1
|
Wang Y, Perepelov AV, Senchenkova SN, Lu G, Wang X, Ma G, Yang Q, Yuan J, Wang Y, Xie L, Jiang X, Qin J, Liu D, Liu M, Huang D, Liu B. Glycoengineering directs de novo biomanufacturing of UPEC O21 O-antigen polysaccharide based glycoprotein. Int J Biol Macromol 2023; 253:126993. [PMID: 37739281 DOI: 10.1016/j.ijbiomac.2023.126993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 09/06/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Glycoproteins, in which polysaccharides are usually attached to proteins, are an important class of biomolecules that are widely used as therapeutic agents in clinical treatments for decades. Uropathogenic Escherichia coli (UPEC) O21 has been identified as a serogroup that induces urinary tract infections, with a global increasing number among women and young children. Therefore, there is an urgent need to establish protective vaccines against UPEC infection. Herein, we engineered non-pathogenic E. coli MG1655 to achieve robust, cost-effective de novo biosynthesis of O21 O-antigen polysaccharide-based glycoprotein against UPEC O21. Specifically, this glycoengineered E. coli MG1655 was manipulated for high-efficient glucose-glycerol co-utilization and for the gene cluster installation and O-glycosylation machinery assembly. The key pathways of UDP-sugar precursors were also strengthened to enforce more carbon flux towards the glycosyl donors, which enhanced the glycoprotein titer by 5.6-fold. Further optimization of culture conditions yielded glycoproteins of up to 35.34 mg/L. Glycopeptide MS confirmed the preciset biosynthesis of glycoprotein. This glycoprotein elicited antigen-specific IgG immune responses and significantly reduced kidney and bladder colonization. This bacterial cell-based glyco-platform and optimized strategies can provide a guideline for the biosynthesis of other value-added glycoproteins.
Collapse
Affiliation(s)
- Yuhui Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China; National Glycoengineering Research Center, Shandong University, Qingdao, Shandong 266237, China
| | - Andrei V Perepelov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Sof'ya N Senchenkova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russian Federation
| | - Gege Lu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaohan Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Guozhen Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Qian Yang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jian Yuan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Yanling Wang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Lijie Xie
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Xiaolong Jiang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Jingliang Qin
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Dan Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Miaomiao Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China
| | - Di Huang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| | - Bin Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin, China; TEDA Institute of Biological Sciences and Biotechnology, Tianjin Key Laboratory of Microbial Functional Genomics, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Gao R, Pan H, Kai L, Han K, Lian J. Microbial degradation and valorization of poly(ethylene terephthalate) (PET) monomers. World J Microbiol Biotechnol 2022; 38:89. [PMID: 35426614 DOI: 10.1007/s11274-022-03270-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/23/2022] [Indexed: 12/22/2022]
Abstract
The polyethylene terephthalate (PET) is one of the major plastics with a huge annual production. Alongside with its mass production and wide applications, PET pollution is threatening and damaging the environment and human health. Although mechanical or chemical methods can deal with PET, the process suffers from high cost and the hydrolyzed monomers will cause secondary pollution. Discovery of plastic-degrading microbes and the corresponding enzymes emerges new hope to cope with this issue. Combined with synthetic biology and metabolic engineering, microbial cell factories not only provide a promising approach to degrade PET, but also enable the conversion of its monomers, ethylene glycol (EG) and terephthalic acid (TPA), into value-added compounds. In this way, PET wastes can be handled in environment-friendly and more potentially cost-effective processes. While PET hydrolases have been extensively reviewed, this review focuses on the microbes and metabolic pathways for the degradation of PET monomers. In addition, recent advances in the biotransformation of TPA and EG into value-added compounds are discussed in detail.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China
| | - Haojie Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Lei Kai
- Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 22116, Xuzhou, China.,Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Kun Han
- Jiangsu Keybio Co. LTD, 22116, Xuzhou, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, 310027, Hangzhou, China. .,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, 310027, Hangzhou, China.
