1
|
Yu Y, Fu R, Jin C, Gao H, Han L, Fu B, Qi M, Li Q, Suo Z, Leng J. Regulation of Milk Fat Synthesis: Key Genes and Microbial Functions. Microorganisms 2024; 12:2302. [PMID: 39597692 PMCID: PMC11596427 DOI: 10.3390/microorganisms12112302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/29/2024] Open
Abstract
Milk is rich in a variety of essential nutrients, including fats, proteins, and trace elements that are important for human health. In particular, milk fat has an alleviating effect on diseases such as heart disease and diabetes. Fatty acids, the basic units of milk fat, play an important role in many biological reactions in the body, including the involvement of glycerophospholipids and sphingolipids in the formation of cell membranes. However, milk fat synthesis is a complex biological process involving multiple organs and tissues, and how to improve milk fat of dairy cows has been a hot research issue in the industry. There exists a close relationship between milk fat synthesis, genes, and microbial functions, as a result of the organic integration between the different tissues of the cow's organism and the external environment. This review paper aims (1) to highlight the synthesis and regulation of milk fat by the first and second genomes (gastrointestinal microbial genome) and (2) to discuss the effects of ruminal microorganisms and host metabolites on milk fat synthesis. Through exploring the interactions between the first and second genomes, and discovering the relationship between microbial and host metabolite in the milk fat synthesis pathway, it may become a new direction for future research on the mechanism of milk fat synthesis in dairy cows.
Collapse
Affiliation(s)
- Ye Yu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Runqi Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Chunjia Jin
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Huan Gao
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Lin Han
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Binlong Fu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Min Qi
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
| | - Qian Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Zhuo Suo
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Leng
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming 650201, China; (Y.Y.); (R.F.); (C.J.); (H.G.); (L.H.); (B.F.); (M.Q.); (Q.L.); (Z.S.)
- Key Laboratory of Animal Nutrition and Feed Science of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
2
|
Zhao X, Zhang Y, Rahman A, Chen M, Li N, Wu T, Qi Y, Zheng N, Zhao S, Wang J. Rumen microbiota succession throughout the perinatal period and its association with postpartum production traits in dairy cows: A review. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 18:17-26. [PMID: 39022774 PMCID: PMC11253274 DOI: 10.1016/j.aninu.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 02/18/2024] [Accepted: 04/24/2024] [Indexed: 07/20/2024]
Abstract
The transition period for dairy cows usually refers to the 3 weeks pre-calving to the 3 weeks post-calving. During this period, dairy cows undergo metabolic and physiological adaptations because of their susceptibility to metabolic and infectious diseases. Poor feeding management under these circumstances may adversely affect the health and subsequent production performance of the cows. Owing to long-term adaptation and evolution, the rumen has become a unique ecosystem inhabited by a complex microbial community closely associated with its natural host. Dietary components are metabolized by the rumen microbiota, and volatile fatty acids and microbial protein products can be used as precursor substances for synthesizing meat and milk components. The successful transition of perinatal dairy cows includes changes in diet, physiology, and the rumen microbiota. Rumen microbial profiles have been confirmed to be heritable and repairable; however, adverse circumstances affect rumen microbial composition, host digestion and metabolism, as well as postpartum production traits of dairy cows for a certain period. Preliminary evidence indicates a close relationship between the rumen microbiota and animal performance. Therefore, changes in rumen microbes during the transition period and the intrinsic links between the microbiota and host postpartum phenotypic traits need to be better understood to optimize production performance in ruminants.
Collapse
Affiliation(s)
- Xiaowei Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
- Xinjiang Agricultural University, Urumqi 830052, China
| | - Yangdong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ashikur Rahman
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Meiqing Chen
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ning Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Wu
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Yunxia Qi
- Anhui Key Laboratory of Livestock and Poultry Product Safety Engineering, Institute of Animal Husbandry and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
3
|
Gupta S, de Rink R, Klok JBM, Muyzer G, Plugge CM. Process conditions affect microbial diversity and activity in a haloalkaline biodesulfurization system. Appl Environ Microbiol 2024; 90:e0186423. [PMID: 38078763 PMCID: PMC10807427 DOI: 10.1128/aem.01864-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 10/30/2023] [Indexed: 01/25/2024] Open
Abstract
Biodesulfurization (BD) systems that treat sour gas employ mixtures of haloalkaliphilic sulfur-oxidizing bacteria to convert sulfide to elemental sulfur. In the past years, these systems have seen major technical innovations that have led to changes in microbial community composition. Different studies have identified and discussed the microbial communities in both traditional and improved systems. However, these studies do not identify metabolically active community members and merely focus on members' presence/absence. Therefore, their results cannot confirm the activity and role of certain bacteria in the BD system. To investigate the active community members, we determined the microbial communities of six different runs of a pilot-scale BD system. 16S rRNA gene-based amplicon sequencing was performed using both DNA and RNA. A comparison of the DNA- and RNA-based sequencing results identified the active microbes in the BD system. Statistical analyses indicated that not all the existing microbes were actively involved in the system and that microbial communities continuously evolved during the operation. At the end of the run, strains affiliated with Alkalilimnicola ehrlichii and Thioalkalivibrio sulfidiphilus were confirmed as the most active key bacteria in the BD system. This study determined that microbial communities were shaped predominantly by the combination of hydraulic retention time (HRT) and sulfide concentration in the anoxic reactor and, to a lesser extent, by other operational parameters.IMPORTANCEHaloalkaliphilic sulfur-oxidizing bacteria are integral to biodesulfurization (BD) systems and are responsible for converting sulfide to sulfur. To understand the cause of conversions occurring in the BD systems, knowing which bacteria are present and active in the systems is essential. So far, only a few studies have investigated the BD system's microbial composition, but none have identified the active microbial community. Here, we reveal the metabolically active community, their succession, and their influence on product formation.
Collapse
Affiliation(s)
- Suyash Gupta
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Rieks de Rink
- Environmental Technology, Wageningen University & Research, Wageningen, the Netherlands
- Paqell B.V., Utrecht, the Netherlands
| | - Johannes B. M. Klok
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
| | - Gerard Muyzer
- Microbial Systems Ecology, Department of Freshwater and Marine Ecology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Caroline M. Plugge
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, the Netherlands
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, the Netherlands
| |
Collapse
|
4
|
Dynamic Variations in Rumen Fermentation Characteristics and Bacterial Community Composition during In Vitro Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8060276] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
This study aimed to explore the dynamic variations of rumen fermentation characteristics and bacterial community composition during a 24 h in vitro fermentation. A total of twenty-three samples were collected from original rumen fluid (ORF, n = 3), fermentation at 12 h (R12, n = 10), and fermentation at 24 h (R24, n = 10). Results showed that gas production, concentrations of microbial crude protein, ammonia nitrogen, and individual volatile fatty acids (VFA), as well as total VFA and branched-chain VFA concentrations, were higher in R24 when compared with R12 (p < 0.05). However, no significant differences were observed in acetate to propionate ratio and fermentation efficiency between R12 and R24 (p > 0.05). Bacterial diversity analysis found that Shannon index and Simpson index were higher in R24 (p < 0.05), and obvious clusters were observed in rumen bacterial community between R12 and R24. Taxonomic analysis at the phylum level showed that the abundances of Proteobacteria and Fibrobacteres were higher in R12 than that in R24, and inverse results were observed in Bacteroidetes, Firmicutes, Cyanobacteria, Verrucomicrobia, Lentisphaerae, and Synergistetes abundances. Taxonomic analysis at the genus level revealed that the abundances of Rikenellaceae RC9 gut group, Succiniclasticum, Prevotellaceae UCG-003, Christensenellaceae R-7 group, Ruminococcaceae UCG-002, Veillonellaceae UCG-001, and Ruminococcaceae NK4A214 group were higher in R24, whereas higher abundances of Succinivibrionaceae UCG-002, Ruminobacter, and Fibrobacter, were found in R12. Correlation analysis revealed the negative associations between gas production and abundances of Proteobacteria, Succinivibrionaceae UCG-002, and Ruminobacter. Moreover, the abundances of Firmicutes, Rikenellaceae RC9 gut group, Christensenellaceae R-7 group, and Ruminococcaceae UCG-002 positively correlated with VFA production. These results indicate that both rumen fermentation characteristics and bacterial community composition were dynamic during in vitro fermentation, whereas the fermentation pattern, efficiency, and bacterial richness remained similar. This study provide insight into the dynamics of rumen fermentation characteristics and bacterial composition during in vitro fermentation. This study may also provide a reference for decision-making for the sampling time point when conducting an in vitro fermentation for bacterial community investigation.
