1
|
Tian B, Xu D, Cheng J, Liu Y. Chitosan-silica with hops β-acids added films as prospective food packaging materials: Preparation, characterization, and properties. Carbohydr Polym 2021; 272:118457. [PMID: 34420717 DOI: 10.1016/j.carbpol.2021.118457] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/04/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
Abstract
In this study, silica (SiO2) and β-acids were added to the chitosan films in order to improve the film's properties. Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction analysis (XRD) were used to explore the structure of film. The results of mechanical test indicated that the film containing SiO2 (0.3%) and β-acids (0.3%) could obtain a significant tensile strength (10.04 MPa). The complex films possessed a good inhibitory effect on three types of bacteria, and good antioxidant activity (>56%, DPPH). The release mechanism of β-acids from the films exhibited Fickian diffusion (n < 0.45). During the storage of soybean oil, the films could well control the changes of the peroxide value, acid value and thiobarbituric acid reactant content. Overall, the biofilms not only possess good physical and chemical properties, but also prolongs the time of food storage.
Collapse
Affiliation(s)
- Bingren Tian
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China
| | - Dan Xu
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Jianhua Cheng
- College of Chemistry, Xinjiang University, Urumqi 830046, China
| | - Yumei Liu
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830046, China.
| |
Collapse
|
2
|
Deng P, Valentino T, Flythe MD, Moseley HNB, Leachman JR, Morris AJ, Hennig B. Untargeted Stable Isotope Probing of the Gut Microbiota Metabolome Using 13C-Labeled Dietary Fibers. J Proteome Res 2021; 20:2904-2913. [PMID: 33830777 DOI: 10.1021/acs.jproteome.1c00124] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The gut microbiome generates numerous metabolites that exert local effects and enter the circulation to affect the functions of many organs. Despite extensive sequencing-based characterization of the gut microbiome, there remains a lack of understanding of microbial metabolism. Here, we developed an untargeted stable isotope-resolved metabolomics (SIRM) approach for the holistic study of gut microbial metabolites. Viable microbial cells were extracted from fresh mice feces and incubated anaerobically with 13C-labeled dietary fibers including inulin or cellulose. High-resolution mass spectrometry was used to monitor 13C enrichment in metabolites associated with glycolysis, the Krebs cycle, the pentose phosphate pathway, nucleotide synthesis, and pyruvate catabolism in both microbial cells and the culture medium. We observed the differential use of inulin and cellulose as substrates for biosynthesis of essential and non-essential amino acids, neurotransmitters, vitamin B5, and other coenzymes. Specifically, the use of inulin for these biosynthetic pathways was markedly more efficient than the use of cellulose, reflecting distinct metabolic pathways of dietary fibers in the gut microbiome, which could be related with host effects. This technology facilitates deeper and holistic insights into the metabolic function of the gut microbiome (Metabolomic Workbench Study ID: ST001651).
