by Raman spectroscopy. J Immunol Methods 2018; 465:45-52. [PMID: 30552870 DOI: 10.1016/j.jim.2018.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 12/11/2018] [Accepted: 12/11/2018] [Indexed: 01/08/2023]
Abstract
Sepsis is a systemic inflammatory response ensuing from presence and persistence of microorganisms in the bloodstream. The possibility to identify them at low concentrations may improve the problem of human health and therapeutic outcomes. So, sensitive and rapid diagnostic systems are essential to evaluate bacterial infections during the time, also reducing the cost. In this study, from random M13 phage display libraries, we selected phage clones that specifically bind surface of Staphyloccocus aureus, Pseudomonas aeruginosa and Escherichia coli. Then, commercial magnetic beads were functionalized with phage clones through covalent bond and used as capture and concentrating of pathogens from blood. We found that phage-magnetic beads complex represents a network which enables a cheap, high sensitive and specific detection of the bacteria involved in sepsis by micro-Raman spectroscopy. The enter process required 6 h and has the limit of detection of 10 Colony Forming Units on 7 ml of blood (CFU/7 ml).
Collapse
Affiliation(s)
- Laura M De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Enza Fazio
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Domenico Franco
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Santina Carnazza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Sebastiano Trusso
- IPCF-CNR Institute for Chemical-Physical Processes, Viale Ferdinando Stagno d'Alcontres 37, 98158 Messina, Italy
| | - Fortunato Neri
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Salvatore P P Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.
| |
Collapse
|
9
|
Niyomdecha S, Limbut W, Numnuam A, Kanatharana P, Charlermroj R, Karoonuthaisiri N, Thavarungkul P. Phage-based capacitive biosensor for Salmonella detection. Talanta 2018; 188:658-664. [PMID: 30029427 DOI: 10.1016/j.talanta.2018.06.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 06/09/2018] [Accepted: 06/09/2018] [Indexed: 11/18/2022]
Abstract
This article reports the detection of Salmonella spp. based on M13 bacteriophage in a capacitive flow injection system. Salmonella-specific M13 bacteriophage was immobilized on a polytyramine/gold surface using glutaraldehyde as a crosslinker. The M13 bacteriophage modified electrode can specifically bind to Salmonella spp. via the amino acid groups on the filamentous phage. An alkaline solution was used to break the binding between the sensing surface and the analyte to allow renewable use up to 40 times. This capacitive system provided good reproducibility with a relative standard deviation (RSD) of 1.1%. A 75 µL min-1 flow rate and a 300 µL sample volume provided a wide linear range, from 2.0 × 102 to 1.0 × 107 cfu mL-1, with a detection limit of 200 cfu mL-1. Bacteria concentration can be analyzed within 40 min after the sample injection. When applied to test real samples (raw chicken meat) it provided good recoveries (100-111%). An enrichment process was also explored to increase the bacteria concentration, enabling a quantitative detection of Salmonella spp. This biosensor opens a new opportunity for the detection of pathogenic bacteria using bacteriophage.
Collapse
Affiliation(s)
- Saroh Niyomdecha
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Warakorn Limbut
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Applied Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Apon Numnuam
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Proespichaya Kanatharana
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
| | - Ratthaphol Charlermroj
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Nitsara Karoonuthaisiri
- National Center for Genetic Engineering and Biotechnology, 113 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Panote Thavarungkul
- Trace Analysis and Biosensor Research Center, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Center of Excellence for Innovation in Chemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand; Department of Physics, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand.
| |
Collapse
|
10
|
Generation and characterization of a novel recombinant scFv antibody specific for Campylobacter jejuni. Appl Microbiol Biotechnol 2018; 102:4873-4885. [PMID: 29627856 PMCID: PMC5953994 DOI: 10.1007/s00253-018-8949-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/11/2022]
Abstract
Campylobacter jejuni is a leading cause of foodborne illness worldwide, mainly due to consumption and handling of contaminated raw chicken. Rapid detection methods for C. jejuni are vital for monitoring contamination levels in chicken products and reducing human Campylobacteriosis cases. The 'gold standard' culture-based method of Campylobacter detection takes 3-5 days and is too slow to permit effective intervention. Immuno-based methods are faster, but usually necessitate use of animals or hybridoma technology to produce antibodies; making them difficult and expensive to produce. Here, we report the generation and characterization of recombinant single-chain variable fragment (scFv) antibodies specific for C. jejuni cells, and evaluation of one scFv antibody for an immunomagnetic separation-quantitative PCR (IMS-qPCR) method to rapidly, sensitively, and specifically detect low numbers of C. jejuni. An scFv antibody phage-display library was constructed using spleen mRNA derived from a rabbit immunized with gamma-irradiated C. jejuni cells. This library was screened by surface biopanning against C. jejuni whole cells. Enriched clones were analyzed by enzyme-linked immunosorbent assay (ELISA). Two scFv antibodies that strongly and specifically recognized C. jejuni cell were expressed in Escherichia coli. Western blot analysis showed that one antibody, scFv80, was expressed as a soluble protein and retained its specific and strong binding to C. jejuni cells. This recombinant monoclonal scFv antibody was purified and used to covalently coat paramagnetic beads to be used for IMS-qPCR. The IMS-qPCR method was able to specifically and sensitively detect C. jejuni in mixed cultures within 3 h.
