1
|
Haq MA, Nazir M, Jabeen G, Jabeen N, Naz S, Nawaz H, Xu J. Inhibitory effect of polyphenols from sumac, pomegranate and Indian almond on urease producing bacteria and jack bean urease activity. Int J Biol Macromol 2024; 276:133735. [PMID: 38986980 DOI: 10.1016/j.ijbiomac.2024.133735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Urinary tract infection caused by Klebsiella, Proteus and Streptococcus is a urease dependent process, hence treatment of these infections by antibacterial compounds lies in inhibition of their virulence factors. The crude methanolic extracts derived from sumac fruit, pomegranate peel and Indian almond leaves were separated into anthocyanin and non-anthocyanin fractions using solid phase cartridges. The inhibitory effect of these fractions was determined on the growth of urease producing species and jack bean urease activity. Known compounds in the fractions were also docked with ureases of different biological origins viz. K. pneumoniae (PDB ID: 8HCN), K. aerogenes (PDB ID: 2KAU), Helicobacter pylori (PDB ID:8HC1)and Canavalia ensiformis (jack bean) (PDB ID: 3LA4) to determine their binding affinities and interaction with the enzyme. All the fractions showed significant inhibition growth for P. mirabilis, S. epidermidis and K.pneumoniae. Among the samples, sumac showed greatest inhibition against all (MIC 6-25 mg.mL-1) while among the fractions, anthocyanin was found to be most active (MIC 6-12 mg/mL). Likewise, all fractions inhibited urease with lowest ICs50 shown by sumac fractions (21-116 μg.mL-1). Out of 39 compounds docked, 27 showed interaction with movable flaps and/or active site of ureases which explains their mode of inhibition.
Collapse
Affiliation(s)
- Muhammad Abdul Haq
- Department of Food Science & Technology, University of Karachi, 75270, Pakistan.
| | - Mudassir Nazir
- Department of Food Science & Technology, University of Karachi, 75270, Pakistan
| | - Gul Jabeen
- Department of Microbiology, University of Karachi, 75270, Pakistan
| | - Nusrat Jabeen
- Department of Microbiology, University of Karachi, 75270, Pakistan.
| | - Shahina Naz
- Department of Food Science & Technology, University of Karachi, 75270, Pakistan.
| | - Haq Nawaz
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Changjiangxi Road, Huaian 223300, Jiangsu, PR China.
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-Based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Changjiangxi Road, Huaian 223300, Jiangsu, PR China.
| |
Collapse
|
2
|
Abd-Elshafy DN, Abdallah H, Nadeem R, Shalaby MS, Shaban AM, Bahgat MM. Production of Disinfective Coating Layer to Facial Masks Supplemented with Camellia sinensis Extract. Curr Microbiol 2024; 81:198. [PMID: 38819647 DOI: 10.1007/s00284-024-03741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 05/16/2024] [Indexed: 06/01/2024]
Abstract
Although usefulness of masks for protection against respiratory pathogens, accumulation of pathogens on their surface represents a source of infection spread. Here we prepared a plant extract-based disinfecting layer to be used in coating masks thus inhibiting their capacity to transmit airborne pathogens. To reach this, a polypropylene membrane base was coated with a layer of polyvinyledine difluoride polymer containing 500 μg/ml of Camellia sinensis (Black tea) methanolic extract. Direct inhibitory effects of C. sinensis were initially demonstrated against Staphylococcus aureus (respiratory bacteria), influenza A virus (enveloped virus) and adenovirus 1 (non-enveloped virus) which were directly proportional to both extract concentration and incubation time with the pathogen. This was later confirmed by the capacity of the supplemented membrane with the plant extract to block infectivity of the above mentioned pathogens, recorded % inhibition values were 61, 72 and 50 for S. aureus, influenza and adenovirus, respectively. In addition to the disinfecting capacity of the membrane its hydrophobic nature and pore size (154 nm) prevented penetration of dust particles or water droplets carrying respiratory pathogens. In summary, introducing this layer could protect users from infection and decrease infection risk upon handling contaminated masks surfaces.
Collapse
Affiliation(s)
- Dina Nadeem Abd-Elshafy
- Environmental Virology Laboratory, Department of Water Pollution Research, Institute of Environmental Research and climate change, the National Research Centre, 30 Elbehoos street, Dokki, Giza, 12311, Egypt.
- Research Group Immune- and Bio-markers for Infection, the Centre of Excellent for Advanced Science, the National Research Centre, Giza, Egypt.
| | - Heba Abdallah
- Chemical Engineering and Pilot Plant Department, Institute of Engineering Research, National Research Centre, Dokki, Giza, Egypt
| | - Rola Nadeem
- Research Group Immune- and Bio-markers for Infection, the Centre of Excellent for Advanced Science, the National Research Centre, Giza, Egypt
- Department of Therapeutic chemistry, Institute of Pharmaceutical and Drug Industries Research, the National Research Centre, Dokki, Giza, Egypt
| | - Marwa Saied Shalaby
- Chemical Engineering and Pilot Plant Department, Institute of Engineering Research, National Research Centre, Dokki, Giza, Egypt
| | - Ahmed Mahmoud Shaban
- Department of Water Pollution Research, Institute of Environmental Research and climate change, National Research Centre, Dokki, Giza, Egypt
| | - Mahmoud Mohamed Bahgat
- Research Group Immune- and Bio-markers for Infection, the Centre of Excellent for Advanced Science, the National Research Centre, Giza, Egypt
- Department of Therapeutic chemistry, Institute of Pharmaceutical and Drug Industries Research, the National Research Centre, Dokki, Giza, Egypt
| |
Collapse
|
3
|
Pathak D, Mazumder A. Potential of Flavonoids as Promising Phytotherapeutic Agents to Combat Multidrug-Resistant Infections. Curr Pharm Biotechnol 2024; 25:1664-1692. [PMID: 38031767 DOI: 10.2174/0113892010271172231108190233] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Considering the limited number of current effective treatments, Multidrug- Resistant (MDR) illnesses have grown to be a serious concern to public health. It has become necessary to look for new antimicrobial drugs because of the emergence of resistance to numerous kinds of antibiotics. The use of flavonoids is one phytotherapeutic strategy that has been researched as a potential remedy for this issue. Secondary plant compounds called flavonoids have been found to have an antibacterial effect against resistant microorganisms. OBJECTIVE This review seeks to give readers a glimpse into contemporary studies on flavonoids' potential to fight MDR infections. METHODS A systematic search was conducted on electronic databases (PubMed, Scopus, and Google Scholar) using relevant keywords such as flavonoids, MDR infections, antimicrobial activity, and resistance microbes. Studies that investigated the antimicrobial activity of flavonoids against resistant microbes were included in this review. RESULTS Most research found that flavonoids have antibacterial efficacy against resistant microorganisms, and some also showed that they have synergistic benefits with traditional antibiotics. The flavonoids quercetin, kaempferol, apigenin, and luteolin were the most often investigated ones. According to research, flavonoids affect microbial gene expression, inhibit microbial enzymes, and disrupt the integrity of microbial cell membranes. Additionally, a few studies have noted the flavonoids' low toxicity and safety. CONCLUSION For the treatment of infections that are resistant to many drugs, flavonoids constitute a promising class of phytotherapeutic agents. To develop flavonoid-based treatment methods for treating MDR illnesses and assess the potential of flavonoids as adjuvants to conventional antimicrobial drugs, more study is required.