Collapse
Affiliation(s)
- Pan Deng
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Department of Pharmaceutical Sciences, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Taylor Valentino
- Department of Physiology, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Michael D Flythe
- Department of Animal and Food Sciences, University of Kentucky, Lexington 40536, Kentucky, United States.,United States Department of Agriculture, Agriculture Research Service, Forage Animal Production Research Unit, Lexington 40536, Kentucky, United States
| | - Hunter N B Moseley
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Institute for Biomedical Informatics, University of Kentucky, Lexington 40536, Kentucky, United States.,Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Jacqueline R Leachman
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Andrew J Morris
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Division of Cardiovascular Medicine, University of Kentucky, Lexington 40536, Kentucky, United States
| | - Bernhard Hennig
- Superfund Research Center, University of Kentucky, Lexington 40536, Kentucky, United States.,Department of Animal and Food Sciences, University of Kentucky, Lexington 40536, Kentucky, United States
| |
Collapse
|
3
|
Bai Y, Li Y, Marion T, Tong Y, Zaiss MM, Tang Z, Zhang Q, Liu Y, Luo Y. Resistant starch intake alleviates collagen-induced arthritis in mice by modulating gut microbiota and promoting concomitant propionate production. J Autoimmun 2021; 116:102564. [PMID: 33203617 DOI: 10.1016/j.jaut.2020.102564] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 02/07/2023]
Abstract
Gut dysbiosis precedes clinic symptoms in rheumatoid arthritis (RA) and has been implicated in the initiation and persistence of RA. The early treatment of RA is critical to better clinical outcome especially for joint destruction. Although dietary interventions have been reported to be beneficial for RA patients, it is unclear to whether diet-induced gut microbiome changes can be a preventive strategy to RA development. Here, we investigated the effect of a high fiber diet (HFD) rich with resistant starch (RS) on collagen-induced arthritis (CIA) and gut microbial composition in mice. RS-HFD significantly reduced arthritis severity and bone erosion in CIA mice. The therapeutic effects of RS-HFD were correlated with splenic regulatory T cell (Treg) expansion and serum interleukin-10 (IL-10) increase. The increased abundance of Lactobacillus and Lachnoclostridium genera concomitant with CIA were eliminated in CIA mice fed the RS-HFD diet. Notably, RS-HFD also led to a predominance of Bacteroidetes, and increased abundances of Lachnospiraceae_NK4A136_group and Bacteroidales_S24-7_group genera in CIA mice. Accompanied with the gut microbiome changes, serum levels of the short-chain fatty acid (SCFA) acetate, propionate and isobutyrate detected by GC-TOFMS were also increased in CIA mice fed RS-HFD. While, addition of β-acids from hops extract to the drinking water of mice fed RS-HFD significantly decreased serum propionate and completely eliminated RS-HFD-induced disease improvement, Treg cell increase and IL-10 production in CIA mice. Moreover, exogenous propionate added to drinking water replicated the protective role of RS-HFD in CIA including reduced bone damage. The direct effect of propionate on T cells in vitro was further explored as at least one mechanistic explanation for the dietary effects of microbial metabolites on immune regulation in experimental RA. Taken together, RS-HFD significantly reduced CIA and bone damage and altered gut microbial composition with concomitant increase in circulating propionate, indicating that RS-rich diet might be a promising therapy especially in the early stage of RA.
Collapse
MESH Headings
- Animals
- Arthritis, Experimental/blood
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Bacteria/classification
- Bacteria/genetics
- Cell Proliferation/drug effects
- Cytokines/blood
- Diet, High-Fat
- Disease Models, Animal
- Fatty Acids, Volatile/blood
- Gastrointestinal Microbiome/drug effects
- Gastrointestinal Microbiome/genetics
- Humans
- Interleukin-10/blood
- Intestines/drug effects
- Intestines/immunology
- Intestines/microbiology
- Male
- Mice, Inbred DBA
- Propionates/metabolism
- RNA, Ribosomal, 16S/genetics
- Resistant Starch/administration & dosage
- Sequence Analysis, DNA
- T-Lymphocytes, Regulatory/cytology
- T-Lymphocytes, Regulatory/drug effects
- Mice
Collapse
Affiliation(s)
- Yunqiang Bai
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Rheumatology and Immunology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yanhong Li
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tony Marion
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Yanli Tong
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mario M Zaiss
- Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Department of Internal Medicine 3-Rheumatology and Immunology, Universitäts Klinikum Erlangen, Erlangen, Germany
| | - Zhigang Tang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuping Zhang
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yubin Luo