Collapse
|
11
|
Wang Y, Wang Q, Wu AH, Hao ZP, Liu XJ. Isolation of a peptide from Ph.D.-C7C phage display library for detection of Cry1Ab. Anal Biochem 2017; 539:29-32. [PMID: 28279647 DOI: 10.1016/j.ab.2017.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/25/2022]
Abstract
Traditional ELISA methods of using animal immunity yield antibodies for detection Cry toxin. Not only is this incredibly harmful to the animals, but is also time-intensive. Here we developed a simple method to yield the recognition element. Using a critical selection strategy and immunoassay we confirmed a clone from the Ph.D-C7C phage library, which has displayed the most interesting Cry1Ab-binding characteristics examined in this study (Fig. 1). The current study indicates that isolating peptide is an alternative method for the preparation of a recognition element, and that the developed assay is a potentially useful tool for detecting Cry1Ab.
Collapse
Affiliation(s)
- Yun Wang
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China.
| | - Qian Wang
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Ai-Hua Wu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro- Product Safety and Quality, Ministry of Agriculture, Institute of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| | - Zhen-Ping Hao
- College of Horticulture, Jinling Institute of Technology, 210038 Nanjing, PR China
| | - Xian-Jin Liu
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Key Laboratory of Control Technology and Standard for Agro- Product Safety and Quality, Ministry of Agriculture, Institute of Food Quality Safety and Detection Research, Jiangsu Academy of Agricultural Sciences, 210014 Nanjing, PR China
| |
Collapse
|
12
|
Yun S, Ryu H, Lee E. Immunomagnetic separation of human myeloperoxidase using an antibody-mimicking peptide identified by phage display. J Biotechnol 2017; 257:118-121. [DOI: 10.1016/j.jbiotec.2016.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/06/2016] [Accepted: 12/11/2016] [Indexed: 10/20/2022]
|
13
|
Abstract
Novel affinity agents with high specificity are needed to make progress in disease diagnosis and therapy. Over the last several years, peptides have been considered to have fundamental benefits over other affinity agents, such as antibodies, due to their fast blood clearance, low immunogenicity, rapid tissue penetration, and reproducible chemical synthesis. These features make peptides ideal affinity agents for applications in disease diagnostics and therapeutics for a wide variety of afflictions. Virus-derived peptide techniques provide a rapid, robust, and high-throughput way to identify organism-targeting peptides with high affinity and selectivity. Here, we will review viral peptide display techniques, how these techniques have been utilized to select new organism-targeting peptides, and their numerous biomedical applications with an emphasis on targeted imaging, diagnosis, and therapeutic techniques. In the future, these virus-derived peptides may be used as common diagnosis and therapeutics tools in local clinics.