| |
Collapse
|
3
|
An Escherichia coli FdrA Variant Derived from Syntrophic Coculture with a Methanogen Increases Succinate Production Due to Changes in Allantoin Degradation. mSphere 2021; 6:e0065421. [PMID: 34494882 PMCID: PMC8550087 DOI: 10.1128/msphere.00654-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type Escherichia coli was adapted to syntrophic growth with Methanobacterium formicicum for glycerol fermentation over 44 weeks. Succinate production by E. coli started to increase in the early stages of syntrophic growth. Genetic analysis of the cultured E. coli population by pooled sequencing at eight time points suggests that (i) rapid evolution occurred through repeated emergence of mutators that introduced a large number of nucleotide variants and (ii) many mutators increased to high frequencies but remained polymorphic throughout the continuous cultivation. The evolved E. coli populations exhibited gains both in fitness and succinate production, but only for growth under glycerol fermentation with M. formicicum (the condition for this laboratory evolution) and not under other growth conditions. The mutant alleles of the 69 single nucleotide polymorphisms (SNPs) identified in the adapted E. coli populations were constructed individually in the ancestral wild-type E. coli. We analyzed the phenotypic changes caused by 84 variants, including 15 nonsense variants, and found that FdrAD296Y was the most significant variant leading to increased succinate production. Transcription of fdrA was induced under anaerobic allantoin degradation conditions, and FdrA was shown to play a crucial role in oxamate production. The FdrAD296Y variant increased glyoxylate conversion to malate by accelerating oxamate production, which promotes carbon flow through the C4 branch, leading to increased succinate production. IMPORTANCE Here, we demonstrate the ability of E. coli to perform glycerol fermentation in coculture with the methanogen M. formicicum to produce succinate. We found that the production of succinate by E. coli significantly increased during successive cocultivation. Genomic DNA sequencing, evaluation of relative fitness, and construction of SNPs were performed, from which FdrAD296Y was identified as the most significant variant to enable increased succinate production by E. coli. The function of FdrA is uncertain. In this study, experiments with gene expression assays and metabolic analysis showed for the first time that FdrA could be the “orphan enzyme” oxamate:carbamoyltransferase in anaerobic allantoin degradation. Furthermore, we demonstrate that the anaerobic allantoin degradation pathway is linked to succinate production via the glyoxylate pathway during glycerol fermentation.
Collapse
|
4
|
Wang Z, Li L, Liu P, Wang C, Lu Q, Liu L, Wang X, Luo Q, Shao H. Role of aspartate ammonia-lyase in Pasteurella multocida. BMC Microbiol 2020; 20:369. [PMID: 33272193 PMCID: PMC7713322 DOI: 10.1186/s12866-020-02049-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pasteurella multocida is responsible for a highly infectious and contagious disease in birds, leading to heavy economic losses in the chicken industry. However, the pathogenesis of this disease is poorly understood. We recently identified an aspartate ammonia-lyase (aspA) in P. multocida that was significantly upregulated under iron-restricted conditions, the protein of which could effectively protect chicken flocks against P. multocida. However, the functions of this gene remain unclear. In the present study, we constructed aspA mutant strain △aspA::kan and complementary strain C△aspA::kan to investigate the function of aspA in detail. RESULT Deletion of the aspA gene in P. multocida resulted in a significant reduction in bacterial growth in LB (Luria-Bertani) and MH (Mueller-Hinton) media, which was rescued by supplementation with 20 mM fumarate. The mutant strain △aspA::kan showed significantly growth defects in anaerobic conditions and acid medium, compared with the wild-type strain. Moreover, growth of △aspA::kan was more seriously impaired than that of the wild-type strain under iron-restricted conditions, and this growth recovered after supplementation with iron ions. AspA transcription was negatively regulated by iron conditions, as demonstrated by quantitative reverse transcription-polymerase chain reaction. Although competitive index assay showed the wild-type strain outcompetes the aspA mutant strain and △aspA::kan was significantly more efficient at producing biofilms than the wild-type strain, there was no significant difference in virulence between the mutant and the wild-type strains. CONCLUSION These results demonstrate that aspA is required for bacterial growth in complex medium, and under anaerobic, acid, and iron-limited conditions.