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
4
|
Harlow BE, Flythe MD, Kagan IA, Goodman JP, Klotz JL, Aiken GE. Isoflavone supplementation, via red clover hay, alters the rumen microbial community and promotes weight gain of steers grazing mixed grass pastures. PLoS One 2020; 15:e0229200. [PMID: 32168321 PMCID: PMC7069683 DOI: 10.1371/journal.pone.0229200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/31/2020] [Indexed: 01/08/2023] Open
Abstract
Biochanin A, an isoflavone present in the pasture legume red clover (Trifloium pratense L.), alters fermentation in the rumen of cattle and other ruminants. Biochanin A inhibits hyper-ammonia-producing bacteria and promotes cellulolytic bacteria and fiber catalysis in vitro and ex vivo. Consequently, biochanin A supplementation improves weight gain in grazing steers. Red clover contains biologically active isoflavones that may act synergistically. Therefore, the objective was to evaluate the effect of two levels of red clover hay on growth performance and the microbial community in growing steers grazing mixed grass pastures. A grazing experiment was conducted over 2 early growing seasons (2016 and 2017) with 36 cross-bred steers and twelve rumen-fistulated, growing Holstein steers for evaluation of average daily gain and rumen microbiota, respectively. Steers were blocked by body weight and assigned to pastures with one of four treatments: 1) pasture only, 2) pasture + dry distillers' grains (DDG), 3) pasture + DDG + low level of red clover hay (~15% red clover diet), or 4) pasture + DDG + high level of red clover hay (~30% red clover diet). DDG were added to treatments to meet protein requirements and to balance total protein supplementation between treatments. All supplementation strategies (DDG ± red clover hay) increased average daily gains in comparison to pasture-only controls (P < 0.05), with a low level of red clover supplementation being the most effective (+0.17 kg d-1 > DDG only controls; P < 0.05). Similarly, hyper-ammonia-producing bacteria inhibition (10-100-fold; P < 0.05), fiber catalysis (+10-25%; P < 0.05) and short chain fatty acid concentrations were greatest with the low red clover supplement (+~25%; P < 0.05). These results provide evidence that lower levels or red clover supplementation may be optimal for maximizing overall microbial community function and animal performance in grazing steers.
Collapse
Affiliation(s)
- Brittany E. Harlow
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Michael D. Flythe
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Isabelle A. Kagan
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Jack P. Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - James L. Klotz
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Glen E. Aiken
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| |
Collapse
|
5
|
Kagan IA, Goodman JP, Seman DH, Lawrence LM, Smith SR. Effects of Harvest Date, Sampling Time, and Cultivar on Total Phenolic Concentrations, Water-Soluble Carbohydrate Concentrations, and Phenolic Profiles of Selected Cool-Season Grasses in Central Kentucky. J Equine Vet Sci 2019; 79:86-93. [DOI: 10.1016/j.jevs.2019.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/22/2019] [Accepted: 05/01/2019] [Indexed: 01/11/2023]
|
6
|
Environmental pollutant-mediated disruption of gut microbial metabolism of the prebiotic inulin. Anaerobe 2018; 55:96-102. [PMID: 30447394 DOI: 10.1016/j.anaerobe.2018.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/12/2018] [Accepted: 11/14/2018] [Indexed: 12/14/2022]
Abstract
Exposure to environmental pollutants is associated with a greater risk for metabolic diseases including cardiovascular disease. Pollutant exposure can also alter gut microbial populations that may contribute to metabolic effects and progression of inflammatory diseases. Short-chain fatty acids (SCFAs), produced from gut fermentation of dietary carbohydrates, such as inulin, exert numerous effects on host energy metabolism and are linked to a reduced risk of diseases. The hypothesis was that exposure to dioxin-like pollutants modulate gut microbial viability and/or fermentation processes. An inulin-utilizing isolate was collected from murine feces, characterized and used in subsequent experiments. Exposure to polychlorinated biphenyl, PCB 126 impeded bacterial viability of the isolate at concentrations of 20 and 200 μM. PCB 126 exposure also resulted in a significant loss of intracellular potassium following exposure, indicating cell membrane disruption of the isolate. Furthermore, total fecal microbe samples from mice were harvested, resuspended and incubated for 24 h in anaerobic media containing inulin with or without PCB 126. HPLC analysis of supernatants revealed that PCB 126 exposure reduced succinic acid production, but increased propionate production, both of which can influence host glucose and lipid metabolism. Overall, the presented evidence supports the idea that pollutant exposure may contribute to alterations in host metabolism through gut microbiota-dependent mechanisms, specifically through bacterial fermentation processes or membrane disruption.