Collapse
Affiliation(s)
- Deepika Pathak
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| | - Avijit Mazumder
- Department of Pharmacy, Noida Institute of Engineering and Technology (Pharmacy Institute), Uttar Pradesh, India
| |
Collapse
|
4
|
Nandhagopal M, Chandrasekaran R, Narayanasamy M. Antimicrobial potential of secondary metabolites and DNA gyrase B blocking molecules produced by a halophilic bacterium Virgibacillus salarius (MML1918). J Appl Microbiol 2023; 134:lxad286. [PMID: 38031334 DOI: 10.1093/jambio/lxad286] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
AIM The present study aims to determine the antimicrobial potential of Virgibacillus salairus (MML1918) against human pathogens and its in-vitro and in-silico properties. METHODS AND RESULTS In this present study, totally 63 halophilic bacterial cultures were obtained and cultivated in nutrient broth medium containing 8% NaCl and the metabolites, were extracted using ethyl acetate and screened for their antimicrobial property by cell viability assay against 12 pathogenic bacteria and fungi, among 63 halophilic bacteria the Vir. salaries (MML1918) found to be the best producer for secondary metabolites production against clinical pathogens. The optimization of growth for important physiochemical parameters was characterized and applied for different production media and based on its highest activity as 17.5 ± .07 mm zone of inhibition (ZOI) for Bacillus cereus followed by 17.5 ± 00 mm ZOI for Staphylococcus aureus, the production medium ATCC1097 was chosen for mass production. The mass production of secondary metabolites from Vir. salaries MML1918 was carried out in a fermenter under controlled conditions and crude metabolites was extracted and condensed. The antimicrobial activity of crude metabolites showed B. cereus (19.3 ± 0.5 mm ZOI), Staph. aureus, and Candida albicans (18.3 ± 0.5 mm ZOI) as the highest ZOI in production media for halophilic bacteria ATCC1097. Further, the gas chromatography-mass spectrometry analysis showed 24 compounds present in crude metabolites. Among the 24 compounds, four molecules were found to be important based on molecule percentage in crude and structural similarity. The molecular docking studies show that the selected four molecules effectively bind with the active region DNA gyrase B. CONCLUSION Virgibacillus salarius (MML1918) effectively showed antimicrobial activity against several pathogenic organisms and can be employed as a suitable candidate for producing novel antimicrobial agents.
Collapse
Affiliation(s)
- Manivannan Nandhagopal
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
- Department of Microbiology, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | | | - Mathivanan Narayanasamy
- Centre for Advanced Studies in Botany, University of Madras, Guindy Campus, Chennai 600025, India
| |
Collapse
|
5
|
Zhai X, Wu G, Tao X, Yang S, Lv L, Zhu Y, Dong D, Xiang H. Success stories of natural product-derived compounds from plants as multidrug resistance modulators in microorganisms. RSC Adv 2023; 13:7798-7817. [PMID: 36909750 PMCID: PMC9994607 DOI: 10.1039/d3ra00184a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/01/2023] [Indexed: 03/14/2023] Open
Abstract
Microorganisms evolve resistance to antibiotics as a function of evolution. Antibiotics have accelerated bacterial resistance through mutations and acquired resistance through a combination of factors. In some cases, multiple antibiotic-resistant determinants are encoded in these genes, immediately making the recipient organism a "superbug". Current antimicrobials are no longer effective against infections caused by pathogens that have developed antimicrobial resistance (AMR), and the problem has become a crisis. Microorganisms that acquire resistance to chemotherapy (multidrug resistance) are a major obstacle for successful treatments. Pharmaceutical industries should be highly interested in natural product-derived compounds, as they offer new sources of chemical entities for the development of new drugs. Phytochemical research and recent experimental advances are discussed in this review in relation to the antimicrobial efficacy of selected natural product-derived compounds as well as details of synergistic mechanisms and structures. The present review recognizesand amplifies the importance of compounds with natural origins, which can be used to create safer and more effective antimicrobial drugs by combating microorganisms that are resistant to multiple types of drugs.
Collapse
Affiliation(s)
- Xiaohan Zhai
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Guoyu Wu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Linlin Lv
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University Dalian China
| | - Hong Xiang
- Laboratory of Integrative Medicine, First Affiliated Hospital of Dalian Medical University Dalian China
| |
Collapse
|
6
|
Arip M, Selvaraja M, R M, Tan LF, Leong MY, Tan PL, Yap VL, Chinnapan S, Tat NC, Abdullah M, K D, Jubair N. Review on Plant-Based Management in Combating Antimicrobial Resistance - Mechanistic Perspective. Front Pharmacol 2022; 13:879495. [PMID: 36249774 PMCID: PMC9557208 DOI: 10.3389/fphar.2022.879495] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Antimicrobial resistance (AMR) occurs when microbes no longer respond to any pharmacological agents, rendering the conventional antimicrobial agents ineffective. AMR has been classified as one of the top 10 life-threatening global health problems needed multilevel attention and global cooperation to attain the Sustainable Development Goals (SDGs) according to the World Health Organization (WHO), making the discovery of a new and effective antimicrobial agent a priority. The recommended treatments for drug-resistant microbes are available but limited. Furthermore, the transformation of microbes over time increases the risk of developing drug resistance. Hence, plant metabolites such as terpenes, phenolic compounds and alkaloids are widely studied due to their antibacterial, antiviral, antifungal and antiparasitic effects. Plant-derived antimicrobials are preferred due to their desirable efficacy and safety profile. Plant metabolites work by targeting microbial cell membranes, interfering with the synthesis of microbial DNA/RNA/enzymes and disrupting quorum sensing and efflux pump expression. They also work synergistically with conventional antibiotics to enhance antimicrobial effects. Accordingly, this review aims to identify currently available pharmacological therapies against microbes and AMR, as well as to discuss the importance of plant and secondary metabolites as a possible solution for AMR together with their mechanisms of action. All the information was obtained from government databases, WHO websites, PubMed, Springer, Google Scholar and Science Direct. Based on the information obtained, AMR is regarded as a significant warning to global healthcare. Plant derivatives such as secondary metabolites may be considered as potential therapeutic targets to mitigate the non-ending AMR.
