1
|
Bienvenu AL, Ballut L, Picot S. Specifically Targeting Metacaspases of Candida: A New Therapeutic Opportunity. J Fungi (Basel) 2024; 10:90. [PMID: 38392762 PMCID: PMC10889698 DOI: 10.3390/jof10020090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024] Open
Abstract
The World Health Organization (WHO) recently published a list of fungal priority pathogens, including Candida albicans and C. auris. The increased level of resistance of Candida is raising concern, considering the availability of only four classes of medicine. The WHO is seeking novel agent classes with different targets and mechanisms of action. Targeting Candida metacaspases to control intrinsic cell death could provide new therapeutic opportunities for invasive candidiasis. In this review, we provide the available evidence for Candida cell death, describe Candida metacaspases, and discuss the potential of Candida metacaspases to offer a new specific target. Targeting Candida cell death has good scientific rationale given that the fungicidal activity of many marketed antifungals is mediated, among others, by cell death triggering. But none of the available antifungals are specifically activating Candida metacaspases, making this target a new therapeutic opportunity for non-susceptible isolates. It is expected that antifungals based on the activation of fungi metacaspases will have a broad spectrum of action, as metacaspases have been described in many fungi, including filamentous fungi. Considering this original mechanism of action, it could be of great interest to combine these new antifungal candidates with existing antifungals. This approach would help to avoid the development of antifungal resistance, which is especially increasing in Candida.
Collapse
Affiliation(s)
- Anne-Lise Bienvenu
- Service Pharmacie, Groupement Hospitalier Nord, Hospices Civils de Lyon, 69004 Lyon, France
- Malaria Research Unit, University Lyon, UMR 5246 CNRS-INSA-CPE-University Lyon1, 69100 Villeurbanne, France
| | - Lionel Ballut
- Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS-Université de Lyon, 69367 Lyon, France
| | - Stephane Picot
- Malaria Research Unit, University Lyon, UMR 5246 CNRS-INSA-CPE-University Lyon1, 69100 Villeurbanne, France
- Institute of Parasitology and Medical Mycology, Hôpital de la Croix-Rousse, Hospices Civils de Lyon, 69004 Lyon, France
| |
Collapse
|
2
|
Chen SY, Chang CK, Lan CY. Antimicrobial peptide LL-37 disrupts plasma membrane and calcium homeostasis in Candida albicans via the Rim101 pathway. Microbiol Spectr 2023; 11:e0255123. [PMID: 37888991 PMCID: PMC10715129 DOI: 10.1128/spectrum.02551-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023] Open
Abstract
IMPORTANCE Candida albicans is a major human fungal pathogen, and antimicrobial peptides are key components of innate immunity. Studying the interplay between C. albicans and human antimicrobial peptides would enhance a better understanding of pathogen-host interactions. Moreover, potential applications of antimicrobial peptides in antifungal therapy have aroused great interest. This work explores new mechanisms of LL-37 against C. albicans and reveals the complex connection among calcium homeostasis, oxidative stress, signaling, and possibly organelle interaction. Notably, these findings support the possible use of antimicrobial peptides to prevent and treat fungal infections.
Collapse
Affiliation(s)
- Sheng-Yuan Chen
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Che-Kang Chang
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
3
|
Jadimurthy R, Jagadish S, Nayak SC, Kumar S, Mohan CD, Rangappa KS. Phytochemicals as Invaluable Sources of Potent Antimicrobial Agents to Combat Antibiotic Resistance. Life (Basel) 2023; 13:948. [PMID: 37109477 PMCID: PMC10145550 DOI: 10.3390/life13040948] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/04/2023] [Accepted: 03/29/2023] [Indexed: 04/08/2023] Open
Abstract
Plants have been used for therapeutic purposes against various human ailments for several centuries. Plant-derived natural compounds have been implemented in clinics against microbial diseases. Unfortunately, the emergence of antimicrobial resistance has significantly reduced the efficacy of existing standard antimicrobials. The World Health Organization (WHO) has declared antimicrobial resistance as one of the top 10 global public health threats facing humanity. Therefore, it is the need of the hour to discover new antimicrobial agents against drug-resistant pathogens. In the present article, we have discussed the importance of plant metabolites in the context of their medicinal applications and elaborated on their mechanism of antimicrobial action against human pathogens. The WHO has categorized some drug-resistant bacteria and fungi as critical and high priority based on the need to develope new drugs, and we have considered the plant metabolites that target these bacteria and fungi. We have also emphasized the role of phytochemicals that target deadly viruses such as COVID-19, Ebola, and dengue. Additionally, we have also elaborated on the synergetic effect of plant-derived compounds with standard antimicrobials against clinically important microbes. Overall, this article provides an overview of the importance of considering phytogenous compounds in the development of antimicrobial compounds as therapeutic agents against drug-resistant microbes.