Collapse
|
7
|
Singh V, Yeoh BS, Chassaing B, Xiao X, Saha P, Aguilera Olvera R, Lapek JD, Zhang L, Wang WB, Hao S, Flythe MD, Gonzalez DJ, Cani PD, Conejo-Garcia JR, Xiong N, Kennett MJ, Joe B, Patterson AD, Gewirtz AT, Vijay-Kumar M. Dysregulated Microbial Fermentation of Soluble Fiber Induces Cholestatic Liver Cancer. Cell 2018; 175:679-694.e22. [PMID: 30340040 PMCID: PMC6232850 DOI: 10.1016/j.cell.2018.09.004] [Citation(s) in RCA: 358] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 06/03/2018] [Accepted: 09/06/2018] [Indexed: 12/25/2022]
Abstract
Dietary soluble fibers are fermented by gut bacteria into short-chain fatty acids (SCFA), which are considered broadly health-promoting. Accordingly, consumption of such fibers ameliorates metabolic syndrome. However, incorporating soluble fiber inulin, but not insoluble fiber, into a compositionally defined diet, induced icteric hepatocellular carcinoma (HCC). Such HCC was microbiota-dependent and observed in multiple strains of dysbiotic mice but not in germ-free nor antibiotics-treated mice. Furthermore, consumption of an inulin-enriched high-fat diet induced both dysbiosis and HCC in wild-type (WT) mice. Inulin-induced HCC progressed via early onset of cholestasis, hepatocyte death, followed by neutrophilic inflammation in liver. Pharmacologic inhibition of fermentation or depletion of fermenting bacteria markedly reduced intestinal SCFA and prevented HCC. Intervening with cholestyramine to prevent reabsorption of bile acids also conferred protection against such HCC. Thus, its benefits notwithstanding, enrichment of foods with fermentable fiber should be approached with great caution as it may increase risk of HCC.
Collapse
Affiliation(s)
- Vishal Singh
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology and Infectious Diseases, Pennsylvania State University, State College, PA 16802, USA
| | - Benoit Chassaing
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA; Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Xia Xiao
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Piu Saha
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Rodrigo Aguilera Olvera
- Department of Nutritional Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - John D Lapek
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Limin Zhang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA; CAS and State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan, China
| | - Wei-Bei Wang
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Sijie Hao
- Department of Biomedical Engineering, Pennsylvania State University, State College, PA 16802, USA
| | - Michael D Flythe
- USDA-Agriculture Research Service, University of Kentucky, Lexington, KY 40546, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, CA 92093, USA
| | - Patrice D Cani
- WELBIO (Walloon Excellence in Life Sciences and Biotechnology), Louvain Drug Research Institute, Université Catholique de Louvain, Brussels, Belgium
| | | | - Na Xiong
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Mary J Kennett
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Bina Joe
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Andrew D Patterson
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, State College, PA 16802, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Matam Vijay-Kumar
- UT-Microbiome Consortium, Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medical Microbiology and Immunology, University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
8
|
Hartinger T, Gresner N, Südekum KH. Does intra-ruminal nitrogen recycling waste valuable resources? A review of major players and their manipulation. J Anim Sci Biotechnol 2018; 9:33. [PMID: 29721317 PMCID: PMC5911377 DOI: 10.1186/s40104-018-0249-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/06/2018] [Indexed: 12/15/2022] Open
Abstract
Nitrogenous emissions from ruminant livestock production are of increasing public concern and, together with methane, contribute to environmental pollution. The main cause of nitrogen-(N)-containing emissions is the inadequate provision of N to ruminants, leading to an excess of ammonia in the rumen, which is subsequently excreted. Depending on the size and molecular structure, various bacterial, protozoal and fungal species are involved in the ruminal breakdown of nitrogenous compounds (NC). Decelerating ruminal NC degradation by controlling the abundance and activity of proteolytic and deaminating microorganisms, but without reducing cellulolytic processes, is a promising strategy to decrease N emissions along with increasing N utilization by ruminants. Different dietary options, including among others the treatment of feedstuffs with heat or the application of diverse feed additives, as well as vaccination against rumen microorganisms or their enzymes have been evaluated. Thereby, reduced productions of microbial metabolites, e.g. ammonia, and increased microbial N flows give evidence for an improved N retention. However, linkage between these findings and alterations in the rumen microbiota composition, particularly NC-degrading microbes, remains sparse and contradictory findings confound the exact evaluation of these manipulating strategies, thus emphasizing the need for comprehensive research. The demand for increased sustainability in ruminant livestock production requests to apply attention to microbial N utilization efficiency and this will require a better understanding of underlying metabolic processes as well as composition and interactions of ruminal NC-degrading microorganisms.