Collapse
Affiliation(s)
- Masita Arip
- Allergy and Immunology Research Centre, Institute for Medical Research, Ministry of Health Malaysia, Setia Alam, Malaysia
| | - Malarvili Selvaraja
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Mogana R
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Lee Fang Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Mun Yee Leong
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Puay Luan Tan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Vi Lien Yap
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Sasikala Chinnapan
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| | - Ng Chin Tat
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Maha Abdullah
- Immunology Unit, Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Dharmendra K
- Narayan Institute of Pharmacy, Gopal Narayan Singh University, Jamuhar, India
| | - Najwan Jubair
- Department of Pharmaceutical Biology, Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Malaysia
| |
Collapse
|
7
|
Luo SY, Zhu JY, Zou MF, Yin S, Tang GH. Mulberry Diels-Alder-type adducts: isolation, structure, bioactivity, and synthesis. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:31. [PMID: 36050566 PMCID: PMC9436459 DOI: 10.1007/s13659-022-00355-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Mulberry Diels-Alder-type adducts (MDAAs) are unique phenolic natural products biosynthetically derived from the intermolecular [4 + 2]-cycloaddition of dienophiles (mainly chalcones) and dehydroprenylphenol dienes, which are exclusively distributed in moraceous plants. A total of 166 MDAAs with diverse skeletons have been isolated and identified since 1980. Structurally, the classic MDAAs characterized by the chalcone-skeleton dienophiles can be divided into eight groups (Types A - H), while others with non-chalcone dienophiles or some variations of classic MDAAs are non-classic MDAAs (Type I). These compounds have attracted significant attention of natural products and synthetic chemists due to their complex architectures, remarkable biological activities, and synthetic challenges. The present review provides a comprehensive summary of the structural properties, bioactivities, and syntheses of MDAAs. Cited references were collected between 1980 and 2021 from the SciFinder, Web of Science, and China National Knowledge Internet (CNKI).
Collapse
Affiliation(s)
- Si-Yuan Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Jun-Yu Zhu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ming-Feng Zou
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Sheng Yin
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Gui-Hua Tang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, Guangdong, 510006, People's Republic of China.
| |
Collapse
|
8
|
Ghazal F, Farooq S, Wahab AT, Maharjan R, Zafar H, Siddiqui H, Shafi S, Choudhary MI. Identification of quinoline derivatives as growth inhibitors of MDR pathogen Klebsiella pneumoniae. Future Microbiol 2022; 17:843-859. [PMID: 35796056 DOI: 10.2217/fmb-2021-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aims: This study was aimed to identify compounds with significant inhibitory potential against multidrug-resistant (MDR), multidrug-sensitive, and clinical isolates of Klebsiella pneumoniae. Materials & methods: Antibacterial activity of the nitroquinoline derivatives was assessed by micro-plate Alamar Blue assay. Results: Nitroquinoline derivatives 9, 11 and 14 showed inhibitory activity against MDR K. pneumoniae. Docking studies of these compounds with topoisomerase IV of K. pneumonia indicated the interactions of these compounds at the active site residues of enzyme near to cofactor (Mg+2). Furthermore, compound 11 was identified as a reactive oxygen species (ROS) inducer. None of the compounds showed hemolytic effect. Conclusion: This study was designed to identify compounds active against MDR K. pneumoniae which causes infections, such as pneumonia and urinary tract infections.
Collapse
Affiliation(s)
- Farzeen Ghazal
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Saba Farooq
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Atia-Tul Wahab
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Rukesh Maharjan
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Humaira Zafar
- Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Hina Siddiqui
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Sara Shafi
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - M I Choudhary
- HEJ Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Dr Panjwani Center for Molecular Medicine and Drug Research, International Center of Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
9
|
Yilmaz H, Gultekin Subasi B, Celebioglu HU, Ozdal T, Capanoglu E. Chemistry of Protein-Phenolic Interactions Toward the Microbiota and Microbial Infections. Front Nutr 2022; 9:914118. [PMID: 35845785 PMCID: PMC9284217 DOI: 10.3389/fnut.2022.914118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022] Open
Abstract
Along with health concerns, interest in plants as food and bioactive phytochemical sources has been increased in the last few decades. Phytochemicals as secondary plant metabolites have been the subject of many studies in different fields. Breakthrough for research interest on this topic is re-juvenilized with rising relevance in this global pandemics' era. The recent COVID-19 pandemic attracted the attention of people to viral infections and molecular mechanisms behind these infections. Thus, the core of the present review is the interaction of plant phytochemicals with proteins as these interactions can affect the functions of co-existing proteins, especially focusing on microbial proteins. To the best of our knowledge, there is no work covering the protein-phenolic interactions based on their effects on microbiota and microbial infections. The present review collects and defines the recent data, representing the interactions of phenolic compounds -primarily flavonoids and phenolic acids- with various proteins and explores how these molecular-level interactions account for the human health directly and/or indirectly, such as increased antioxidant properties and antimicrobial capabilities. Furthermore, it provides an insight about the further biological activities of interacted protein-phenolic structure from an antiviral activity perspective. The research on the protein-phenolic interaction mechanisms is of great value for guiding how to take advantage of synergistic effects of proteins and polyphenolics for future medical and nutritive approaches and related technologies.