Collapse
Affiliation(s)
- Ragi Jadimurthy
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Swamy Jagadish
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | - Siddaiah Chandra Nayak
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570006, India;
| | - Sumana Kumar
- Department of Microbiology, Faculty of Life Sciences, JSS Academy of Higher Education and Research, Mysore 570015, India
| | - Chakrabhavi Dhananjaya Mohan
- Department of Studies in Molecular Biology, University of Mysore, Manasagangotri, Mysore 570006, India; (R.J.); (S.J.)
| | | |
Collapse
|
4
|
Kim C, Kim JG, Kim KY. Anti- Candida Potential of Sclareol in Inhibiting Growth, Biofilm Formation, and Yeast-Hyphal Transition. J Fungi (Basel) 2023; 9:jof9010098. [PMID: 36675919 PMCID: PMC9862543 DOI: 10.3390/jof9010098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 01/13/2023] Open
Abstract
Even though Candida albicans commonly colonizes on most mucosal surfaces including the vaginal and gastrointestinal tract, it can cause candidiasis as an opportunistic infectious fungus. The emergence of resistant Candida strains and the toxicity of anti-fungal agents have encouraged the development of new classes of potential anti-fungal agents. Sclareol, a labdane-type diterpene, showed anti-Candida activity with a minimum inhibitory concentration of 50 μg/mL in 24 h based on a microdilution anti-fungal susceptibility test. Cell membrane permeability with propidium iodide staining and mitochondrial membrane potential with JC-1 staining were increased in C. albicans by treatment of sclareol. Sclareol also suppressed the hyphal formation of C. albicans in both liquid and solid media, and reduced biofilm formation. Taken together, sclareol induces an apoptosis-like cell death against Candida spp. and suppressed biofilm and hyphal formation in C. albicans. Sclareol is of high interest as a novel anti-fungal agent and anti-virulence factor.
Collapse
Affiliation(s)
- Chaerim Kim
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Republic of Korea
| | - Jae-Goo Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Yingin 17104, Gyeonggi-do, Republic of Korea
- College of Life Science, Kyung Hee University, Yongin 17104, Gyeonggi-do, Republic of Korea
- Correspondence: ; Tel.: +82-312012633
| |
Collapse
|
5
|
Sasidharan S, Nishanth KS, Nair HJ. Ethanolic extract of Caesalpinia bonduc seeds triggers yeast metacaspase-dependent apoptotic pathway mediated by mitochondrial dysfunction through enhanced production of calcium and reactive oxygen species (ROS) in Candida albicans. Front Cell Infect Microbiol 2022; 12:970688. [PMID: 36093184 PMCID: PMC9449877 DOI: 10.3389/fcimb.2022.970688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Candida albicans is a widespread disease-causing yeast affecting humankind, which leads to urinary tract, cutaneous and various lethal systemic infections. As this infection rate steadily increases, it is becoming a significant public health problem. Recently, Caesalpinia bonduc has received much attention from researchers due to its diverse pharmacological properties, including antimicrobial effects. Accordingly, we first planned to explore the in-vitro anticandidal potential of three extracts obtained from C. bonduc seeds against four Candida species. Initially, the anticandidal activity of the seed extracts was checked by the microdilution technique. Out of three seed extracts tested, ethanolic extract of C. bonduc seed (EECS) recorded the best activity against C. albicans. Hence, we next aimed to find out the anticandidal