Collapse
Affiliation(s)
- Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Kegan Sunderland
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
14
|
Fluorimetric sandwich affinity assay for Staphylococcus aureus based on dual-peptide recognition on magnetic nanoparticles. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2396-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
15
|
Kulabhusan PK, Rajwade JM, Sahul Hameed AS, Paknikar KM. Lateral flow assay for rapid detection of white spot syndrome virus (WSSV) using a phage-displayed peptide as bio-recognition probe. Appl Microbiol Biotechnol 2017; 101:4459-4469. [DOI: 10.1007/s00253-017-8232-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/08/2017] [Accepted: 03/09/2017] [Indexed: 01/01/2023]
|
16
|
A high affinity phage-displayed peptide as a recognition probe for the detection of Salmonella Typhimurium. J Biotechnol 2016; 231:40-45. [DOI: 10.1016/j.jbiotec.2016.05.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 05/16/2016] [Accepted: 05/19/2016] [Indexed: 10/21/2022]
|
17
|
A highly sensitive ELISA and immunochromatographic strip for the detection of Salmonella typhimurium in milk samples. SENSORS 2015; 15:5281-92. [PMID: 25746094 PMCID: PMC4435159 DOI: 10.3390/s150305281] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/16/2015] [Accepted: 02/18/2015] [Indexed: 12/14/2022]
Abstract
Murine monoclonal antibodies to target Salmonella typhimurium flagellin and lipopolysaccharide (LPS) were prepared and characterized. For the immunological detection of S. typhimurium, different pairs of monoclonal antibodies (MAbs) were tested in a sandwich enzyme linked immunosorbent assay (ELISA) format. After comparison, a sandwich ELISA and immunochromatographic strip based on LPS MAbs was established to detect S. typhimurium. The determination limits of the immunochromatographic strip in phosphate-buffered saline (PBS) containing 0.1% Tween 20 (PBST) and pure milk sample were found to be 1.25 × 105 colony-forming units (cfu)/mL and 1.25 × 106 cfu/mL S. typhimurium, respectively. Results can be obtained with the naked eye in 10 min. Cross-reactivity was observed with Salmonella paratyphi B, but not S. paratyphi A or Salmonella enteritidis. The LPS MAbs based immunochromatographic strip is rapid and convenient to detect S. typhimurium in milk samples.
Collapse
|
18
|
Miller L, Michel J, Vogt G, Döllinger J, Stern D, Piesker J, Nitsche A. Identification and characterization of a phage display-derived peptide for orthopoxvirus detection. Anal Bioanal Chem 2014; 406:7611-21. [DOI: 10.1007/s00216-014-8150-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 07/17/2014] [Accepted: 09/01/2014] [Indexed: 10/24/2022]
|
19
|
Wang J, McIvor MJ, Elliott CT, Karoonuthaisiri N, Segatori L, Biswal SL. Rapid Detection of Pathogenic Bacteria and Screening of Phage-Derived Peptides Using Microcantilevers. Anal Chem 2014; 86:1671-8. [DOI: 10.1021/ac403437x] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinghui Wang
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Mary Josephine McIvor
- Institute for
Global Food Security, School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Christopher T. Elliott
- Institute for
Global Food Security, School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
| | - Nitsara Karoonuthaisiri
- Institute for
Global Food Security, School of Biological Sciences, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, United Kingdom
- Microarray Laboratory, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Phahonyothin Road, Pathumthani 12120, Thailand
| | - Laura Segatori
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
20
|
Phage display-derived binders able to distinguish Listeria monocytogenes from other Listeria species. PLoS One 2013; 8:e74312. [PMID: 24040227 DOI: 10.1371/journal.pone.0074312] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 07/28/2013] [Indexed: 11/19/2022] Open
Abstract
The objective of this study was to produce phage display-derived binders with the ability to distinguish Listeria monocytogenes from other Listeria spp., which may have potential utility to enhance detection of Listeria monocytogenes. To obtain binders with the desired binding specificity a series of surface and solution phage-display biopannings were performed. Initially, three rounds of surface biopanning against gamma-irradiated L. monocytogenes serovar 4b cells were performed followed by an additional surface biopanning round against L. monocytogenes 4b which included prior subtraction biopanning against gamma-irradiated L. innocua cells. In an attempt to further enhance binder specificity for L. monocytogenes 4b two rounds of solution biopanning were performed, both rounds included initial subtraction solution biopanning against L. innocua. Subsequent evaluations were performed on the phage clones by phage binding ELISA. All phage clones tested from the second round of solution biopanning had higher specificity for L. monocytogenes 4b than for L. innocua and three other foodborne pathogens (Salmonella spp., Escherichia coli and Campylobacter jejuni). Further evaluation with five other Listeria spp. revealed that one phage clone in particular, expressing peptide GRIADLPPLKPN, was highly specific for L. monocytogenes with at least 43-fold more binding capability to L. monocytogenes 4b than to any other Listeria sp. This proof-of-principle study demonstrates how a combination of surface, solution and subtractive biopanning was used to maximise binder specificity. L. monocytogenes-specific binders were obtained which could have potential application in novel detection tests for L. monocytogenes, benefiting both the food and medical industries.
Collapse
|