Collapse
|
5
|
Identifying active rumen epithelial associated bacteria and archaea in beef cattle divergent in feed efficiency using total RNA-seq. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100064. [PMID: 34841354 PMCID: PMC8610342 DOI: 10.1016/j.crmicr.2021.100064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 01/08/2023] Open
Abstract
The most active archaea in the epimural community were different from that of the liquid and content-associated community, but the exact taxonomy requires further identification. Rumen epithelial attached methanogens may not contribute to differences in CH4 production and variations in feed efficiency. Families Campylobacteraceae and Neisseriaceae, which contain oxygen scavenging bacteria were significantly more active on the epithelium of efficient cattle.
To date, the role of ruminal epithelial attached microbiota in cattle feed efficiency is undefined. In this study, we aimed to characterize transcriptionally active bacteria and archaea attached to the rumen epithelial wall and to determine whether they differ in cattle with varied feed efficiency. RNA-sequencing was performed to obtain the rumen epithelial transcriptomes from 9 of the most efficient (low RFI) and 9 of the most inefficient (high RFI) animals. The bacteria and archaea 16S rRNA transcripts were identified using an in-house developed pipeline, enriched from filtered reads that did not map to the bovine genome. Archaea from unclassified genera belonging to the Euryarchaeota phylum showed the most activity on the rumen epithelium of low RFI (81.3 ± 1.9%) and high RFI (76.4 ± 3.0%) steers. Bacteria from the Succinivibrionaceae family showed the greatest activity of bacteria on the low RFI (28.7 ± 9.0%) and high RFI (33.9± 8.8%) epithelium. Of the bacterial families, Campylobacteraceae and Neisseriaceae had significantly greater activity on the low RFI epithelium (p < 0.05) and are known to play a role in oxygen scavenging. Greater activity of rumen epithelial attached oxygen scavenging bacteria may provide more optimal feed fermentation conditions, which contributes to high fermentation efficiency in the rumen.
Collapse
|
6
|
Inkinen J, Siponen S, Jayaprakash B, Tiwari A, Hokajärvi AM, Pursiainen A, Ikonen J, Kauppinen A, Miettinen IT, Paananen J, Torvinen E, Kolehmainen M, Pitkänen T. Diverse and active archaea communities occur in non-disinfected drinking water systems-Less activity revealed in disinfected and hot water systems. WATER RESEARCH X 2021; 12:100101. [PMID: 34027378 PMCID: PMC8131914 DOI: 10.1016/j.wroa.2021.100101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 05/25/2023]
Abstract
The knowledge about the members of active archaea communities in DWDS is limited. The current understanding is based on high-throughput 16S ribosomal RNA gene (DNA-based) amplicon sequencing that reveals the diversity of active, dormant, and dead members of the prokaryote (bacteria, archaea) communities. The sequencing primers optimized for bacteria community analysis may underestimate the share of the archaea community. This study characterized archaea communities at five full-scale drinking water distribution systems (DWDS), representing a variety of drinking water production units (A-E); A&B use artificially recharged non-disinfected groundwater (ARG), the other DWDS's supplied water disinfected by using ultraviolet (UV) light and chlorine compounds, C&D were surface waterworks and E was a ground waterworks. For the first time for archaea community analyses, this study employed the archaea-specific high-throughput sequencing primers for 16S ribosomal RNA (rRNA) as a target (reverse-transcribed cDNA; an RNA-based approach) in addition to the previously used 16S rRNA gene target (rDNA; a DNA-based approach) to reveal the active fraction of the archaea present in DWDS. The archaea community structure in varying environmental conditions in the water and biofilm of the five DWDSs were investigated by taking into consideration the system properties (cold or hot water system) and water age (distance from the treatment plants) in samples from each season of one year. The RNA-based archaea amplicon reads were obtained mostly from cold water samples from DWDSs (A-B) distributing water without disinfection where the DNA-based and RNA-based analysis created separate clusters in a weighted beta-diversity analysis. The season and location in DWDS A further affected the diversity of these archaea communities as was seen by different clusters in beta-diversity plots. The recovery of archaea reads was not adequate for analysis in any of the disinfected samples in DWDSs C-E or non-disinfected hot water in DWDSs A-B when utilizing RNA-based template. The metabolically active archaea community of DWDSs thus seemed to be effectively controlled by disinfection of water and in the hot water systems by the temperature. All biofilms regardless of DWDS showed lower species richness values (mainly Nitrososphaeria class) than non-disinfected water from DWDSs A-B where several archaea classes occurred (e.g. Woesearchaeia, Nitrososphaeria, Micrarchaeia, Methanomicrobia, Iairchaeia, Bathyarchaeia) indicating only part of the archaea members were able to survive in biofilms. Thus, Archaea has been shown as a significant part of normal DWDS biota, and their role especially in non-disinfected DWDS may be more important than previously considered.
Collapse
Affiliation(s)
- Jenni Inkinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Sallamaari Siponen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | | | - Ananda Tiwari
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Anna Pursiainen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jenni Ikonen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ari Kauppinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Ilkka T. Miettinen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
| | - Jussi Paananen
- University of Eastern Finland, Institute of Biomedicine, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Eila Torvinen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Mikko Kolehmainen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O. Box, 1627, FI-70211 Kuopio, Finland
| | - Tarja Pitkänen
- Finnish Institute for Health and Welfare, Department of Health Security, P.O. Box 95, FI-70701 Kuopio, Finland
- University of Helsinki, Faculty of Veterinary Medicine, Dept. Food Hygiene and Environmental Health, Finland
| |
Collapse
|
7
|
Kaplan-Shabtai V, Indugu N, Hennessy ML, Vecchiarelli B, Bender JS, Stefanovski D, De Assis Lage CF, Räisänen SE, Melgar A, Nedelkov K, Fetter ME, Fernandez A, Spitzer A, Hristov AN, Pitta DW. Using Structural Equation Modeling to Understand Interactions Between Bacterial and Archaeal Populations and Volatile Fatty Acid Proportions in the Rumen. Front Microbiol 2021; 12:611951. [PMID: 34220728 PMCID: PMC8248675 DOI: 10.3389/fmicb.2021.611951] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/12/2021] [Indexed: 01/01/2023] Open
Abstract
Microbial syntrophy (obligate metabolic mutualism) is the hallmark of energy-constrained anaerobic microbial ecosystems. For example, methanogenic archaea and fermenting bacteria coexist by interspecies hydrogen transfer in the complex microbial ecosystem in the foregut of ruminants; however, these synergistic interactions between different microbes in the rumen are seldom investigated. We hypothesized that certain bacteria and archaea interact and form specific microbial cohorts in the rumen. To this end, we examined the total (DNA-based) and potentially metabolically active (cDNA-based) bacterial and archaeal communities in rumen samples of dairy cows collected at different times in a 24 h period. Notably, we found the presence of distinct bacterial and archaeal networks showing potential metabolic interactions that were correlated with molar proportions of specific volatile fatty acids (VFAs). We employed hypothesis-driven structural equation modeling to test the significance of and to quantify the extent of these relationships between bacteria-archaea-VFAs in the rumen. Furthermore, we demonstrated that these distinct microbial networks were host-specific and differed between cows indicating a natural variation in specific microbial networks in the rumen of dairy cows. This study provides new insights on potential microbial metabolic interactions in anoxic environments that have broader applications in methane mitigation, energy conservation, and agricultural production.