mechanism of EECS in C. albicans. The liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) analysis showed that the major compounds present in the EECS were tocopherols, fucosterol, linoleic acid, β-amyrin, β-sitosterol, campesterol, cassane furanoditerpene, Norcassane furanoditerpene and other diterpenes. To evaluate the cell death mechanism in C. albicans, a series of parameters related to apoptosis, viz., reactive oxygen species (ROS) production, membrane permeability, mitochondrial membrane potential, release of cytochrome c, DNA fragmentation, nuclear condensation, increased Ca2+ level in cytosolic and mitochondrial and activation of metacaspase, were analyzed. The results showed that EECS treatment resulted in the elevation of ROS, which leads to plasma membrane permeability in C. albicans. Annexin V staining further confirms the early stage of apoptosis through phosphatidylserine (PS) externalization. We further inspected the late apoptotic stage using DAPI and TUNEL staining assays. From the results, it can be concluded that EECS triggered mitochondrial dysfunction by releasing high levels of ROS, cytochrome c and Ca2+resulting in the activation of metacaspase mediated apoptosis, which is the central mechanism behind the cell death of C. albicans. Finally, a Galleria mellonella-C. albicans infection system was employed to assess the in-vivo potential of EECS. The outcomes displayed that the EECS considerably enhanced the recovery rate of G. mellonella larvae from infection after the treatment. Additionally, EECS also recorded low hemolytic activity. This study thus spotlights the anticandidal potential and mechanism of action of EECS against C. albicans and thus delivers a promising treatment approach to manage C. albicans infection in the future.
Collapse
|
6
|
Lee J, Kim JG, Lee H, Lee TH, Kim KY, Kim H. Antifungal Activity of 1,4-Dialkoxynaphthalen-2-Acyl Imidazolium Salts by Inducing Apoptosis of Pathogenic Candida spp. Pharmaceutics 2021; 13:312. [PMID: 33673685 PMCID: PMC7997172 DOI: 10.3390/pharmaceutics13030312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/22/2021] [Accepted: 02/24/2021] [Indexed: 12/24/2022] Open
Abstract
Even though Candida spp. are staying commonly on human skin, it is also an opportunistic pathogenic fungus that can cause candidiasis. The emergence of resistant Candida strains and the toxicity of antifungal agents have encouraged the development of new classes of potent antifungal agents. Novel naphthalen-2-acyl imidazolium salts (NAIMSs), especially 1,4-dialkoxy-NAIMS from 1,4-dihydroxynaphthalene, were prepared and evaluated for antifungal activity. Those derivatives showed prominent anti-Candida activity with a minimum inhibitory concentration (MIC) of 3.125 to 6.26 μg/mL in 24 h based on microdilution antifungal susceptibility test. Among the tested compounds, NAIMS 7c showed strongest antifungal activity with 3.125 μg/mL MIC value compared with miconazole which showed 12.5 μg/mL MIC value against Candida spp., and more importantly >100 μg/mL MIC value against C. auris. The production of reactive oxygen species (ROS) was increased and JC-1 staining showed the loss of mitochondrial membrane potential in C. albicans by treatment with NAIMS 7c. The increased release of ultraviolet (UV) absorbing materials suggested that NAIMS 7c could cause cell busting. The expression of apoptosis-related genes was induced in C. albicans by NAIMS 7c treatment. Taken together, the synthetic NAIMSs are of high interest as novel antifungal agents given further in vivo examination.