Collapse
Affiliation(s)
- Thomas Hartinger
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | - Nina Gresner
- Institute of Animal Science, University of Bonn, 53115 Bonn, Germany
| | | |
Collapse
|
9
|
Zou J, Chassaing B, Singh V, Pellizzon M, Ricci M, Fythe MD, Kumar MV, Gewirtz AT. Fiber-Mediated Nourishment of Gut Microbiota Protects against Diet-Induced Obesity by Restoring IL-22-Mediated Colonic Health. Cell Host Microbe 2018; 23:41-53.e4. [PMID: 29276170 PMCID: PMC6005180 DOI: 10.1016/j.chom.2017.11.003] [Citation(s) in RCA: 401] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/02/2017] [Accepted: 11/09/2017] [Indexed: 12/24/2022]
Abstract
Dietary supplementation with fermentable fiber suppresses adiposity and the associated parameters of metabolic syndrome. Microbiota-generated fiber-derived short-chain fatty acids (SCFAs) and free fatty acid receptors including GPR43 are thought to mediate these effects. We find that while fermentable (inulin), but not insoluble (cellulose), fiber markedly protected mice against high-fat diet (HFD)-induced metabolic syndrome, the effect was not significantly impaired by either inhibiting SCFA production or genetic ablation of GPR43. Rather, HFD decimates gut microbiota, resulting in loss of enterocyte proliferation, leading to microbiota encroachment, low-grade inflammation (LGI), and metabolic syndrome. Enriching HFD with inulin restored microbiota loads, interleukin-22 (IL-22) production, enterocyte proliferation, and antimicrobial gene expression in a microbiota-dependent manner, as assessed by antibiotic and germ-free approaches. Inulin-induced IL-22 expression, which required innate lymphoid cells, prevented microbiota encroachment and protected against LGI and metabolic syndrome. Thus, fermentable fiber protects against metabolic syndrome by nourishing microbiota to restore IL-22-mediated enterocyte function.
Collapse
Affiliation(s)
- Jun Zou
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Benoit Chassaing
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Vishal Singh
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | | | | | - Michael D Fythe
- USDA-ARS Forage-Animal Production Research Unit, University of Kentucky, Lexington, KY 40546, USA
| | - Matam Vijay Kumar
- Department of Nutritional Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Andrew T Gewirtz
- Center for Inflammation, Immunity, and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
10
|
Inhibition of Growth and Ammonia Production of Ruminal Hyper Ammonia-Producing Bacteria by Chinook or Galena Hops after Long-Term Storage. FERMENTATION-BASEL 2017. [DOI: 10.3390/fermentation3040068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Harlow BE, Lawrence LM, Harris PA, Aiken GE, Flythe MD. Exogenous lactobacilli mitigate microbial changes associated with grain fermentation (corn, oats, and wheat) by equine fecal microflora ex vivo. PLoS One 2017; 12:e0174059. [PMID: 28358885 PMCID: PMC5373581 DOI: 10.1371/journal.pone.0174059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 03/02/2017] [Indexed: 11/17/2022] Open
Abstract
Cereal grains are often included in equine diets. When starch intake exceeds foregut digestion starch will reach the hindgut, impacting microbial ecology. Probiotics (e.g., lactobacilli) are reported to mitigate GI dysbioses in other species. This study was conducted to determine the effect of exogenous lactobacilli on pH and the growth of amylolytic and lactate-utilizing bacteria. Feces were collected from 3 mature geldings fed grass hay with access to pasture. Fecal microbes were harvested by differential centrifugation, washed, and re-suspended in anaerobic media containing ground corn, wheat, or oats at 1.6% (w/v) starch and one of five treatments: Control (substrate only), L. acidophilus, L. buchneri, L. reuteri, or an equal mixture of all three (107 cells/mL, final concentration). After 24 h of incubation (37°C, 160 rpm), samples were collected for pH and enumerations of total amylolytics, Group D Gram-positive cocci (GPC; Enterococci, Streptococci), lactobacilli, and lactate-utilizing bacteria. Enumeration data were log transformed prior to ANOVA (SAS, v. 9.3). Lactobacilli inhibited pH decline in corn and