Collapse
Affiliation(s)
- Veronica Kaplan-Shabtai
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Nagaraju Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Meagan Leslie Hennessy
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Bonnie Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Joseph Samuel Bender
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Darko Stefanovski
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | | | | | - Audino Melgar
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Krum Nedelkov
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Molly Elizabeth Fetter
- Department of Animal Science, The Pennsylvania State University, University Park, PA, United States
| | - Andrea Fernandez
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | - Addison Spitzer
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| | | | - Dipti Wilhelmina Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, United States
| |
Collapse
|
8
|
Pitta DW, Melgar A, Hristov AN, Indugu N, Narayan KS, Pappalardo C, Hennessy ML, Vecchiarelli B, Kaplan-Shabtai V, Kindermann M, Walker N. Temporal changes in total and metabolically active ruminal methanogens in dairy cows supplemented with 3-nitrooxypropanol. J Dairy Sci 2021; 104:8721-8735. [PMID: 34024597 DOI: 10.3168/jds.2020-19862] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
Abstract
The purpose of this study was to investigate the effect of 3-nitrooxypropanol (3-NOP), a potent methane inhibitor, on total and metabolically active methanogens in the rumen of dairy cows over the course of the day and over a 12-wk period. Rumen contents of 8 ruminally cannulated early-lactation dairy cows were sampled at 2, 6, and 10 h after feeding during wk 4, 8, and 12 of a randomized complete block design experiment in which 3-NOP was fed at 60 mg/kg of feed dry matter. Cows (4 fed the control and 4 fed the 3-NOP diet) were blocked based on their previous lactation milk yield or predicted milk yield. Rumen samples were extracted for microbial DNA (total) and microbial RNA (metabolically active), PCR amplified for the 16S rRNA gene of archaea, sequenced on an Illumina platform, and analyzed for archaea diversity. In addition, the 16S copy number and 3 ruminal methanogenic species were quantified using the real-time quantitative PCR assay. We detected a difference between DNA and RNA (cDNA)-based archaea communities, revealing that ruminal methanogens differ in their metabolic activities. Within DNA and cDNA components, methanogenic communities differed by sampling hour, week, and treatment. Overall, Methanobrevibacter was the dominant genus (94.3%) followed by Methanosphaera, with the latter genus having greater abundance in the cDNA component (14.5%) compared with total populations (5.5%). Methanosphaera was higher at 2 h after feeding, whereas Methanobrevibacter increased at 6 and 10 h in both groups, showing diurnal patterns among individual methanogenic lineages. Methanobrevibacter was reduced at wk 4, whereas Methanosphaera was reduced at wk 8 and 12 in cows supplemented with 3-NOP compared with control cows, suggesting differential responses among methanogens to 3-NOP. A reduction in Methanobrevibacter ruminantium in all 3-NOP samples from wk 8 was confirmed using real-time quantitative PCR. The relative abundance of individual methanogens was driven by a combination of dietary composition, dry matter intake, and hydrogen concentrations in the rumen. This study provides novel information on the effects of 3-NOP on individual methanogenic lineages, but further studies are needed to understand temporal dynamics and to validate the effects of 3-NOP on individual lineages of ruminal methanogens.
Collapse
Affiliation(s)
- D W Pitta
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348.
| | - A Melgar
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - A N Hristov
- Department of Animal Science, The Pennsylvania State University, University Park 16802
| | - N Indugu
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - K S Narayan
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - C Pappalardo
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - M L Hennessy
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - B Vecchiarelli
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - V Kaplan-Shabtai
- Department of Clinical Studies, University of Pennsylvania, School of Veterinary Medicine, New Bolton Center, Kennett Square 19348
| | - M Kindermann
- Animal Nutrition and Health, DSM Nutritional Products, Basel CH-4002, Switzerland
| | - N Walker
- Animal Nutrition and Health, DSM Nutritional Products, Basel CH-4002, Switzerland
| |
Collapse
|
9
|
Li MM, White RR, Guan LL, Harthan L, Hanigan MD. Metatranscriptomic analyses reveal ruminal pH regulates fiber degradation and fermentation by shifting the microbial community and gene expression of carbohydrate-active enzymes. Anim Microbiome 2021; 3:32. [PMID: 33892824 PMCID: PMC8063335 DOI: 10.1186/s42523-021-00092-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 04/04/2021] [Indexed: 12/24/2022] Open
Abstract
Background Volatile fatty acids (VFA) generated from ruminal fermentation by microorganisms provide up to 75% of total metabolizable energy in ruminants. Ruminal pH is an important factor affecting the profile and production of VFA by shifting the microbial community. However, how ruminal pH affects the microbial community and its relationship with expression of genes encoding carbohydrate-active enzyme (CAZyme) for fiber degradation and fermentation are not well investigated. To fill in this knowledge gap, six cannulated Holstein heifers were subjected to a continuous 10-day intraruminal infusion of distilled water or a dilute blend of hydrochloric and phosphoric acids to achieve a pH reduction of 0.5 units in a cross-over design. RNA-seq based transcriptome profiling was performed using total RNA extracted from ruminal liquid and solid fractions collected on day 9 of each period, respectively. Results Metatranscriptomic analyses identified 19 bacterial phyla with 156 genera, 3 archaeal genera, 11 protozoal genera, and 97 CAZyme transcripts in sampled ruminal contents. Within these, 4 bacteria phyla (Proteobacteria, Firmicutes, Bacteroidetes, and Spirochaetes), 2 archaeal genera (Candidatus methanomethylophilus and Methanobrevibacter), and 5 protozoal genera (Entodinium, Polyplastron, Isotricha, Eudiplodinium, and Eremoplastron) were considered as the core active microbes, and genes encoding for cellulase, endo-1,4-beta- xylanase, amylase, and alpha-N-arabinofuranosidase were the most abundant CAZyme transcripts distributed in the rumen. Rumen microbiota is not equally distributed throughout the liquid and solid phases of rumen contents, and ruminal pH significantly affect microbial ecosystem, especially for the liquid fraction. In total, 21 bacterial genera, 4 protozoal genera, and 6 genes encoding CAZyme were regulated by ruminal pH. Metabolic pathways participated in glycolysis, pyruvate fermentation to acetate, lactate, and propanoate were downregulated by low pH in the liquid fraction. Conclusions The ruminal microbiome changed the expression of transcripts for biochemical pathways of fiber degradation and VFA production in response to reduced pH, and at least a portion of the shifts in transcripts was associated with altered microbial community structure. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-021-00092-6.
Collapse
Affiliation(s)
- Meng M Li
- Deptartment of Dairy Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA. .,State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, P. R. China.
| | - Robin R White
- Deptartment of Animal and Poultry Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Laura Harthan
- Deptartment of Dairy Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| | - Mark D Hanigan
- Deptartment of Dairy Science, Virginia Polytechnic Institute and State University, Litton-Reaves Hall, 175 West Campus Drive, Blacksburg, VA, 24061, USA
| |
Collapse
|
10
|
Bailoni L, Carraro L, Cardin M, Cardazzo B. Active Rumen Bacterial and Protozoal Communities Revealed by RNA-Based Amplicon Sequencing on Dairy Cows Fed Different Diets at Three Physiological Stages. Microorganisms 2021; 9:754. [PMID: 33918504 PMCID: PMC8066057 DOI: 10.3390/microorganisms9040754] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022] Open
Abstract
Seven Italian Simmental cows were monitored during three different physiological stages, namely late lactation (LL), dry period (DP), and postpartum (PP), to evaluate modifications in their metabolically-active rumen bacterial and protozoal communities using the RNA-based amplicon sequencing method. The bacterial community was dominated by seven phyla: Proteobacteria, Bacteroidetes, Firmicutes, Spirochaetes, Fibrobacteres, Verrucomicrobia, and Tenericutes. The relative abundance of the phylum Proteobacteria decreased from 47.60 to 28.15% from LL to DP and then increased to 33.24% in PP. An opposite pattern in LL, DP, and PP stages was observed for phyla Verrucomicrobia (from 0.96 to 4.30 to 1.69%), Elusimicrobia (from 0.32 to 2.84 to 0.25%), and SR1 (from 0.50 to 2.08 to 0.79%). The relative abundance of families Succinivibrionaceae and Prevotellaceae decreased in the DP, while Ruminococcaceae increased. Bacterial genera Prevotella and Treponema were least abundant in the DP as compared to LL and PP, while Ruminobacter and Succinimonas were most abundant in the DP. The rumen eukaryotic community was dominated by protozoal phylum Ciliophora, which showed a significant decrease in relative abundance from 97.6 to 93.9 to 92.6 in LL, DP, and PP, respectively. In conclusion, the physiological stage-dependent dietary changes resulted in a clear shift in metabolically-active rumen microbial communities.