Collapse
Affiliation(s)
- Zui Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Li Li
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Peng Liu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.,Animal Disease Prevention and Control Center of Yichang, Yichang, 443000, China
| | - Chen Wang
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.,Animal Disease Prevention and Control Center of Yichang, Yichang, 443000, China
| | - Qin Lu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Lina Liu
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China
| | - Xiaozhong Wang
- Animal Disease Prevention and Control Center of Yichang, Yichang, 443000, China
| | - Qingping Luo
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China. .,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Special 1, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.
| | - Huabin Shao
- Institute of Animal Husbandry and Veterinary Sciences, Hubei Academy of Agricultural Sciences, Special one, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China. .,Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Special 1, Nanhuyaoyuan, Hongshan District, Wuhan, 430064, China.
| |
Collapse
|
5
|
Zhang W, Chen X, Sun W, Nie T, Quanquin N, Sun Y. Escherichia Coli Increases its ATP Concentration in Weakly Acidic Environments Principally through the Glycolytic Pathway. Genes (Basel) 2020; 11:genes11090991. [PMID: 32854287 PMCID: PMC7563387 DOI: 10.3390/genes11090991] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/22/2020] [Accepted: 08/24/2020] [Indexed: 12/23/2022] Open
Abstract
Acid resistance is an intrinsic characteristic of intestinal bacteria in order to survive passage through the stomach. Adenosine triphosphate (ATP), the ubiquitous chemical used to power metabolic reactions, activate signaling cascades, and form precursors of nucleic acids, was also found to be associated with the survival of Escherichia coli (E. coli) in acidic environments. The metabolic pathway responsible for elevating the level of ATP inside these bacteria during acid adaptation has been unclear. E. coli uses several mechanisms of ATP production, including oxidative phosphorylation, glycolysis and the oxidation of organic compounds. To uncover which is primarily used during adaptation to acidic conditions, we broadly analyzed the levels of gene transcription of multiple E. coli metabolic pathway components. Our findings confirmed that the primary producers of ATP in E. coli undergoing mild acidic stress are the glycolytic enzymes Glk, PykF and Pgk, which are also essential for survival under markedly acidic conditions. By contrast, the transcription of genes related to oxidative phosphorylation was downregulated, despite it being the major producer of ATP in neutral pH environments.
Collapse
Affiliation(s)
- Wenbin Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou 510640, China;
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Xin Chen
- Guangdong Key Laboratory of IoT Information Technology, School of Automation, Guangdong University of Technology, Guangzhou 510006, China;
| | - Wei Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Tao Nie
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
| | - Natalie Quanquin
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA;
| | - Yirong Sun
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China; (W.S.); (T.N.)
- Correspondence:
| |
Collapse
|
6
|
Construction of an energy-conserving glycerol utilization pathways for improving anaerobic succinate production in Escherichia coli. Metab Eng 2019; 56:181-189. [DOI: 10.1016/j.ymben.2019.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023]
|
7
|
Long-term adaptation of Escherichia coli to methanogenic co-culture enhanced succinate production from crude glycerol. J Ind Microbiol Biotechnol 2017; 45:71-76. [PMID: 29230577 PMCID: PMC5762792 DOI: 10.1007/s10295-017-1994-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/28/2017] [Indexed: 01/28/2023]
Abstract
Escherichia coli can hardly grow anaerobically on glycerol without exogenous electron acceptor. The formate-consuming methanogen Methanobacterium formicicum plays a role as a living electron acceptor in glycerol fermentation of E. coli. Wild-type and mutant E. coli strains were screened for succinate production using glycerol in a co-culture with M. formicicum. Subsequently, E. coli was adapted to glycerol fermentation over 39 rounds (273 days) by successive co-culture with M. formicicum. The adapted E. coli (19.9 mM) produced twice as much succinate as non-adapted E. coli (9.7 mM) and 62% more methane. This study demonstrated improved succinate production from waste glycerol using an adapted wild-type strain of E. coli with wild-type M. formicicum, which is more useful than genetically modified strains. Crude glycerol, an economical feedstock, was used for the cultivation. Furthermore, the increase in methane production by M. formicicum during co-culture with adapted E. coli illustrated the possibility of energy-saving effects for the fermentation process.