Collapse
Affiliation(s)
- Hilal Yilmaz
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Busra Gultekin Subasi
- Division of Food and Nutrition Science, Chalmers University of Technology, Gothenburg, Sweden
- Hafik Kamer Ornek MYO, Sivas Cumhuriyet University, Sivas, Turkey
| | | | - Tugba Ozdal
- Department of Food Engineering, Faculty of Engineering and Natural Sciences, Istanbul Okan University, Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- *Correspondence: Esra Capanoglu
| |
Collapse
|
10
|
Sangster JJ, Marshall JR, Turner NJ, Mangas‐Sanchez J. New Trends and Future Opportunities in the Enzymatic Formation of C-C, C-N, and C-O bonds. Chembiochem 2022; 23:e202100464. [PMID: 34726813 PMCID: PMC9401909 DOI: 10.1002/cbic.202100464] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Indexed: 01/04/2023]
Abstract
Organic chemistry provides society with fundamental products we use daily. Concerns about the impact that the chemical industry has over the environment is propelling major changes in the way we manufacture chemicals. Biocatalysis offers an alternative to other synthetic approaches as it employs enzymes, Nature's catalysts, to carry out chemical transformations. Enzymes are biodegradable, come from renewable sources, operate under mild reaction conditions, and display high selectivities in the processes they catalyse. As a highly multidisciplinary field, biocatalysis benefits from advances in different areas, and developments in the fields of molecular biology, bioinformatics, and chemical engineering have accelerated the extension of the range of available transformations (E. L. Bell et al., Nat. Rev. Meth. Prim. 2021, 1, 1-21). Recently, we surveyed advances in the expansion of the scope of biocatalysis via enzyme discovery and protein engineering (J. R. Marshall et al., Tetrahedron 2021, 82, 131926). Herein, we focus on novel enzymes currently available to the broad synthetic community for the construction of new C-C, C-N and C-O bonds, with the purpose of providing the non-specialist with new and alternative tools for chiral and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Jack J. Sangster
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - James R. Marshall
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Nicholas J. Turner
- Department of ChemistryManchester Institute of BiotechnologyUniversity of Manchester131 Princess StreetManchesterM1 7DNUK
| | - Juan Mangas‐Sanchez
- Institute of Chemical Synthesis and Homogeneous CatalysisSpanish National Research Council (CSIC)Pedro Cerbuna 1250009ZaragozaSpain
- ARAID FoundationZaragozaSpain
| |
Collapse
|
11
|
Fadhel Abbas Albaayit S, Maharjan R, Abdullah R, Hezmee Mohd Noor M. Evaluation of anti-methicillin-resistant Staphylococcus aureus property of zerumbone. J Appl Biomed 2022; 20:15-21. [PMID: 35170271 DOI: 10.32725/jab.2022.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
CONTEXT AND OBJECTIVE Zerumbone has been reported to exert anti-microbial effects, but the mechanism by which the compound exerts its action is not known. Thus, this study aimed to investigate the mechanism of action of zerumbone against methicillin-resistance Staphylococcus aureus (MRSA), using the atomic force microscopy (AFM), scanning electron microscopy (SEM), and flow cytometry techniques. METHODS MRSA (NCTC 13277) cell viability was determined using the microplate AlamarBlue assay. AFM and SEM were used to determine the morphology of zerumbone-treated MRSA cells. Flow cytometric analysis was used to determine the effect of zerumbone on bacterial membrane permeability and membrane potential, using the propidium iodide (PI) staining method, membrane potential-sensitive fluorescence probe, and DiBAC4(3) dye. DCFDA dye was used to determine the generation of reactive oxygen species (ROS) by MRSA. RESULTS Zerumbone significantly inhibited MRSA growth with a minimum inhibitory concentration (MIC) of 125 µg/ml. The AFM analysis showed that zerumbone caused leakage of cytoplasmic content from the bacterial cells. Ultrastructure analysis showed small colonies of the bacteria with pores on the membrane surface. There were increases in zerumbone-treated MRSA PI and DiBAC4(3) fluorescence, indicating an increase in cell membrane permeability and a decrease in membrane potential that culminated in the loss of membrane structural integrity and bacterial death. Based on DCFDA dye analysis, zerumbone also reduced ROS production by MRSA. CONCLUSIONS Zerumbone exerts anti-MRSA effects by causing membrane depolarization, increasing membrane permeability, and finally disrupting cell membrane and bacterial killing.
Collapse
Affiliation(s)
| | - Rukesh Maharjan
- University of Karachi, International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, Karachi, Pakistan
| | - Rasedee Abdullah
- Universiti Putra Malaysia, Faculty of Veterinary Medicine, Department of Veterinary Laboratory Diagnosis, Serdang, Selangor, Malaysia
| | - Mohd Hezmee Mohd Noor
- Universiti Putra Malaysia, Faculty of Veterinary Medicine, Department of Veterinary Preclinical Sciences, Serdang, Selangor, Malaysia
| |
Collapse
|
12
|
Zhu M, Wang ZJ, He YJ, Qin Y, Zhou Y, Qi ZH, Zhou ZS, Zhu YY, Jin DN, Chen SS, Luo XD. Bioguided isolation, identification and bioactivity evaluation of anti-MRSA constituents from Morus alba Linn. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114542. [PMID: 34428525 DOI: 10.1016/j.jep.2021.114542] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The root bark of Morus alba Linn. (M. alba), a traditional folk medicine, has been documented in the Chinese Pharmacopoeia, which has been widely used for asthma, fever, pneumonia, edema, vomit, colitis, bronchitis and keratitis diseases. Some of the diseases may be related to respiratory, digestive, urinary tract infections. Although Diels-Alder adducts (DAAs), flavonoids, 2-arylbenzofurans and stilbene compounds have been isolated from the root bark of M. alba, few compounds are reported for their antimicrobial efficacy in vivo and the mechanism. AIM OF THE STUDY The aim of the study was to isolate and identify compounds of the root bark of M. alba in view of their anti-MRSA bioactivity, evaluate the anti-MRSA bioactivity of compounds and 60% ethanol elution (MA-6) in vitro and in vivo, and explore preliminary antibacterial mechanism in order to provide natural resources against MRSA infection. MATERIALS AND METHODS Systematic phytochemical investigations were carried out according to the thin layer chromatography (TLC) of the active fraction MA-6 to find more anti-MRSA ingredients. The compounds of the root bark of M. alba were separated by column chromatography and identified by LC-MS/MS and NMR spectroscopy. The anti-MRSA efficacy of the active ingredients were evaluated by broth microdilution method and a murine infection model. The mode of action of compounds was explored by time-kill curve and post-contact effect. The preliminary mechanism of compounds against MRSA was explored by drug efflux pumps and bacterial biofilms. RESULTS Chemical isolation resulted in twenty-nine known compounds, most with one or more geranyl and prenyl units exhibited superior anti-MRSA bioactivity, with MIC values of 2-16 μg/mL. In addition, the mode of action indicated that compounds presented persistent antimicrobial effect, which also produced concentration-dependent and time-dependent killing activity or property. Preliminary mechanism showed that the compound kuwanon O (29) damaged the bacterial cell membranes, leading to the accumulation of antibiotics inside bacterial cells, moreover, MA-6 and kuwanon O (29) inhibited the efflux of drugs by combining with methicillin or ethidium bromide (EtBr), resulting in the MICs of EtBr and methicillin were obviously decreased three-fold. The anti-MRSA efficacy in vivo indicated that the active fraction MA-6 could reduce bacteria in spleen, liver, kidney and mortality of acutely infectious mice, which was better than the positive drug berberine chloride. CONCLUSION Experimental investigation showed that the MA-6 and compound 29 have promising bioactivity against MRSA in vitro and in vivo, which might be used as a potential source of new antibacterial medicine or a potential efflux pump inhibitor against MRSA infection.