Collapse
Affiliation(s)
- Lucia Bailoni
- Department of Comparative Biomedicine and Food Science (BCA), University of Padova, Viale dell’Universitá 16, 35020 Legnaro, PD, Italy; (L.C.); (M.C.); (B.C.)
| | | | | | | |
Collapse
|
11
|
Guzman CE, Wood JL, Egidi E, White-Monsant AC, Semenec L, Grommen SVH, Hill-Yardin EL, De Groef B, Franks AE. A pioneer calf foetus microbiome. Sci Rep 2020; 10:17712. [PMID: 33077862 PMCID: PMC7572361 DOI: 10.1038/s41598-020-74677-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022] Open
Abstract
Foetus sterility until parturition is under debate due to reports of microorganisms in the foetal environment and meconium. Sufficient controls to overcome sample contamination and provide direct evidence of microorganism viability in the pre-rectal gastrointestinal tract (GIT) have been lacking. We conducted molecular and culture-based analyses to investigate the presence of a microbiome in the foetal GIT of calves at 5, 6 and 7 months gestation, while controlling for contamination. The 5 components of the GIT (ruminal fluid, ruminal tissue, caecal fluid, caecal tissue and meconium) and amniotic fluid were found to contain a pioneer microbiome of distinct bacterial and archaeal communities. Bacterial and archaeal richness varied between GIT components. The dominant bacterial phyla in amniotic fluid differed to those in ruminal and caecal fluids and meconium. The lowest bacterial and archaeal abundances were associated with ruminal tissues. Viable bacteria unique to the ruminal fluids, which were not found in the controls from 5, 6 and 7 months gestation, were cultured, subcultured, sequenced and identified. We report that the foetal GIT is not sterile but is spatially colonised before birth by a pioneer microbiome.
Collapse
Affiliation(s)
- Cesar E Guzman
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Jennifer L Wood
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia.,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, 3086, Australia.,Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Eleonora Egidi
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia.,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, 3086, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Alison C White-Monsant
- Department of Animal, Plant and Soil Sciences, Centre for Agribiosciences, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Lucie Semenec
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Sylvia V H Grommen
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Elisa L Hill-Yardin
- School of Health and Biomedical Sciences, RMIT University, Clements Drive, Bundoora, VIC, 3083, Australia
| | - Bert De Groef
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, 3086, Australia. .,Centre for Future Landscapes, La Trobe University, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
12
|
Ju JH, Wang D, Heo SY, Kim MS, Seo JW, Kim YM, Kim DH, Kang SA, Kim CH, Oh BR. Enhancement of 1,3-propanediol production from industrial by-product by Lactobacillus reuteri CH53. Microb Cell Fact 2020; 19:6. [PMID: 31931797 PMCID: PMC6956512 DOI: 10.1186/s12934-019-1275-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 12/24/2019] [Indexed: 12/14/2022] Open
Abstract
Background 1,3-propanediol (1,3-PDO) is the most widely studied value-added product that can be produced by feeding glycerol to bacteria, including Lactobacillus sp. However, previous research reported that L. reuteri only produced small amounts and had low productivity of 1,3-PDO. It is urgent to develop procedures that improve the production and productivity of 1,3-PDO. Results We identified a novel L. reuteri CH53 isolate that efficiently converted glycerol into 1,3-PDO, and performed batch co-fermentation with glycerol and glucose to evaluate its production of 1,3-PDO and other products. We optimized the fermentation conditions and nitrogen sources to increase the productivity. Fed-batch fermentation using corn steep liquor (CSL) as a replacement for beef extract led to 1,3-PDO production (68.32 ± 0.84 g/L) and productivity (1.27 ± 0.02 g/L/h) at optimized conditions (unaerated and 100 rpm). When CSL was used as an alternative nitrogen source, the activity of the vitamin B12-dependent glycerol dehydratase (dhaB) and 1,3-propanediol oxidoreductase (dhaT) increased. Also, the productivity and yield of 1,3-PDO increased as well. These results showed the highest productivity in Lactobacillus species. In addition, hurdle to 1,3-PDO production in this strain were identified via analysis of the half-maximal inhibitory concentration for growth (IC50) of numerous substrates and metabolites. Conclusions We used CSL as a low-cost nitrogen source to replace beef extract for 1,3-PDO production in L. reuteri CH53. These cells efficiently utilized crude glycerol and CSL to produce 1,3-PDO. This strain has great promise for the production of 1,3-PDO because it is generally recognized as safe (GRAS) and non-pathogenic. Also, this strain has high productivity and high conversion yield.
Collapse
Affiliation(s)
- Jung-Hyun Ju
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.,Department of Food Science & Technology and Functional Food Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dexin Wang
- Radiation Utilization and Facilities Management Division, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk, 56212, Republic of Korea.,Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Min-Soo Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Young-Min Kim
- Department of Food Science & Technology and Functional Food Research Center, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Dae-Hyuk Kim
- Institute for Molecular Biology and Genetics, Center for Fungal Pathogenesis, Chonbuk National University, Jeonju, Jeonbuk, 54896, Republic of Korea
| | - Soon-Ah Kang
- Department of Conversing Technology, Graduate School of Venture, Hoseo University, Seoul, 06724, Republic of Korea
| | - Chul-Ho Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.
| | - Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, Jeonbuk, 56212, Republic of Korea.
| |
Collapse
|
13
|
Dynamic Variations in Fecal Bacterial Community and Fermentation Profile of Holstein Steers in Response to Three Stepwise Density Diets. Animals (Basel) 2019; 9:ani9080560. [PMID: 31443265 PMCID: PMC6719243 DOI: 10.3390/ani9080560] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/02/2019] [Accepted: 08/10/2019] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The gastrointestinal microbial ecosystem of cattle impacts their health and productivity. Collection of fecal samples provides a non-invasive and practicable way to explore the relationships between fecal microbiota and host productivity or health. Fecal bacteria are influenced by diet, feeding regime, animal age, and health status. However, dynamic variations in the fecal fermentation profile and microbiota composition of finishing steers in response to variable diets are limited. In the current study, we conducted an 11-month tracking investigation to uncover the dynamic variations in fecal fermentation profile and bacterial community in steers fed three stepwise density diets. We found that fecal bacterial diversity decreased as dietary density increased and as the fattening phase continued. Our results revealed that fecal organic acids and bacterial composition were influenced by diet and fattening period. Our results also indicated that time-dependent variations of fecal fermentation profile and microbiota composition exist in the long-term fattening of steers in addition to diet stimulation. This study will be beneficial to reducing fecal contamination from the origin by optimizing diet and fattening time. Abstract The objective of this study was to track the dynamic variations in fecal bacterial composition and fermentation profile of finishing steers in response to three stepwise diets varied in energy and protein density. A total of 18 Holstein steers were divided into three groups in such a way that each group contained six animals and received one of three stepwise dietary treatments. Dietary treatments were C = standard energy and protein diet, H = high energy and protein diet, and L = low energy and protein diet. Animals were fattened for 11 months with a three-phase fattening strategy. Fecal samples were collected to evaluate the dynamics of fecal fermentation and bacterial composition in response to dietary treatments and fattening phases using 16S rRNA gene sequencing. Fecal acetate, propionate, and butyrate increased with increasing density of diet and as the fattening phase continued. The relative abundances of Firmicutes and Bacteroidetes dominated and showed 56.19% and 33.58%, respectively. Higher dietary density decreased the fecal bacterial diversity, Firmicutes to Bacteroidetes ratio, and the relative abundances of Ruminococcaceae_UCG-005, Rikenellaceae_RC9_gut_group, and Bacteroides, whereas higher dietary density increased the abundance of Prevotella_9. Our results indicated that both fecal fermentation profile and bacterial composition share a time-dependent variation in response to different dietary densities. This knowledge highlights that both diet and fattening phase impact fecal fermentation profile and bacterial composition, and may provide insight into strategies to reduce fecal contamination from the origin by optimizing diet and fattening time.