Collapse
Affiliation(s)
- Jisue Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Jae-Goo Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Haena Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Tae Hoon Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Ki-Young Kim
- Graduate School of Biotechnology, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| | - Hakwon Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Seocheon, Giheung, Yongin, Gyeonggi-do 1732, Korea
| |
Collapse
|
7
|
Reactive oxygen mediated apoptosis as a therapeutic approach against opportunistic Candida albicans. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 125:25-49. [PMID: 33931141 DOI: 10.1016/bs.apcsb.2020.12.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Candida albicans are polymorphic fungal species commonly occurs in a symbiotic association with the host's usual microflora. Certain specific changes in its usual microenvironment can lead to diseases ranging from external mucosal to severally lethal systemic infections like invasive candidiasis hospital-acquired fatal infection caused by different species of Candida. The patient acquired with this infection has a high mortality and morbidity rate, ranging from 40% to 60%. This is an ill-posed problem by its very nature. Hence, early diagnosis and management is a crucial part. Antifungal drug resistance against the first and second generation of antifungal drugs has made it difficult to treat such fatal diseases. After a few dormant years, recently, there has been a rapid turnover of identifying novel drugs with low toxicity to limit the problem of drug resistance. After an initial overview of related work, we examine specific prior work on how a change in oxidative stress can facilitate apoptosis in C. albicans. Subsequently, it was investigated that Candida spp. suppresses the production of ROS mediated host defense system. Here, we have reviewed possibly all the small molecule inhibitors, natural products, antimicrobial peptide, and some naturally derived semi-synthetic compounds which are known to influence oxidative stress, to generate a proper apoptotic response in C. albicans and thus might be a novel therapeutic approach to augment the current treatment options.
Collapse
|
8
|
Holanda MA, da Silva CR, de A Neto JB, do Av Sá LG, do Nascimento FB, Barroso DD, da Silva LJ, Cândido TM, Leitão AC, Barbosa AD, de Moraes MO, Cc B, Júnior HVN. Evaluation of the antifungal activity in vitro of midazolam against fluconazole-resistant Candida spp. isolates. Future Microbiol 2021; 16:71-81. [PMID: 33459560 DOI: 10.2217/fmb-2020-0080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: The purpose of this study was to evaluate the antifungal activity of midazolam, alone and in association with azoles, against isolates of clinical Candida spp. in planktonic and biofilm form. Materials & methods: The antifungal activity was observed using the broth microdilution technique. Flow cytometry tests were performed to investigate the probable mechanism of action and the comet test and cytotoxicity test were applied to evaluate DNA damage. Results: Midazolam (MIDAZ) showed antifungal activity against planktonic cells (125-250 μg/ml) and reduced the viability of Candida spp. biofilms (125 a 2500 μg/ml). The interaction of MIDAZ against Candida spp. biofilms was observed through scanning electron microscopy, causing alteration of their appearance. Therefore, MIDAZ has antifungal potential against Candida spp.
Collapse
Affiliation(s)
- Maria Av Holanda
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Cecília R da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - João B de A Neto
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil.,University Center Christus, Fortaleza, CE 60160 230, Brazil
| | - Lívia G do Av Sá
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Francisca Bsa do Nascimento
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Daiana D Barroso
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Lisandra J da Silva
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Thiago M Cândido
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil.,University Center Christus, Fortaleza, CE 60160 230, Brazil
| | - Amanda C Leitão
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Amanda D Barbosa
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Manoel O de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Bruno Cc
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| | - Hélio V Nobre Júnior
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430 1160, Brazil.,Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430 276, Brazil
| |
Collapse
|
9
|
da Silva CR, S Campos RD, de A Neto JB, Sampaio LS, do Nascimento FB, do Av Sá LG, Cândido TM, Magalhães HI, da Cruz EH, da Silva Júnior EN, de Moraes MO, Cavalcanti BC, Silva J, Marinho ES, Júnior HV. Antifungal activity of β-lapachone against azole-resistant Candida spp. and its aspects upon biofilm formation. Future Microbiol 2020; 15:1543-1554. [PMID: 33215521 DOI: 10.2217/fmb-2020-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aim: The purpose of this study was to assess the antifungal effect of β-lapachone (β-lap) on azole-resistant strains of Candida spp. in both planktonic and biofilm form. Materials & methods: The antifungal activity of β-lap was evaluated by broth microdilution, flow cytometry and the comet assay. The cell viability of the biofilms was assessed using the MTT assay. Results: β-lap showed antifungal activity against resistant strains of Candida spp. in planktonic form. In addition, β-lap decreased the viability of mature biofilms and inhibited the formation of biofilms in vitro. Conclusion: β-lap showed antifungal activity against Candida spp., suggesting that the compound can be utilized as an adjunct agent in the treatment of candidiasis.