Collapse
Affiliation(s)
- Meng Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhao-Jie Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ying-Jie He
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yan Qin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Ying Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zi-Heng Qi
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Zhong-Shun Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Yan-Yan Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Dan-Ni Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Shan-Shan Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
13
|
Singh V, Pal A, Darokar MP. Glabridin synergy with norfloxacin induces ROS in multidrug resistant Staphylococcus aureus. J GEN APPL MICROBIOL 2021; 67:269-272. [PMID: 34690227 DOI: 10.2323/jgam.2021.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Glabridin (Glb), a polyphenolic flavonoid inhibits the growth of MDRSA (Multidrug resistant S. aureus) 4627 by inducing ROS. Glb in combination with Norfloxacin (Nor) synergistically induced oxidative stress. Increased ROS/RNS levels, in particular, affected macromolecules' (DNA, lipid, protein) integrity and distorted cell morphology. We found correlation between drug-effects and up-/down-regulation of oxidative stress-related as well as MDR genes. These findings could considerably potentiate the dosing routine of Nor in combination with Glb, which holds a promising prospective as a antibacterial agent against S. aureus.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants.,Department of Pharmacology & Toxicology, College of Pharmacy, University of Arizona
| | - Anirban Pal
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants
| | - Mahendra P Darokar
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants
| |
Collapse
|
14
|
Martinengo P, Arunachalam K, Shi C. Polyphenolic Antibacterials for Food Preservation: Review, Challenges, and Current Applications. Foods 2021; 10:foods10102469. [PMID: 34681518 PMCID: PMC8536111 DOI: 10.3390/foods10102469] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022] Open
Abstract
Natural alternatives replacing artificial additives have gained much attention in the consumer’s view because of the growing search for clean label products that are devoid of carcinogenic and toxic effects. Plant polyphenols are considered as suitable alternative natural preservatives with antioxidant and antimicrobial properties. However, their uses in the food industry are undermined by a series of limitations such as low solubility and stability during food processing and storage, lack of standardization, and undesirable organoleptic properties. Different approaches in the use of polyphenols have been proposed in order to overcome the current hurdles related to food preservation. This review article specifically focuses on the antibacterial activity of plant-derived polyphenols as well as their applications as food preservatives, main challenges, and other trends in the food industry.
Collapse
|
15
|
Usmani Y, Ahmed A, Faizi S, Versiani MA, Shamshad S, Khan S, Simjee SU. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2', 4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin resistant Acinetobacter baumannii. Microb Pathog 2021; 157:104997. [PMID: 34048890 DOI: 10.1016/j.micpath.2021.104997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii is Gram-negative, an opportunistic pathogen responsible for life-threatening ventilator-associated pneumonia. World Health Organization (WHO) enlisted it as a priority pathogen for which therapeutic options need speculations. Biofilm further benefits this pathogen and aids 100-1000 folds more resistant against antimicrobials and the host immune system. In this study, ursolic acid (1) and its amide derivatives (2-4) explored for their antimicrobial and antibiofilm potential against colistin-resistant A. baumannii (CRAB) reference and clinical strains. Viability, crystal violet, microscopic, and gene expression assays further detailed the active compounds' antimicrobial and biofilm inhibition potential. Compound 4 [N-(2',4'-dinitrophenyl)-3β-hydroxyurs-12-en-28-carbonamide)], a synthetic amide derivate of ursolic acid significantly inhibits bacterial growth with MIC in the range of 78-156 μg/mL against CRAB isolates. This compound failed to completely kill the CRAB isolates even at 500 μg/mL concentration, suggesting the compound's anti-virulence and bacteriostatic nature. Short and prolonged exposure of 4 inhibited or delayed the bacterial growth at sub MIC, MIC, and 2× MIC, as evident in time-kill and post-antibacterial assay. It significantly inhibited and eradicated >70% of biofilm formation at MIC and sub MIC levels compared to colistin required in high concentrations. Microscopic analysis showed disintegrated biofilm after treatment with the 4 further strengthened its antibiofilm potential. Atomic force microscopy (AFM) hinted the membrane disrupting effect of 4 at MIC's. Further it was confirmed by DiBAC4 using fluorescence-activating cells sorting (FACS), suggesting a depolarized membrane at MIC. Gene expression analysis also supported our data as it showed reduced expression of biofilm-forming (bap) and quorum sensing (abaR) genes after treatment with sub MIC of 4. The results suggest that 4 significantly inhibit bacterial growth and biofilm mode of colistin-resistant A. baumannii. Thus, further studies are required to decipher the complete mechanism of action to develop 4 as a new pharmacophore against A. baumannii.
Collapse
Affiliation(s)
- Yamina Usmani
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Shaheen Faizi
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Ali Versiani
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Shumaila Shamshad
- Department of Chemistry, Federal Urdu University of Arts, Science, and Technology, Gulshan-e-Iqbal, Karachi, 75300, Pakistan
| | - Saeed Khan
- Department of Pathology, Dow International Medical College, Dow Diagnostic Research and Reference Laboratory, Dow University of Health Sciences, Karachi, Pakistan
| | - Shabana U Simjee
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
16
|
Donadio G, Mensitieri F, Santoro V, Parisi V, Bellone ML, De Tommasi N, Izzo V, Dal Piaz F. Interactions with Microbial Proteins Driving the Antibacterial Activity of Flavonoids. Pharmaceutics 2021; 13:660. [PMID: 34062983 PMCID: PMC8147964 DOI: 10.3390/pharmaceutics13050660] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are among the most abundant natural bioactive compounds produced by plants. Many different activities have been reported for these secondary metabolites against numerous cells and systems. One of the most interesting is certainly the antimicrobial, which is stimulated through various molecular mechanisms. In fact, flavonoids are effective both in directly damaging the envelope of Gram-negative and Gram-positive bacteria but also by acting toward specific molecular targets essential for the survival of these microorganisms. The purpose of this paper is to present an overview of the most interesting results obtained in the research focused on the study of the interactions between flavonoids and bacterial proteins. Despite the great structural heterogeneity of these plant metabolites, it is interesting to observe that many flavonoids affect the same cellular pathways. Furthermore, it is evident that some of these compounds interact with more than one target, producing multiple effects. Taken together, the reported data demonstrate the great potential of flavonoids in developing innovative systems, which can help address the increasingly serious problem of antibiotic resistance.
Collapse
Affiliation(s)
- Giuliana Donadio
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.D.); (V.S.); (V.P.); (M.L.B.); (N.D.T.)
| | - Francesca Mensitieri
- Department of Medicine and Surgery, University of Salerno, 84082 Baronissi, Italy; (F.M.); (V.I.)
| | - Valentina Santoro
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.D.); (V.S.); (V.P.); (M.L.B.); (N.D.T.)
| | - Valentina Parisi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.D.); (V.S.); (V.P.); (M.L.B.); (N.D.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Maria Laura Bellone
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.D.); (V.S.); (V.P.); (M.L.B.); (N.D.T.)