Collapse
|
14
|
Characterization of the rumen and fecal microbiome in bloated and non-bloated cattle grazing alfalfa pastures and subjected to bloat prevention strategies. Sci Rep 2019; 9:4272. [PMID: 30862851 PMCID: PMC6414552 DOI: 10.1038/s41598-019-41017-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/07/2019] [Indexed: 01/02/2023] Open
Abstract
Frothy bloat is an often fatal digestive disorder of cattle grazing alfalfa pastures. The aim of this study was to investigate ruminal and fecal microbiota dynamics associated with development of alfalfa-induced frothy bloat and to further explore how bloat prevention strategies influence the composition of these microbial communities. In a 3 × 3 crossover experiment, twelve rumen-cannulated steers were sequentially subjected to: (1) pure alfalfa pasture, (2) pure alfalfa pasture supplemented with the pluronic detergent ALFASURE, and (3) alfalfa – sainfoin mixed pasture. Eleven out of 12 steers in pure alfalfa pasture developed clinical bloat, whereas ALFASURE treatment prevented the development of bloat in all 12 steers and alfalfa – sainfoin prevented bloat in 5 out of 11 steers. Development of bloat was associated with considerable shifts in the microbiota profile of rumen contents. In particular, the microbiota of solid rumen contents from bloated steers contained higher species richness and diversity. Streptococcus, Succinivibrio and unclassified Myxococcales were enriched in the rumen microbiota of bloated steers, whereas Fibrobacter and Ruminococcus were overrepresented in the rumen contents of non-bloated steers. Our results provide novel insights into bloat-associated shifts in the composition and predicted functional properties of the rumen microbiota of cattle grazing alfalfa pasture.
Collapse
|
15
|
Ramos-Morales E, Rossi G, Cattin M, Jones E, Braganca R, Newbold CJ. The effect of an isoflavonid-rich liquorice extract on fermentation, methanogenesis and the microbiome in the rumen simulation technique. FEMS Microbiol Ecol 2018; 94:4817530. [PMID: 29361159 PMCID: PMC6018963 DOI: 10.1093/femsec/fiy009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 01/18/2018] [Indexed: 11/13/2022] Open
Abstract
Due to the antimicrobial activity of flavonoids, it has been suggested that they may provide a possible alternative to antibiotics to stimulate productivity and reduce the environmental load of ruminant agriculture. We hypothesised that an extract of liquorice, rich in prenylated isoflavonoids and particularly glabridin, might potentially improve the efficiency of nitrogen utilisation and reduce methane production in the rumen. When added to a long-term rumen simulating fermentor (RUSITEC), liquorice extract at 1 g L-1 decreased ammonia production (-51%; P < 0.001) without affecting the overall fermentation process. When added at 2 g L-1, decreases in not only ammonia production (-77%; P < 0.001), but also methane (-27%; P = 0.039) and total VFA production (-15%; P = 0.003) were observed. These effects in fermentation were probably related to a decrease in protozoa numbers, a less diverse bacteria population as well as changes in the structure of both the bacterial and archaeal communities. The inclusion of an isoflavonoid-rich extract from liquorice in the diet may potentially improve the efficiency of the feed utilisation by ruminants.
Collapse
Affiliation(s)
- E Ramos-Morales
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - G Rossi
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro (PD), 35020, Italy
| | - M Cattin
- Department of Agronomy, Food, Natural resources, Animals and Environment, University of Padova, Legnaro (PD), 35020, Italy
| | - E Jones
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - R Braganca
- BioComposites Centre, Bangor University, Bangor, LL57 2UW, United kingdom
| | - C J Newbold
- Scotland's Rural College, Edinburgh, EH9 3JG, United Kingdom
| |
Collapse
|
16
|
Comtet-Marre S, Chaucheyras-Durand F, Bouzid O, Mosoni P, Bayat AR, Peyret P, Forano E. FibroChip, a Functional DNA Microarray to Monitor Cellulolytic and Hemicellulolytic Activities of Rumen Microbiota. Front Microbiol 2018; 9:215. [PMID: 29487591 PMCID: PMC5816793 DOI: 10.3389/fmicb.2018.00215] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/30/2018] [Indexed: 01/22/2023] Open
Abstract
Ruminants fulfill their energy needs for growth primarily through microbial breakdown of plant biomass in the rumen. Several biotic and abiotic factors influence the efficiency of fiber degradation, which can ultimately impact animal productivity and health. To provide more insight into mechanisms involved in the modulation of fibrolytic activity, a functional DNA microarray targeting genes encoding key enzymes involved in cellulose and hemicellulose degradation by rumen microbiota was designed. Eight carbohydrate-active enzyme (CAZyme) families (GH5, GH9, GH10, GH11, GH43, GH48, CE1, and CE6) were selected which represented 392 genes from bacteria, protozoa, and fungi. The DNA microarray, designated as FibroChip, was validated using targets of increasing complexity and demonstrated sensitivity and specificity. In addition, FibroChip was evaluated for its explorative and semi-quantitative potential. Differential expression of CAZyme genes was evidenced in the rumen bacterium Fibrobacter succinogenes S85 grown on wheat straw or cellobiose. FibroChip was used to identify the expressed CAZyme genes from the targeted families in the rumen of a cow fed a mixed diet based on grass silage. Among expressed genes, those encoding GH43, GH5, and GH10 families were the most represented. Most of the F. succinogenes genes detected by the FibroChip were also detected following RNA-seq analysis of RNA transcripts obtained from the rumen fluid sample. Use of the FibroChip also indicated that transcripts of fiber degrading enzymes derived from eukaryotes (protozoa and anaerobic fungi) represented a significant proportion of the total microbial mRNA pool. FibroChip represents a reliable and high-throughput tool that enables researchers to monitor active members of fiber degradation in the rumen.
Collapse
Affiliation(s)
- Sophie Comtet-Marre
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.,R&D Animal Nutrition, Lallemand, Blagnac, France
| | - Frédérique Chaucheyras-Durand
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France.,R&D Animal Nutrition, Lallemand, Blagnac, France
| | - Ourdia Bouzid
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Pascale Mosoni
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Ali R Bayat
- Milk Production Solutions, Green Technology, Natural Resources Institute Finland (Luke), Helsinki, Finland
| | - Pierre Peyret
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Evelyne Forano
- UMR 454 MEDIS, INRA, Université Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
17
|
Zhu Z, Noel SJ, Difford GF, Al-Soud WA, Brejnrod A, Sørensen SJ, Lassen J, Løvendahl P, Højberg O. Community structure of the metabolically active rumen bacterial and archaeal communities of dairy cows over the transition period. PLoS One 2017; 12:e0187858. [PMID: 29117259 PMCID: PMC5678694 DOI: 10.1371/journal.pone.0187858] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 10/28/2017] [Indexed: 01/05/2023] Open
Abstract
Dairy cows experience dramatic changes in host physiology from gestation to lactation period and dietary switch from high-forage prepartum diet to high-concentrate postpartum diet over the transition period (parturition +/- three weeks). Understanding the community structure and activity of the rumen microbiota and its associative patterns over the transition period may provide insight for e.g. improving animal health and production. In the present study, rumen samples from ten primiparous Holstein dairy cows were collected over seven weeks spanning the transition period. Total RNA was extracted from the rumen samples and cDNA thereof was subsequently used for characterizing the metabolically active bacterial (16S rRNA transcript amplicon sequencing) and archaeal (qPCR, T-RFLP and mcrA and 16S rRNA transcript amplicon sequencing) communities. The metabolically active bacterial community was dominated by three phyla, showing significant changes in relative abundance range over the transition period: Firmicutes (from prepartum 57% to postpartum 35%), Bacteroidetes (from prepartum 22% to postpartum 18%) and Proteobacteria (from prepartum 7% to postpartum 32%). For the archaea, qPCR analysis of 16S rRNA transcript number, revealed a significant prepartum to postpartum increase in Methanobacteriales, in accordance with an observed increase (from prepartum 80% to postpartum 89%) in relative abundance of 16S rRNA transcript amplicons allocated to this order. On the other hand, a significant prepartum to postpartum decrease (from 15% to 2%) was observed in relative abundance of Methanomassiliicoccales 16S rRNA transcripts. In contrast to qPCR analysis of the 16S rRNA transcripts, quantification of mcrA transcripts revealed no change in total abundance of metabolically active methanogens over the transition period. According to T-RFLP analysis of the mcrA transcripts, two Methanobacteriales genera, Methanobrevibacter and Methanosphaera (represented by the T-RFs 39 and 267 bp), represented more than 70% of the metabolically active methanogens, showing no significant changes over the transition period; minor T-RFs, likely to represent members of the order Methanomassiliicoccales and with a relative abundance below 5% in total, decreased significantly over the transition period. In accordance with the T-RFLP analysis, the mcrA transcript amplicon sequencing revealed Methanobacteriales to cover 99% of the total reads, dominated by the genera Methanobrevibacter (75%) and Methanosphaera (24%), whereas the Methanomassiliicoccales order covered only 0.2% of the total reads. In conclusion, the present study showed that the structure of the metabolically active bacterial and archaeal rumen communities changed over the transition period, likely in response to the dramatic changes in physiology and nutritional factors like dry matter intake and feed composition. It should be noted however that for the methanogens, the observed community changes were influenced by the analyzed gene (mcrA or 16S rRNA).