Collapse
Affiliation(s)
- Cecília R da Silva
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-170, Brazil
| | - Rosana de S Campos
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE 60160-230, Brazil
| | - João B de A Neto
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Christus University Center (UNICHRISTUS), Fortaleza, CE 60160-230, Brazil
| | - Letícia S Sampaio
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-170, Brazil
| | - Francisca Bsa do Nascimento
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-170, Brazil
| | - Lívia G do Av Sá
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-170, Brazil
| | - Thiago M Cândido
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-170, Brazil
| | - Hemerson If Magalhães
- School of Pharmacy, Federal University of Paraíba, João Pessoa 58059-900, PB, Brazil
| | - Eduardo Hg da Cruz
- Laboratory of Synthetic & Heterocyclic Chemistry, Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Eufrânio N da Silva Júnior
- Laboratory of Synthetic & Heterocyclic Chemistry, Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, Minas Gerais 31270-901, Brazil
| | - Manoel O de Moraes
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Bruno C Cavalcanti
- Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
| | - Jacilene Silva
- Departmentof Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), StateUniversity of Ceará, Limoeiro do Norte, Ceará 62930-000, Brazil
| | - Emmanuel S Marinho
- Departmentof Chemistry, Group of Theoretical Chemistry and Electrochemistry (GQTE), StateUniversity of Ceará, Limoeiro do Norte, Ceará 62930-000, Brazil
| | - Hélio Vn Júnior
- Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Drug Research & Development Center, Federal University of Ceará, Fortaleza, CE 60430-275, Brazil
- Department of Clinical & Toxicological Analysis, School of Pharmacy, Laboratory of Bioprospection in Antimicrobial Molecules (LABIMAN), Federal University of Ceará, Fortaleza, CE 60430-170, Brazil
| |
Collapse
|
10
|
de Moraes DC, Cardoso KM, Domingos LTS, do Carmo Freire Ribeiro Pinto M, Monteiro RQ, Ferreira-Pereira A. β-Lapachone enhances the antifungal activity of fluconazole against a Pdr5p-mediated resistant Saccharomyces cerevisiae strain. Braz J Microbiol 2020; 51:1051-1060. [PMID: 32157667 PMCID: PMC7455662 DOI: 10.1007/s42770-020-00254-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/28/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The aim of this study was to evaluate the ability of lapachones in disrupting the fungal multidrug resistance (MDR) phenotype, using a model of study which an azole-resistant Saccharomyces cerevisiae mutant strain that overexpresses the ATP-binding cassette (ABC) transporter Pdr5p. METHODS The evaluation of the antifungal activity of lapachones and their possible synergism with fluconazole against the mutant S. cerevisiae strain was performed through broth microdilution and spot assays. Reactive oxygen species (ROS) and efflux pump activity were assessed by fluorometry. ATPase activity was evaluated by the Fiske and Subbarow method. The effect of β-lapachone on PDR5 mRNA expression was assessed by RT-PCR. The release of hemoglobin was measured to evaluate the hemolytic activity of β-lapachone. RESULTS α-nor-Lapachone and β-lapachone inhibited S. cerevisiae growth at 100 μg/ml. Only β-lapachone enhanced the antifungal activity of fluconazole, and this combined action was inhibited by ascorbic acid. β-Lapachone induced the production of ROS, inhibited Pdr5p-mediated efflux, and impaired Pdr5p ATPase activity. Also, β-lapachone neither affected the expression of PDR5 nor exerted hemolytic activity. CONCLUSIONS Data obtained indicate that β-lapachone is able to inhibit the S. cerevisiae efflux pump Pdr5p. Since this transporter is homologous to fungal ABC transporters, further studies employing clinical isolates that overexpress these proteins will be conducted to evaluate the effect of β-lapachone on pathogenic fungi.