- PhD Program in Drug Discovery and Development, Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy; (G.D.); (V.S.); (V.P.); (M.L.B.); (N.D.T.)
| | - Viviana Izzo
- Department of Medicine and Surgery, University of Salerno, 84082 Baronissi, Italy; (F.M.); (V.I.)
| | - Fabrizio Dal Piaz
- Department of Medicine and Surgery, University of Salerno, 84082 Baronissi, Italy; (F.M.); (V.I.)
| |
Collapse
|
17
|
Magozwi DK, Dinala M, Mokwana N, Siwe-Noundou X, Krause RWM, Sonopo M, McGaw LJ, Augustyn WA, Tembu VJ. Flavonoids from the Genus Euphorbia: Isolation, Structure, Pharmacological Activities and Structure-Activity Relationships. Pharmaceuticals (Basel) 2021; 14:428. [PMID: 34063311 PMCID: PMC8147481 DOI: 10.3390/ph14050428] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plants of the genus Euphorbia are widely distributed across temperate, tropical and subtropical regions of South America, Asia and Africa with established Ayurvedic, Chinese and Malay ethnomedical records. The present review reports the isolation, occurrence, phytochemistry, biological properties, therapeutic potential and structure-activity relationship of Euphorbia flavonoids for the period covering 2000-2020, while identifying potential areas for future studies aimed at development of new therapeutic agents from these plants. The findings suggest that the extracts and isolated flavonoids possess anticancer, antiproliferative, antimalarial, antibacterial, anti-venom, anti-inflammatory, anti-hepatitis and antioxidant properties and have different mechanisms of action against cancer cells. Of the investigated species, over 80 different types of flavonoids have been isolated to date. Most of the isolated flavonoids were flavonols and comprised simple O-substitution patterns, C-methylation and prenylation. Others had a glycoside, glycosidic linkages and a carbohydrate attached at either C-3 or C-7, and were designated as d-glucose, l-rhamnose or glucorhamnose. The structure-activity relationship studies showed that methylation of the hydroxyl groups on C-3 or C-7 reduces the activities while glycosylation loses the activity and that the parent skeletal structure is essential in retaining the activity. These constituents can therefore offer potential alternative scaffolds towards development of new Euphorbia-based therapeutic agents.
Collapse
Affiliation(s)
- Douglas Kemboi Magozwi
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa; (M.D.); (N.M.); (W.A.A.)
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa;
| | - Mmabatho Dinala
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa; (M.D.); (N.M.); (W.A.A.)
| | - Nthabiseng Mokwana
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa; (M.D.); (N.M.); (W.A.A.)
| | | | - Rui W. M. Krause
- Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa;
| | - Molahlehi Sonopo
- Radiochemistry, South African Nuclear Energy Corporation, Pelindaba, Brits R104, South Africa;
| | - Lyndy J. McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04 Onderstepoort 0110, Pretoria 0001, South Africa;
| | - Wilma A. Augustyn
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa; (M.D.); (N.M.); (W.A.A.)
| | - Vuyelwa Jacqueline Tembu
- Department of Chemistry, Tshwane University of Technology, Pretoria 0001, South Africa; (M.D.); (N.M.); (W.A.A.)
| |
Collapse
|
18
|
Enhancement of the antibiotic activity by quercetin against Staphylococcus aureus efflux pumps. J Bioenerg Biomembr 2021; 53:157-167. [PMID: 33683535 DOI: 10.1007/s10863-021-09886-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
The objective of this work was to evaluate the inhibitory effect of quercetin on S. aureus Efflux Pumps. The MIC of Quercetin was evaluated through the broth microdilution method, as well as the Efflux Pump inhibition assay through the method of reducing the antibiotic minimum inhibitory concentration as well as that of ethidium bromide. The in silico approach through bioinformatics was performed to demonstrate the molecular mechanism of interaction of the substrate and the binding cavity. The Quercetin inhibition concentration was not clinically relevant. With respect to the reversal of bacterial resistance effect by efflux pump inhibition, this effect was observed with the strains carrying the TetK and NorA pumps. Regarding the interaction between the Quercetin complex and the NorA pump, the extra stability was provided by hydrogen bonds produced by the hydroxyl group.
Collapse
|
19
|
Makarewicz M, Drożdż I, Tarko T, Duda-Chodak A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants (Basel) 2021; 10:188. [PMID: 33525629 PMCID: PMC7911950 DOI: 10.3390/antiox10020188] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/15/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
This review presents the comprehensive knowledge about the bidirectional relationship between polyphenols and the gut microbiome. The first part is related to polyphenols' impacts on various microorganisms, especially bacteria, and their influence on intestinal pathogens. The research data on the mechanisms of polyphenol action were collected together and organized. The impact of various polyphenols groups on intestinal bacteria both on the whole "microbiota" and on particular species, including probiotics, are presented. Moreover, the impact of polyphenols present in food (bound to the matrix) was compared with the purified polyphenols (such as in dietary supplements) as well as polyphenols in the form of derivatives (such as glycosides) with those in the form of aglycones. The second part of the paper discusses in detail the mechanisms (pathways) and the role of bacterial biotransformation of the most important groups of polyphenols, including the production of bioactive metabolites with a significant impact on the human organism (both positive and negative).
Collapse
Affiliation(s)
| | | | | | - Aleksandra Duda-Chodak
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture in Krakow, 30-149 Kraków, Poland; (M.M.); (I.D.); (T.T.)
| |
Collapse
|
20
|
Liu X, Yang J, Gao L, Zhang L, Lei X. Chemoenzymatic Total Syntheses of Artonin I with an Intermolecular Diels-Alderase. Biotechnol J 2020; 15:e2000119. [PMID: 33002294 DOI: 10.1002/biot.202000119] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/01/2020] [Indexed: 11/10/2022]
Abstract
Diels-Alder reaction is one of the most important transformations used in organic synthesis, with the ability to construct two new CC bonds and up to four chiral centers simultaneously. However, the biggest synthetic challenge in Diels-Alder reaction lies in controlling its regio-, diastereo-, and enantioselectivity. Using Stille cross-coupling and enzymatic Diels-Alder reaction as the key steps, the first chemoenzymatic total synthesis of artonin I is achieved in 30% overall yield over only seven steps. This enzymatic Diels-Alder reaction catalyzed by MaDA is featured with excellent endo- and enantioselectivity and high catalytic efficiency (kcat /KM = 362 ± 54 mm-1 s-1 ). These successful chemoenzymatic total syntheses of artonin I and dideoxyartonin I demonstrated the remarkable potential of the intermolecular Diels-Alderase MaDA in biocatalysis.