Collapse
Affiliation(s)
- Zhigang Zhu
- Department of Animal Science, Aarhus University, Tjele, Denmark
- * E-mail: (OH); (ZZ)
| | | | - Gareth Frank Difford
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Waleed Abu Al-Soud
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Asker Brejnrod
- Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Jan Lassen
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Peter Løvendahl
- Center for Quantitative Genetics and Genomics, Department of Molecular Biology and Genetics, Aarhus University, Tjele, Denmark
| | - Ole Højberg
- Department of Animal Science, Aarhus University, Tjele, Denmark
- * E-mail: (OH); (ZZ)
| |
Collapse
|
18
|
Investigation and manipulation of metabolically active methanogen community composition during rumen development in black goats. Sci Rep 2017; 7:422. [PMID: 28341835 PMCID: PMC5428682 DOI: 10.1038/s41598-017-00500-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/28/2017] [Indexed: 01/08/2023] Open
Abstract
This study was performed to investigate the initial colonization of metabolically active methanogens and subsequent changes in four fractions: the rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) from 1 to 60 d after birth, and manipulate methanogen community by early weaning on 40 d and supplementing rhubarb from 40 to 60 d in black goats. The RNA-based real-time quantitative PCR and 16S rRNA amplicon sequencing were employed to indicate the metabolically active methanogens. Results showed that active methanogens colonized in RL and RE on 1 d after birth. RP and RE contained the highest and lowest density of methanogens, respectively. Methanobrevibacter, Candidatus Methanomethylophilus, and Methanosphaera were the top three genera. The methanogen communities before weaning differed from those post weaning and the structure of the methanogen community in RE was distinct from those in the other three fractions. The discrepancies in the distribution of methanogens across four fractions, and various fluctuations in abundances among four fractions according to age were observed. The addition of rhubarb significantly (P < 0.05) reduced the abundances of Methanimicrococcus spp. in four fractions on 50 d, but did not change the methanogen community composition on 60 d.
Collapse
|
19
|
Wang Z, Elekwachi C, Jiao J, Wang M, Tang S, Zhou C, Tan Z, Forster RJ. Changes in Metabolically Active Bacterial Community during Rumen Development, and Their Alteration by Rhubarb Root Powder Revealed by 16S rRNA Amplicon Sequencing. Front Microbiol 2017; 8:159. [PMID: 28223972 PMCID: PMC5293741 DOI: 10.3389/fmicb.2017.00159] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/20/2017] [Indexed: 01/12/2023] Open
Abstract
The objective of this present study was to explore the initial establishment of metabolically active bacteria and subsequent evolution in four fractions: rumen solid-phase (RS), liquid-phase (RL), protozoa-associated (RP), and epithelium-associated (RE) through early weaning and supplementing rhubarb root powder in 7 different age groups (1, 10, 20, 38, 41, 50, and 60 d) during rumen development. Results of the 16S rRNA sequencing based on RNA isolated from the four fractions revealed that the potentially active bacterial microbiota in four fractions were dominated by the phyla Proteobacteria, Firmicutes, and Bacteroidetes regardless of different ages. An age-dependent increment of Chao 1 richness was observed in the fractions of RL and RE. The principal coordinate analysis (PCoA) indicated that samples in four fractions all clustered based on different age groups, and the structure of the bacterial community in RE was distinct from those in other three fractions. The abundances of Proteobacteria decreased significantly (P < 0.05) with age, while increases in the abundances of Firmicutes and Bacteroidetes were noted. At the genus level, the abundance of the predominant genus Mannheimia in the Proteobacteria phylum decreased significantly (P < 0.05) after 1 d, while the genera Quinella, Prevotella, Fretibacterium, Ruminococcus, Lachnospiraceae NK3A20 group, and Atopobium underwent different manners of increases and dominated the bacterial microbiota across four fractions. Variations of the distributions of some specific bacterial genera across fractions were observed, and supplementation of rhubarb affected the relative abundance of various genera of bacteria.
Collapse
Affiliation(s)
- Zuo Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of SciencesChangsha, China; University of Chinese Academy of SciencesBeijing, China; Lethbridge Research and Development Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Chijioke Elekwachi
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| | - Jinzhen Jiao
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Min Wang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Shaoxun Tang
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Chuanshe Zhou
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Zhiliang Tan
- Key Laboratory for Agro-Ecological Processes in Subtropical Region, Hunan Research Center of Livestock and Poultry Sciences, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences Changsha, China
| | - Robert J Forster
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada Lethbridge, AB, Canada
| |
Collapse
|
20
|
Kobayashi Y, Oh S, Myint H, Koike S. Use of Asian selected agricultural byproducts to modulate rumen microbes and fermentation. J Anim Sci Biotechnol 2016; 7:70. [PMID: 28018590 PMCID: PMC5159970 DOI: 10.1186/s40104-016-0126-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/25/2016] [Indexed: 11/10/2022] Open
Abstract
In the last five decades, attempts have been made to improve rumen fermentation and host animal nutrition through modulation of rumen microbiota. The goals have been decreasing methane production, partially inhibiting protein degradation to avoid excess release of ammonia, and activation of fiber digestion. The main approach has been the use of dietary supplements. Since growth-promoting antibiotics were banned in European countries in 2006, safer alternatives including plant-derived materials have been explored. Plant oils, their component fatty acids, plant secondary metabolites and other compounds have been studied, and many originate or are abundantly available in Asia as agricultural byproducts. In this review, the potency of selected byproducts in inhibition of methane production and protein degradation, and in stimulation of fiber degradation was described in relation to their modes of action. In particular, cashew and ginkgo byproducts containing alkylphenols to mitigate methane emission and bean husks as a source of functional fiber to boost the number of fiber-degrading bacteria were highlighted. Other byproducts influencing rumen microbiota and fermentation profile were also described. Future application of these feed and additive candidates is very dependent on a sufficient, cost-effective supply and optimal usage in feeding practice.
Collapse
Affiliation(s)
- Yasuo Kobayashi
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Seongjin Oh
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Htun Myint
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| | - Satoshi Koike
- Lab of Animal Function and Nutrition, Research Faculty of Agriculture, Hokkaido University, Sapporo, 060-8589 Japan
| |
Collapse
|
21
|
Li F, Henderson G, Sun X, Cox F, Janssen PH, Guan LL. Taxonomic Assessment of Rumen Microbiota Using Total RNA and Targeted Amplicon Sequencing Approaches. Front Microbiol 2016; 7:987. [PMID: 27446027 PMCID: PMC4916217 DOI: 10.3389/fmicb.2016.00987] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
Taxonomic characterization of active gastrointestinal microbiota is essential to detect shifts in microbial communities and functions under various conditions. This study aimed to identify and quantify potentially active rumen microbiota using total RNA sequencing and to compare the outcomes of this approach with the widely used targeted RNA/DNA amplicon sequencing technique. Total RNA isolated from rumen digesta samples from five beef steers was subjected to Illumina paired-end sequencing (RNA-seq), and bacterial and archaeal amplicons of partial 16S rRNA/rDNA were subjected to 454 pyrosequencing (RNA/DNA Amplicon-seq). Taxonomic assessments of the RNA-seq, RNA Amplicon-seq, and DNA Amplicon-seq datasets were performed using a pipeline developed in house. The detected major microbial phylotypes were common among the three datasets, with seven bacterial phyla, fifteen bacterial families, and five archaeal taxa commonly identified across all datasets. There were also unique microbial taxa detected in each dataset. Elusimicrobia and Verrucomicrobia phyla; Desulfovibrionaceae, Elusimicrobiaceae, and Sphaerochaetaceae families; and Methanobrevibacter woesei were only detected in the RNA-Seq and RNA Amplicon-seq datasets, whereas Streptococcaceae was only detected in the DNA Amplicon-seq dataset. In addition, the relative abundances of four bacterial phyla, eight bacterial families and one archaeal taxon were different among the three datasets. This is the first study to compare the outcomes of rumen microbiota profiling between RNA-seq and RNA/DNA Amplicon-seq datasets. Our results illustrate the differences between these methods in characterizing microbiota both qualitatively and quantitatively for the same sample, and so caution must be exercised when comparing data.