Collapse
|
8
|
Global metabolic rewiring for improved CO 2 fixation and chemical production in cyanobacteria. Nat Commun 2017; 8:14724. [PMID: 28287087 PMCID: PMC5355792 DOI: 10.1038/ncomms14724] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 01/25/2017] [Indexed: 01/10/2023] Open
Abstract
Cyanobacteria have attracted much attention as hosts to recycle CO2 into valuable chemicals. Although cyanobacteria have been engineered to produce various compounds, production efficiencies are too low for commercialization. Here we engineer the carbon metabolism of Synechococcus elongatus PCC 7942 to improve glucose utilization, enhance CO2 fixation and increase chemical production. We introduce modifications in glycolytic pathways and the Calvin Benson cycle to increase carbon flux and redirect it towards carbon fixation. The engineered strain efficiently uses both CO2 and glucose, and produces 12.6 g l−1 of 2,3-butanediol with a rate of 1.1 g l−1 d−1 under continuous light conditions. Removal of native regulation enables carbon fixation and 2,3-butanediol production in the absence of light. This represents a significant step towards industrial viability and an excellent example of carbon metabolism plasticity. Cyanobacteria are promising biofactories to reduce atmospheric CO2 and convert it into chemicals. Here the authors engineer Synechococcus elongatus carbon metabolism to increase 2,3-butanediol production from glucose and CO2 under light and dark conditions.
Collapse
|
9
|
Lange J, Takors R, Blombach B. Zero-growth bioprocesses: A challenge for microbial production strains and bioprocess engineering. Eng Life Sci 2016; 17:27-35. [PMID: 32624726 DOI: 10.1002/elsc.201600108] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/18/2016] [Accepted: 09/19/2016] [Indexed: 12/20/2022] Open
Abstract
Microbial fermentation of renewable feedstocks is an established technology in industrial biotechnology. Besides strict aerobic or anaerobic modes of operation, novel innovative and industrially applicable fermentation processes were developed connecting the advantages of aerobic and anaerobic conditions in a combined production approach. As a consequence, rapid aerobic biomass formation to high cell densities and subsequent anaerobic high-yield and zero-growth production is realized. Following this strategy, bioprocesses operating with substantial overall yield and productivity can be obtained. Here, we summarize the current knowledge and achievements in such microbial zero-growth production processes and pinpoint to challenges due to the complex adaptation of the cellular metabolism during the cell's passage from aerobiosis to anaerobiosis.
Collapse
Affiliation(s)
- Julian Lange
- Institute of Biochemical Engineering University of Stuttgart Stuttgart Germany
| | - Ralf Takors
- Institute of Biochemical Engineering University of Stuttgart Stuttgart Germany
| | - Bastian Blombach
- Institute of Biochemical Engineering University of Stuttgart Stuttgart Germany
| |
Collapse
|
10
|
Tashiro Y, Desai SH, Atsumi S. Two-dimensional isobutyl acetate production pathways to improve carbon yield. Nat Commun 2015; 6:7488. [PMID: 26108471 PMCID: PMC4491173 DOI: 10.1038/ncomms8488] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/13/2015] [Indexed: 11/21/2022] Open
Abstract
For an economically competitive biological process, achieving high carbon yield of a target chemical is crucial. In biochemical production, pyruvate and acetyl-CoA are primary building blocks. When sugar is used as the sole biosynthetic substrate, acetyl-CoA is commonly generated by pyruvate decarboxylation. However, pyruvate decarboxylation during acetyl-CoA formation limits the theoretical maximum carbon yield (TMCY) by releasing carbon, and in some cases also leads to redox imbalance. To avoid these problems, we describe here the construction of a metabolic pathway that simultaneously utilizes glucose and acetate. Acetate is utilized to produce acetyl-CoA without carbon loss or redox imbalance. We demonstrate the utility of this approach for isobutyl acetate (IBA) production, wherein IBA production with glucose and acetate achieves a higher carbon yield than with either sole carbon source. These results highlight the potential for this multiple carbon source approach to improve the TMCY and balance redox in biosynthetic pathways. Achieving high carbon yields is crucial for biotechnological production of metabolites in engineered microorganisms. Here, Tashiro et al. generate E. coli strains that produce acetyl-CoA and a derived metabolite (isobutyl acetate) in the absence of pyruvate decarboxylation, leading to increased carbon yields.
Collapse
Affiliation(s)
- Yohei Tashiro
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Shuchi H Desai
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.,Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| | - Shota Atsumi
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, California 95616, USA.,Microbiology Graduate Group, University of California, Davis, One Shields Avenue, Davis, California 95616, USA
| |
Collapse
|