Collapse
Affiliation(s)
- Xiaojing Liu
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, P. R. China
| | - Jun Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, P. R. China
| | - Lei Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, P. R. China
| | - Liyun Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, P. R. China
| | - Xiaoguang Lei
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China.,Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
21
|
Biharee A, Sharma A, Kumar A, Jaitak V. Antimicrobial flavonoids as a potential substitute for overcoming antimicrobial resistance. Fitoterapia 2020; 146:104720. [PMID: 32910994 DOI: 10.1016/j.fitote.2020.104720] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/21/2020] [Accepted: 09/01/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Infectious diseases are the leading cause of death in 21st century due to antimicrobial resistance and scarcity of new molecules to undertake rising infections. There could be a multiple reasons behind antimicrobial resistance whether it is increased drug metabolism or bacterial endotoxins. The demand of effective medication is increasing day by day to treat microbial infections and combat antimicrobial resistance. In recent years most of the synthetic antimicrobials developed resistance so natural products could provide better options to fulfill this demand. There has been increasing interest in the research on flavonoids because various flavonoids were found to be effective against pathogenic microorganisms. OBJECTIVE The objective of this article will be to explore antimicrobial activity of flavonoids with special focus on their possible mechanism of action. METHODS The article reviewed recent literature related to flavonoids with antimicrobial activity, which were isolated from various sources and the compounds showing fairly good activity against tested microbial species were discussed. RESULTS By throughout literature review it has been found that flavonoids show antimicrobial effect by inhibiting virulence factors, efflux pump, biofilm formation, membrane disruption, cell envelop synthesis, nucleic acid synthesis, and bacterial motility inhibition. CONCLUSION Most of the antimicrobial drugs available now a days are ineffective due to development of resistance to them. Flavonoids have the potential to overcome this emerging crisis as this class of natural products showed the antimicrobial activity by different mechanisms than those of conventional drugs, so flavonoid could be an effective treatment of pathogenic infections.
Collapse
Affiliation(s)
- Avadh Biharee
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Aditi Sharma
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Amit Kumar
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India
| | - Vikas Jaitak
- Laboratory of Natural Products, Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, Punjab 151001, India..
| |
Collapse
|
22
|
Chambers CS, Viktorová J, Řehořová K, Biedermann D, Turková L, Macek T, Křen V, Valentová K. Defying Multidrug Resistance! Modulation of Related Transporters by Flavonoids and Flavonolignans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1763-1779. [PMID: 30907588 DOI: 10.1021/acs.jafc.9b00694] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multidrug resistance (MDR) is a major challenge for the 21th century in both cancer chemotherapy and antibiotic treatment of bacterial infections. Efflux pumps and transport proteins play an important role in MDR. Compounds displaying inhibitory activity toward these proteins are prospective for adjuvant treatment of such conditions. Natural low-cost and nontoxic flavonoids, thanks to their vast structural diversity, offer a great pool of lead structures with broad possibility of chemical derivatizations. Various flavonoids were found to reverse both antineoplastic and bacterial multidrug resistance by inhibiting Adenosine triphosphate Binding Cassette (ABC)-transporters (human P-glycoprotein, multidrug resistance-associated protein MRP-1, breast cancer resistance protein, and bacterial ABC transporters), as well as other bacterial drug efflux pumps: major facilitator superfamily (MFS), multidrug and toxic compound extrusion (MATE), small multidrug resistance (SMR) and resistance-nodulation-cell-division (RND) transporters, and glucose transporters. Flavonoids and particularly flavonolignans are therefore highly prospective compounds for defying multidrug resistance.
Collapse
Affiliation(s)
- Christopher S Chambers
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - David Biedermann
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Lucie Turková
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Tomáš Macek
- Department of Biochemistry and Microbiology , University of Chemistry and Technology, Prague , Technická 5 , CZ 166 28 , Prague , Czech Republic
| | - Vladimír Křen
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation , Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083 , CZ 142 20 Prague , Czech Republic
| |
Collapse
|
23
|
Kalanchoe brasiliensis Cambess., a Promising Natural Source of Antioxidant and Antibiotic Agents against Multidrug-Resistant Pathogens for the Treatment of Salmonella Gastroenteritis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9245951. [PMID: 31827708 PMCID: PMC6885303 DOI: 10.1155/2019/9245951] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 08/23/2019] [Indexed: 02/05/2023]
Abstract
Kalanchoe brasiliensis Cambess. is a native Brazilian plant popularly known as “saião”, and the juice of its fresh leaves is traditionally used to treat several disorders, including inflammatory and infectious processes such as dysentery. The goals of this study were to characterize the phytochemical composition and investigate the antioxidant activity, the antibiotic effect, and the mode of action against Salmonella of the hydroethanolic extracts from K. brasiliensis leaves collected in the summer and spring Brazilian seasons. These extracts had their chemical composition established by high-performance liquid chromatography with diode-array detection. Total phenolic and flavonoid contents were spectrophotometrically determined. 2,2-Diphenyl-1-picryl-hydrazyl radical scavenging, phosphomolybdenum reducing power and β-carotene bleaching assays were carried out to evaluate the antioxidant capacity. Antibiotic potential was assessed by minimal inhibitory concentration against 8 bacterial ATCC® and 5 methicillin-resistant Staphylococcus aureus and 5 Salmonella clinical strains. The mode of action was investigated by time-kill, bacterial cell viability, and leakage of compounds absorbing at 280 nm assays against Salmonella. Chromatographic profile and UV spectrum analyses suggested the significant presence of flavonoid type patuletin and eupafolin derivatives, and no difference between both periods of collection was noted. Significant amounts of total phenolic and flavonoid contents and a promising antioxidant capacity were observed. Hydroethanolic extracts (70%, summer and spring) were the most active against the tested Gram-positive and Gram-negative bacterial strains, showing the bacteriostatic action of 5000 μg/mL. Time-kill data demonstrated that these extracts were able to reduce the Salmonella growth rate. Cell number was reduced with release of the bacterial content. Together, these results suggest that K. brasiliensis is a natural source of antioxidant and antibacterial agents that can be applied in the research and development of new antibiotics for the treatment of Salmonella gastroenteritis because they are able to interfere in the Salmonella growth, probably due to cell membrane damage.