Collapse
Affiliation(s)
- Fuyong Li
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Gemma Henderson
- AgResearch Ltd., Grasslands Research Centre Palmerston North, New Zealand
| | - Xu Sun
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Faith Cox
- AgResearch Ltd., Grasslands Research Centre Palmerston North, New Zealand
| | - Peter H Janssen
- AgResearch Ltd., Grasslands Research Centre Palmerston North, New Zealand
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
22
|
Myer PR, Kim M, Freetly HC, Smith TPL. Evaluation of 16S rRNA amplicon sequencing using two next-generation sequencing technologies for phylogenetic analysis of the rumen bacterial community in steers. J Microbiol Methods 2016; 127:132-140. [PMID: 27282101 DOI: 10.1016/j.mimet.2016.06.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/03/2016] [Accepted: 06/03/2016] [Indexed: 11/16/2022]
Abstract
Next generation sequencing technologies have vastly changed the approach of sequencing of the 16S rRNA gene for studies in microbial ecology. Three distinct technologies are available for large-scale 16S sequencing. All three are subject to biases introduced by sequencing error rates, amplification primer selection, and read length, which can affect the apparent microbial community. In this study, we compared short read 16S rRNA variable regions, V1-V3, with that of near-full length 16S regions, V1-V8, using highly diverse steer rumen microbial communities, in order to examine the impact of technology selection on phylogenetic profiles. Short paired-end reads from the Illumina MiSeq platform were used to generate V1-V3 sequence, while long "circular consensus" reads from the Pacific Biosciences RSII instrument were used to generate V1-V8 data. The two platforms revealed similar microbial operational taxonomic units (OTUs), as well as similar species richness, Good's coverage, and Shannon diversity metrics. However, the V1-V8 amplified ruminal community resulted in significant increases in several orders of taxa, such as phyla Proteobacteria and Verrucomicrobia (P < 0.05). Taxonomic classification accuracy was also greater in the near full-length read. UniFrac distance matrices using jackknifed UPGMA clustering also noted differences between the communities. These data support the consensus that longer reads result in a finer phylogenetic resolution that may not be achieved by shorter 16S rRNA gene fragments. Our work on the cattle rumen bacterial community demonstrates that utilizing near full-length 16S reads may be useful in conducting a more thorough study, or for developing a niche-specific database to use in analyzing data from shorter read technologies when budgetary constraints preclude use of near-full length 16S sequencing.
Collapse
Affiliation(s)
- Phillip R Myer
- Department of Animal Science, University of Tennesse Institute of Agriculture, University of Tennessee, Knoxville, TN 37996.
| | - MinSeok Kim
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933(1).
| | - Harvey C Freetly
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933(1).
| | - Timothy P L Smith
- USDA-ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933(1).
| |
Collapse
|
23
|
Pitta DW, Pinchak WE, Indugu N, Vecchiarelli B, Sinha R, Fulford JD. Metagenomic Analysis of the Rumen Microbiome of Steers with Wheat-Induced Frothy Bloat. Front Microbiol 2016; 7:689. [PMID: 27242715 PMCID: PMC4863135 DOI: 10.3389/fmicb.2016.00689] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 04/26/2016] [Indexed: 11/13/2022] Open
Abstract
Frothy bloat is a serious metabolic disorder that affects stocker cattle grazing hard red winter wheat forage in the Southern Great Plains causing reduced performance, morbidity, and mortality. We hypothesize that a microbial dysbiosis develops in the rumen microbiome of stocker cattle when grazing on high quality winter wheat pasture that predisposes them to frothy bloat risk. In this study, rumen contents were harvested from six cannulated steers grazing hard red winter wheat (three with bloat score “2” and three with bloat score “0”), extracted for genomic DNA and subjected to 16S rDNA and shotgun sequencing on 454/Roche platform. Approximately 1.5 million reads were sequenced, assembled and assigned for phylogenetic and functional annotations. Bacteria predominated up to 84% of the sequences while archaea contributed to nearly 5% of the sequences. The abundance of archaea was higher in bloated animals (P < 0.05) and dominated by Methanobrevibacter. Predominant bacterial phyla were Firmicutes (65%), Actinobacteria (13%), Bacteroidetes (10%), and Proteobacteria (6%) across all samples. Genera from Firmicutes such as Clostridium, Eubacterium, and Butyrivibrio increased (P < 0.05) while Prevotella from Bacteroidetes decreased in bloated samples. Co-occurrence analysis revealed syntrophic associations between bacteria and archaea in non-bloated samples, however; such interactions faded in bloated samples. Functional annotations of assembled reads to Subsystems database revealed the abundance of several metabolic pathways, with carbohydrate and protein metabolism well represented. Assignment of contigs to CaZy database revealed a greater diversity of Glycosyl Hydrolases dominated by oligosaccharide breaking enzymes (>70%) in non-bloated samples. However, the abundance and diversity of CaZymes were greatly reduced in bloated samples indicating the disruption of carbohydrate metabolism. We conclude that mild to moderate frothy bloat results from tradeoffs both within and between microbial domains due to greater competition for substrates that are of limited availability as a result of biofilm formation.
Collapse
Affiliation(s)
- D W Pitta
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania Kennett Square, PA, USA
| | | | - N Indugu
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania Kennett Square, PA, USA
| | - B Vecchiarelli
- Department of Clinical Studies, School of Veterinary Medicine, University of Pennsylvania Kennett Square, PA, USA
| | - R Sinha
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania Kennett Square, PA, USA
| | | |
Collapse
|
24
|
Belanche A, Pinloche E, Preskett D, Newbold CJ. Effects and mode of action of chitosan and ivy fruit saponins on the microbiome, fermentation and methanogenesis in the rumen simulation technique. FEMS Microbiol Ecol 2015; 92:fiv160. [PMID: 26676056 PMCID: PMC5831848 DOI: 10.1093/femsec/fiv160] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2015] [Indexed: 01/09/2023] Open
Abstract
This study investigates the effects of supplementing a control diet (CON) with chitosan (CHI) or ivy fruit saponins (IVY) as natural feed additives. Both additives had similar abilities to decrease rumen methanogenesis (–42% and –40%, respectively) using different mechanisms: due to its antimicrobial and nutritional properties CHI promoted a shift in the fermentation pattern towards propionate production which explained about two thirds of the decrease in methanogenesis. This shift was achieved by a simplification of the structure in the bacterial community and a substitution of fibrolytic (Firmicutes and Fibrobacteres) by amylolytic bacteria (Bacteroidetes and Proteobacteria) which led to greater amylase activity, lactate and microbial protein yield with no detrimental effect on feed digestibility. Contrarily, IVY had negligible nutritional properties promoting minor changes in the fermentation pattern and on the bacterial community. Instead, IVY modified the structure of the methanogen community and decreased its diversity. This specific antimicrobial effect of IVY against methanogens was considered its main antimethanogenic mechanism. IVY had however a negative impact on microbial protein synthesis. Therefore, CHI and IVY should be further investigated in vivo to determine the optimum doses which maintain low methanogenesis but prevent negative effects on the rumen fermentation and animal metabolism. Rumen function is generally suboptimal leading to loses in the form of methane and nitrogen, analysis of the rumen microbiome is vital to understand the mode of action of new feed additives to improve rumen function.