wheat fermentations (P < 0.0001). Specifically, addition of either L. reuteri or L. acidophilus was most effective at mitigating pH decline with both corn and wheat fermentation, in which the greatest acidification occurred (P < 0.05). Exogenous lactobacilli decreased amylolytics, while increasing lactate-utilizers in corn and wheat fermentations (P < 0.0001). In oat fermentations, L. acidophilus and L. reuteri inhibited pH decline and increased lactate-utilizers while decreasing amylolytics (P < 0.0001). For all substrates, L. reuteri additions (regardless of viability) had the lowest number of GPC and the highest number of lactobacilli and lactate-utilizers (P < 0.05). There were no additive effects when lactobacilli were mixed. Exogenous lactobacilli decreased the initial (first 8 h) rate of starch catalysis when wheat was the substrate, but did not decrease total (24 h) starch utilization in any case. These results indicate that exogenous lactobacilli can impact the microbial community and pH of cereal grain fermentations by equine fecal microflora ex vivo. Additionally, dead (autoclaved) exogenous lactobacilli had similar effects as live lactobacilli on fermentation. This latter result indicates that the mechanism by which lactobacilli impact other amylolytic bacteria is not simple resource competition.
Collapse
Affiliation(s)
- Brittany E Harlow
- Department of Animal and Food Sciences, University of Kentucky, Lexington KY, United States of America
| | - Laurie M Lawrence
- Department of Animal and Food Sciences, University of Kentucky, Lexington KY, United States of America
| | - Patricia A Harris
- Equine Studies Group, WALTHAM Centre for Pet Nutrition, Melton Mowbray, Leicestershire, United Kingdom
| | - Glen E Aiken
- Forage Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington KY, United States of America
| | - Michael D Flythe
- Department of Animal and Food Sciences, University of Kentucky, Lexington KY, United States of America.,Forage Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington KY, United States of America
| |
Collapse
|
12
|
Harlow BE, Kagan IA, Lawrence LM, Flythe MD. Effects of Inulin Chain Length on Fermentation by Equine Fecal Bacteria and Streptococcus bovis. J Equine Vet Sci 2017. [DOI: 10.1016/j.jevs.2015.11.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Harlow B, Bryant R, Cohen S, O'Connell S, Flythe M. Degradation of spent craft brewer's yeast by caprine rumen hyper ammonia‐producing bacteria. Lett Appl Microbiol 2016; 63:307-12. [DOI: 10.1111/lam.12623] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 11/28/2022]
Affiliation(s)
- B.E. Harlow
- Department of Animal and Food Sciences University of Kentucky Lexington KY USA
| | - R.W. Bryant
- Asheville Flavor Innovations LLC Asheville NC USA
| | - S.D. Cohen
- Fermentation Sciences Appalachian State University Boone NC USA
| | - S.P. O'Connell
- Department of Biology Western Carolina University Cullowhee NC USA
| | - M.D. Flythe
- Department of Animal and Food Sciences University of Kentucky Lexington KY USA
- Agricultural Research Service Forage‐Animal Production Research Unit USDA Lexington KY USA
| |
Collapse
|
14
|
Harlow BE, Lawrence LM, Hayes SH, Crum A, Flythe MD. Effect of Dietary Starch Source and Concentration on Equine Fecal Microbiota. PLoS One 2016; 11:e0154037. [PMID: 27128793 PMCID: PMC4851386 DOI: 10.1371/journal.pone.0154037] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Accepted: 04/07/2016] [Indexed: 11/18/2022] Open
Abstract
Starch from corn is less susceptible to equine small intestinal digestion than starch from oats, and starch that reaches the hindgut can be utilized by the microbiota. The objective of the current study was to examine the effects of starch source on equine fecal microbiota. Thirty horses were assigned to treatments: control (hay only), HC (high corn), HO (high oats), LC (low corn), LO (low oats), and LW (low pelleted wheat middlings). Horses received an all-forage diet (2 wk; d -14 to d -1) before the treatment diets (2 wk; d 1 to 14). Starch was introduced gradually so that horses received 50% of the assigned starch amount (high = 2 g starch/kg BW; low = 1 g starch/kg BW) by d 4 and 100% by d 11. Fecal samples were