Collapse
|
24
|
Zuo GY, Yang CX, Ruan ZJ, Han J, Wang GC. Potent anti-MRSA activity and synergism with aminoglycosides by flavonoid derivatives from the root barks of Morus alba, a traditional Chinese medicine. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02393-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
25
|
Farhadi F, Khameneh B, Iranshahi M, Iranshahy M. Antibacterial activity of flavonoids and their structure-activity relationship: An update review. Phytother Res 2018; 33:13-40. [PMID: 30346068 DOI: 10.1002/ptr.6208] [Citation(s) in RCA: 328] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/05/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Based on World Health Organization reports, resistance of bacteria to well-known antibiotics is a major global health challenge now and in the future. Different strategies have been proposed to tackle this problem including inhibition of multidrug resistance pumps and biofilm formation in bacteria and development of new antibiotics with novel mechanism of action. Flavonoids are a large class of natural compounds, have been extensively studied for their antibacterial activity, and more than 150 articles have been published on this topic since 2005. Over the past decade, some promising results were obtained with the antibacterial activity of flavonoids. In some cases, flavonoids (especially chalcones) showed up to sixfold stronger antibacterial activities than standard drugs in the market. Some synthetic derivatives of flavonoids also exhibited remarkable antibacterial activities with 20- to 80-fold more potent activity than the standard drug against multidrug-resistant Gram-negative and Gram-positive bacteria (including Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus). This review summarizes the ever changing information on antibacterial activity of flavonoids since 2005, with a special focus on the structure-activity relationship and mechanisms of actions of this broad class of natural compounds.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Khameneh
- Department of Pharmaceutical Control, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
26
|
Gupta VK, Gaur R, Sharma A, Akther J, Saini M, Bhakuni RS, Pathania R. A novel bi-functional chalcone inhibits multi-drug resistant Staphylococcus aureus and potentiates the activity of fluoroquinolones. Bioorg Chem 2018; 83:214-225. [PMID: 30380450 DOI: 10.1016/j.bioorg.2018.10.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 10/28/2022]
Abstract
Staphylococcus aureus is the leading cause of bacteraemia and the dwindling supply of effective antibacterials has exacerbated the problem of managing infections caused by this bacterium. Isoliquiritigenin (ISL) is a plant flavonoid that displays therapeutic potential against S. aureus. The present study identified a novel mannich base derivatives of ISL, IMRG4, active against Vancomycin intermediate S. aureus (VISA). IMRG4 damages the bacterial membranes causing membrane depolarization and permeabilization, as determined by loss of salt tolerance, flow cytometric analysis, propidium idodie and fluorescent microscopy. It reduces the intracellular invasion of HEK-293 cells by S. aureus and decreases the staphylococcal load in different organs of infected mice models. In addition to anti-staphylococcal activity, IMRG4 inhibits the multidrug efflux pump, NorA, which was determined by molecular docking and EtBr efflux assays. In combination, IMRG4 significantly reduces the MIC of norfloxacin for clinical strains of S. aureus including VISA. Development of resistance against IMRG4 alone and in combination with norfloxacin was low and IMRG4 prolongs the post-antibiotic effect of norfloxacin. These virtues combined with the low toxicity of IMRG4, assessed by MTT assay and haemolysis, makes it an ideal candidate to enter drug development pipeline against S. aureus.
Collapse
Affiliation(s)
- Vivek Kumar Gupta
- Molecular Bacteriology and Chemical Genetics Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, District Haridwar, Uttarakhand 247667, India
| | - Rashmi Gaur
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Atin Sharma
- Molecular Bacteriology and Chemical Genetics Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, District Haridwar, Uttarakhand 247667, India
| | - Jawed Akther
- Molecular Bacteriology and Chemical Genetics Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, District Haridwar, Uttarakhand 247667, India
| | - Mahak Saini
- Molecular Bacteriology and Chemical Genetics Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, District Haridwar, Uttarakhand 247667, India
| | - Rajendra Singh Bhakuni
- Medicinal Chemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India
| | - Ranjana Pathania
- Molecular Bacteriology and Chemical Genetics Lab, Department of Biotechnology, Indian Institute of Technology Roorkee, District Haridwar, Uttarakhand 247667, India.
| |
Collapse
|
27
|
dos Santos JF, Tintino SR, de Freitas TS, Campina FF, de A. Menezes IR, Siqueira-Júnior JP, Coutinho HD, Cunha FA. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp Immunol Microbiol Infect Dis 2018; 57:22-28. [DOI: 10.1016/j.cimid.2018.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
|
28
|
Moloney MG. Natural Products as a Source for Novel Antibiotics. Trends Pharmacol Sci 2016; 37:689-701. [DOI: 10.1016/j.tips.2016.05.001] [Citation(s) in RCA: 161] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/02/2016] [Accepted: 05/02/2016] [Indexed: 01/04/2023]
|
29
|
Huang T, Zheng Y, Yan Y, Yang L, Yao Y, Zheng J, Wu L, Wang X, Chen Y, Xing J, Yan X. Probing minority population of antibiotic-resistant bacteria. Biosens Bioelectron 2016; 80:323-330. [PMID: 26852201 DOI: 10.1016/j.bios.2016.01.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 01/14/2016] [Accepted: 01/21/2016] [Indexed: 02/06/2023]
Abstract
The evolution and spread of antibiotic-resistant pathogens has become a major threat to public health. Advanced tools are urgently needed to quickly diagnose antibiotic-resistant infections to initiate appropriate treatment. Here we report the development of a highly sensitive flow cytometric method to probe minority population of antibiotic-resistant bacteria via single cell detection. Monoclonal antibody against TEM-1 β-lactamase and Alexa Fluor 488-conjugated secondary antibody were used to selectively label resistant bacteria green, and nucleic acid dye SYTO 62 was used to stain all the bacteria red. A laboratory-built high sensitivity flow cytometer (HSFCM) was applied to simultaneously detect the side scatter and dual-color fluorescence signals of single bacteria. By using E. coli JM109/pUC19 and E. coli JM109 as the model systems for antibiotic-resistant and antibiotic-susceptible bacteria, respectively, as low as 0.1% of antibiotic-resistant bacteria were accurately quantified. By monitoring the dynamic population change of a bacterial culture with the administration of antibiotics, we confirmed that under the antimicrobial pressure, the original low population of antibiotic-resistant bacteria outcompeted susceptible strains and became the dominant population after 5hours of growth. Detection of antibiotic-resistant infection in clinical urine samples was achieved without cultivation, and the bacterial load of susceptible and resistant strains can be faithfully quantified. Overall, the HSFCM-based quantitative method provides a powerful tool for the fundamental studies of antibiotic resistance and holds the potential to provide rapid and precise guidance in clinical therapies.
Collapse
Affiliation(s)
- Tianxun Huang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yan Zheng
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Ya Yan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Lingling Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yihui Yao
- Zhongshan Hospital, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Jiaxin Zheng
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005,P.R. China
| | - Lina Wu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Xu Wang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Yuqing Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China
| | - Jinchun Xing
- The First Affiliated Hospital of Xiamen University, Xiamen, Fujian 361005,P.R. China
| | - Xiaomei Yan
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory for Chemical Biology of Fujian Province, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P.R. China.
| |
Collapse
|