Collapse
Affiliation(s)
- Alejandro Belanche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - Eric Pinloche
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| | - David Preskett
- BioComposites Centre, Bangor University, LL57 2UW, Bangor, UK
| | - C Jamie Newbold
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, SY23 3DA, Aberystwyth, UK
| |
Collapse
|
25
|
Metzler-Zebeli B, Khol-Parisini A, Gruber L, Zebeli Q. Microbial populations and fermentation profiles in rumen liquid and solids of Holstein cows respond differently to dietary barley processing. J Appl Microbiol 2015; 119:1502-14. [DOI: 10.1111/jam.12958] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 09/12/2015] [Accepted: 09/16/2015] [Indexed: 01/21/2023]
Affiliation(s)
- B.U. Metzler-Zebeli
- Department for Farm Animals and Veterinary Public Health; University Clinic for Swine; University of Veterinary Medicine Vienna; Vienna Austria
- Research Cluster “Animal Gut Health”; Department for Farm Animals and Veterinary Public Health; University of Veterinary Medicine Vienna; Vienna Austria
| | - A. Khol-Parisini
- Research Cluster “Animal Gut Health”; Department for Farm Animals and Veterinary Public Health; University of Veterinary Medicine Vienna; Vienna Austria
- Department for Farm Animals and Veterinary Public Health; Institute of Animal Nutrition and Functional Plant Compounds; University of Veterinary Medicine; Vienna Austria
| | - L. Gruber
- Institute of Livestock Research; Agricultural Research and Education Centre Raumberg-Gumpenstein; Irdning Austria
| | - Q. Zebeli
- Research Cluster “Animal Gut Health”; Department for Farm Animals and Veterinary Public Health; University of Veterinary Medicine Vienna; Vienna Austria
- Department for Farm Animals and Veterinary Public Health; Institute of Animal Nutrition and Functional Plant Compounds; University of Veterinary Medicine; Vienna Austria
| |
Collapse
|
26
|
Lorenzen E, Kudirkiene E, Gutman N, Grossi AB, Agerholm JS, Erneholm K, Skytte C, Dalgaard MD, Bojesen AM. The vaginal microbiome is stable in prepubertal and sexually mature Ellegaard Göttingen Minipigs throughout an estrous cycle. Vet Res 2015; 46:125. [PMID: 26510418 PMCID: PMC4625881 DOI: 10.1186/s13567-015-0274-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/15/2015] [Indexed: 11/30/2022] Open
Abstract
Although the pig has been introduced as an advanced animal model of genital tract infections in women, almost no knowledge exists on the porcine vaginal microbiota, especially in barrier-raised Göttingen Minipigs. In women, the vaginal microbiota plays a crucial role for a healthy vaginal environment and the fate of sexually transmitted infections such as Chlamydia trachomatis infections. Therefore, knowledge on the vaginal microbiota is urgently needed for the minipig model. The aim of this study was to characterize the microbiota of the anterior vagina by 16 s rRNA gene sequencing in prepubertal and sexually mature Göttingen Minipigs during an estrous cycle. The dominating phyla in the vaginal microbiota consisted of Firmicutes, Proteobacteria, Actinobacteria, Bacteriodetes and Tenericutes. The most abundant bacterial families were Enterobacteriaceae, unclassified families from Gammaproteobacteria, Clostridiales Family XI Incertae Sedis, Paenibacillaceae, Lactobacillaceae, Ruminococcaceae and Syntrophaceae. We found a higher abundance of Lactobacillaceae in the prepubertal Göttingen Minipigs compared to sexually mature non-pregnant Göttingen Minipigs. However, correlation tests and diversity parameters revealed a very stable vaginal microbiota in the Göttingen Minipigs, both before and after sexual maturity and on different days throughout an estrous cycle. The vaginal microbiota in Göttingen Minipigs was not dominated by lactobacilli, as it is in women and according to our results the minipig vaginal microbiota is very stable, in opposite to women. These differences should be considered when using the minipig as a model of the genital tract in women.
Collapse
Affiliation(s)
- Emma Lorenzen
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | - Egle Kudirkiene
- Section for Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Nicole Gutman
- Section for Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | - Jørgen Steen Agerholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Karin Erneholm
- Section for Veterinary Reproduction and Obstetrics, Department of Large Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Chlamydia Vaccine Research, Department of Infectious Disease Immunology, Statens Serum Institut, Copenhagen, Denmark.
| | | | - Marlene Danner Dalgaard
- DTU Multi-Assay Core, Department of Systems Biology, Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark.
| | - Anders Miki Bojesen
- Section for Veterinary Clinical Microbiology, Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Kormas KA, Pachiadaki MG, Karayanni H, Leadbetter ER, Bernhard JM, Edgcomb VP. Inter-comparison of the potentially active prokaryotic communities in the halocline sediments of Mediterranean deep-sea hypersaline basins. Extremophiles 2015; 19:949-60. [DOI: 10.1007/s00792-015-0770-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/28/2015] [Indexed: 11/29/2022]
|
28
|
Martínez-Fernández G, Abecia L, Martín-García AI, Ramos-Morales E, Denman SE, Newbold CJ, Molina-Alcaide E, Yáñez-Ruiz DR. Response of the rumen archaeal and bacterial populations to anti-methanogenic organosulphur compounds in continuous-culture fermenters. FEMS Microbiol Ecol 2015; 91:fiv079. [DOI: 10.1093/femsec/fiv079] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2015] [Indexed: 11/14/2022] Open
|
29
|
Primers: Functional Genes and 16S rRNA Genes for Methanogens. SPRINGER PROTOCOLS HANDBOOKS 2015. [DOI: 10.1007/8623_2015_138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
30
|
Martínez-Fernández G, Abecia L, Arco A, Cantalapiedra-Hijar G, Martín-García A, Molina-Alcaide E, Kindermann M, Duval S, Yáñez-Ruiz D. Effects of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol on ruminal fermentation, microbial abundance, and methane emissions in sheep. J Dairy Sci 2014; 97:3790-9. [DOI: 10.3168/jds.2013-7398] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 02/22/2014] [Indexed: 11/19/2022]
|
31
|
An antimethanogenic nutritional intervention in early life of ruminants modifies ruminal colonization by Archaea. ARCHAEA-AN INTERNATIONAL MICROBIOLOGICAL JOURNAL 2014; 2014:841463. [PMID: 24803846 PMCID: PMC3997891 DOI: 10.1155/2014/841463] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 01/20/2023]
Abstract
The aim of this work was to study whether feeding a methanogen inhibitor from birth of goat kids and their does has an impact on the archaeal population colonizing the rumen and to what extent the impact persists later in life. Sixteen goats giving birth to two kids were used. Eight does were treated (D+) with bromochloromethane after giving birth and over 2 months. The other 8 goats were not treated (D−). One kid per doe in both groups was treated with bromochloromethane (k+) for 3 months while the other was untreated (k−), resulting in four experimental groups: D+/k+, D+/k−, D−/k+, and D−/k−. Rumen samples were collected from kids at weaning and 1 and 4 months after (3 and 6 months after birth) and from does at the end of the treating period (2 months). Pyrosequencing analyses showed a modified archaeal community composition colonizing the rumen of kids, although such effect did not persist entirely 4 months after; however, some less abundant groups remained different in treated and control animals. The different response on the archaeal community composition observed between offspring and adult goats suggests that the competition occurring in the developing rumen to occupy different niches offer potential for intervention.
Collapse
|
32
|
Microbiota and metabolite profiling reveal specific alterations in bacterial community structure and environment in the cystic fibrosis airway during exacerbation. PLoS One 2013; 8:e82432. [PMID: 24358183 PMCID: PMC3866110 DOI: 10.1371/journal.pone.0082432] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 10/23/2013] [Indexed: 01/04/2023] Open
Abstract
Chronic polymicrobial infections of the lung are the foremost cause of morbidity and mortality in cystic fibrosis (CF) patients. The composition of the microbial flora of the airway alters considerably during infection, particularly during patient exacerbation. An understanding of which organisms are growing, their environment and their behaviour in the airway is of importance for designing antibiotic treatment regimes and for patient prognosis. To this end, we have analysed sputum samples taken from separate cohorts of CF and non-CF subjects for metabolites and in parallel, and we have examined both isolated DNA and RNA for the presence of 16S rRNA genes and transcripts by high-throughput sequencing of amplicon or cDNA libraries. This analysis revealed that although the population size of all dominant orders of bacteria as measured by DNA- and RNA- based methods are similar, greater discrepancies are seen with less prevalent organisms, some of which we associated with CF for the first time. Additionally, we identified a strong relationship between the abundance of specific anaerobes and fluctuations in several metabolites including lactate and putrescine during patient exacerbation. This study has hence identified organisms whose occurrence within the CF microbiome has been hitherto unreported and has revealed potential metabolic biomarkers for exacerbation.
Collapse
|