Collapse
Affiliation(s)
- Daniel Clemente de Moraes
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Karina Martins Cardoso
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Levy Tenório Sousa Domingos
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Maria do Carmo Freire Ribeiro Pinto
- Laboratório de Química Heterocíclica, Instituto de Pesquisas de Produtos Naturais, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Robson Q Monteiro
- Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil
| | - Antônio Ferreira-Pereira
- Laboratório de Bioquímica Microbiana, Instituto de Microbiologia Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Avenida Carlos Chagas Filho 373, Cidade Universitária, Rio de Janeiro, RJ, CEP: 21941-590, Brazil.
| |
Collapse
|
11
|
Guevara-Lora I, Bras G, Karkowska-Kuleta J, González-González M, Ceballos K, Sidlo W, Rapala-Kozik M. Plant-Derived Substances in the Fight Against Infections Caused by Candida Species. Int J Mol Sci 2020; 21:ijms21176131. [PMID: 32854425 PMCID: PMC7504544 DOI: 10.3390/ijms21176131] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
Yeast-like fungi from the Candida genus are predominantly harmless commensals that colonize human skin and mucosal surfaces, but under conditions of impaired host immune system change into dangerous pathogens. The pathogenicity of these fungi is typically accompanied by increased adhesion and formation of complex biofilms, making candidal infections challenging to treat. Although a variety of antifungal drugs have been developed that preferably attack the fungal cell wall and plasma membrane, these pathogens have acquired novel defense mechanisms that make them resistant to standard treatment. This causes an increase in the incidence of candidiasis and enforces the urgent need for an intensified search for new specifics that could be helpful, alone or synergistically with traditional drugs, for controlling Candida pathogenicity. Currently, numerous reports have indicated the effectiveness of plant metabolites as potent antifungal agents. These substances have been shown to inhibit growth and to alter the virulence of different Candida species in both the planktonic and hyphal form and during the biofilm formation. This review focuses on the most recent findings that provide evidence of decreasing candidal pathogenicity by different substances of plant origin, with a special emphasis on the mechanisms of their action. This is a particularly important issue in the light of the currently increasing frequency of emerging Candida strains and species resistant to standard antifungal treatment.
Collapse
Affiliation(s)
- Ibeth Guevara-Lora
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Grazyna Bras
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Miriam González-González
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University in Krakow, Gronostajowa 9, 30–387 Krakow, Poland
| | - Kinga Ceballos
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (I.G.-L.); (K.C.)
| | - Wiktoria Sidlo
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, Gronostajowa 7, 30–387 Krakow, Poland; (G.B.); (J.K.-K.); (M.G.-G.); (W.S.)
- Correspondence:
| |
Collapse
|
12
|
Anjos MNV, de Araújo-Neto LN, Silva Buonafina MD, Pereira Neves R, de Souza ER, Bezerra ICF, Ferreira MRA, Soares LAL, Coutinho HDM, Martins N, da Silva MV, Correia MTDS. Ocotea glomerata (Nees) Mez Extract and Fractions: Chemical Characterization, Anti- Candida Activity and Related Mechanism of Action. Antibiotics (Basel) 2020; 9:antibiotics9070394. [PMID: 32659912 PMCID: PMC7400089 DOI: 10.3390/antibiotics9070394] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Opportunistic fungal infections are increasingly common, with Candida albicans being the most common etiological agent; however, in recent years, episodes of candidiasis caused by non-albicansCandida species have emerged. Plants belonging to the Lauraceae family have shown remarkable antifungal effects. This study assessed the anti-Candida activity of Ocotea glomerata extracts and fractions, time of death and the synergistic effects with conventional antifungals. The possible mechanism of action was also addressed. Methods: Minimal inhibitory concentrations (MIC) were determined by broth microdilution technique, and the mechanism of action was assessed by ergosterol, sorbitol, cell viability, reactive oxygen species (ROS) generation and phosphatidylserine externalization tests. Results: All the tested extracts evidenced antifungal activity, but the methanol extract was revealed to be the most effective (MIC = 3.12 μg/mL) on C. krusei. The combination of methanol extract with ketoconazole and fluconazole revealed a synergistic effect for C. krusei and C. albicans, respectively. Fractions 1 and 5 obtained from the methanol extract had fungicidal activity, mainly against C. krusei. Methanol extract did not reveal effects by ergosterol and sorbitol assays; however, it led to an increase in intracellular ROS levels, decreased cell viability, and consequently, cell death. Conclusion: O. glomerata methanol extract may be viewed as a rich source of biomolecules with antifungal activity against Candida spp.