obtained at the end of the forage-only period (S0; d -2), and on d 6 (S1) and d 13 (S2) of the treatment period. Cellulolytics, lactobacilli, Group D Gram-positive cocci (GPC), lactate-utilizers and amylolytics were enumerated. Enumeration data were log transformed and analyzed by repeated measures ANOVA. There were sample day × treatment interactions (P < 0.0001) for all bacteria enumerated. Enumerations from control horses did not change during the sampling period (P > 0.05). All treatments except LO resulted in increased amylolytics and decreased cellulolytics, but the changes were larger in horses fed corn and wheat middlings (P < 0.05). Feeding oats resulted in increased lactobacilli and decreased GPC (P < 0.05), while corn had the opposite effects. LW had increased lactobacilli and GPC (P < 0.05). The predominant amylolytic isolates from HC, LC and LW on S2 were identified by 16S RNA gene sequencing as Enterococcus faecalis, but other species were found in oat fed horses. These results demonstrate that starch source can have a differential effect on the equine fecal microbiota.
Collapse
Affiliation(s)
- Brittany E. Harlow
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Laurie M. Lawrence
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Susan H. Hayes
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Andrea Crum
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
| | - Michael D. Flythe
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, 40546, United States of America
- Forage Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY, 40546, United States of America
| |
Collapse
|
15
|
Pszczolkowski VL, Bryant RW, Harlow BE, Aiken GE, Martin LJ, Flythe MD. Effects of Spent Craft Brewers’ Yeast on Fermentation and Methane Production by Rumen Microorganisms. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/aim.2016.69070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
16
|
Harlow BE, Donley TM, Lawrence LM, Flythe MD. Effect of starch source (corn, oats or wheat) and concentration on fermentation by equine faecal microbiota in vitro. J Appl Microbiol 2015; 119:1234-44. [PMID: 26255645 DOI: 10.1111/jam.12927] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 07/13/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022]
Abstract
AIMS The goal was to determine the effect of starch source (corn, oats and wheat) and concentration on: (i) total amylolytic bacteria, Group D Gram-positive cocci (GPC), lactobacilli and lactate-utilizing bacteria, and (ii) fermentation by equine microbiota. METHODS AND RESULTS When faecal washed cell suspensions were incubated with any substrate amylolytics increased over time. However, at 24 h there were 10 and 1000-fold more amylolytics with corn than wheat or oats respectively. Predominant amylolytics isolated were Enterococcus faecalis (corn, wheat) and Streptococcus bovis (oats). GPC increased with any substrate, but decreased during stationary phase in oats only. Lactobacilli decreased during stationary phase with corn only. By 24 h, oats had more lactate-utilizers and lactobacilli and fewer GPC than corn and wheat. More gas was produced from oats or wheat than from corn. CONCLUSIONS These results indicate that the growth of bacteria and fermentative capacity associated with starch metabolism is starch source dependent. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates a relationship between starch source and microbial changes independent of host digestion. However, future research is needed to evaluate the effect of starch source on the hindgut microbial community in vivo.
Collapse
Affiliation(s)
- B E Harlow
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - T M Donley
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, USA
| | - L M Lawrence
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - M D Flythe
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA.,USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, USA
| |
Collapse
|
17
|
Zebeli Q, Keßner J, Kliseviciute V, Rijkenhuizen AB. Dietary Approaches to Optimize the Fasting Period Before Laparoscopic Surgery in Horses: An Overview. J Equine Vet Sci 2015. [DOI: 10.1016/j.jevs.2015.07.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|