Collapse
Affiliation(s)
- Mayara Nunes Vitor Anjos
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.N.V.A.); (M.V.d.S.); (M.T.d.S.C.)
| | - Luiz Nascimento de Araújo-Neto
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Maria Daniela Silva Buonafina
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Rejane Pereira Neves
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Edson Rubhens de Souza
- Laboratory of Medical Mycology, Department of Mycology, Federal University of Pernambuco, Recife 50670-901, Brazil; (L.N.d.A.-N.); (M.D.S.B.); (R.P.N.); (E.R.d.S.)
| | - Isabelle Cristinne Ferraz Bezerra
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, Brazil; (I.C.F.B.); (M.R.A.F.); (L.A.L.S.)
| | - Magda Rhayanny Assunção Ferreira
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, Brazil; (I.C.F.B.); (M.R.A.F.); (L.A.L.S.)
| | - Luiz Alberto Lira Soares
- Laboratory of Pharmacognosy, Department of Pharmaceutical Sciences, Federal University of Pernambuco, Recife 50670-901, Brazil; (I.C.F.B.); (M.R.A.F.); (L.A.L.S.)
| | - Henrique Douglas Melo Coutinho
- Laboratory of Microbiology and Molecular Biology, Department of Biological Chemistry, Regional University of Cariri, Crato 63000-000, Brazil
- Correspondence: (H.D.M.C.); (N.M.)
| | - Natália Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
- Institute for research and Innovation in Health (i3S), University of Porto, Rua Alfredo Allen, 4200-135 Porto, Portugal
- Correspondence: (H.D.M.C.); (N.M.)
| | - Márcia Vanusa da Silva
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.N.V.A.); (M.V.d.S.); (M.T.d.S.C.)
| | - Maria Tereza dos Santos Correia
- Laboratory of Natural Products, Department of Biochemistry, Federal University of Pernambuco, Recife 50670-901, Brazil; (M.N.V.A.); (M.V.d.S.); (M.T.d.S.C.)
| |
Collapse
|
13
|
Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans. Microorganisms 2020; 8:microorganisms8040585. [PMID: 32316661 PMCID: PMC7232333 DOI: 10.3390/microorganisms8040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Hepcidin 25 (hep 25) is a cysteine-rich 25-amino acid antimicrobial peptide containing the amino-terminal Cu(II)/Ni(II)-binding (ATCUN) motif. Upon metal binding, the ATCUN motif is known to be involved in the generation of reactive oxygen species (ROS), especially hydrogen peroxide and hydroxyl radicals, which act against different bacterial species. However, the antifungal activity and its correlation to the Cu(II)-ATCUN complex of Hep 25 are still poorly understood. Here, we found that ROS accumulation plays an important role in the fungicidal activity of hep 25 against Candida albicans. In addition, Annexin V-FITC staining and TUNEL assay results provide clues about the apoptosis induced by hep 25. Moreover, hep 25 also increases the generation of ROS, possibly because of copper binding to the ATCUN motif, which is relevant to its activity against C. albicans. Finally, the C. albicans killing action of hep 25 is an energy- and temperature-dependent process that does not involve targeting the membrane. Taken together, our results provide new insights into the mechanisms of hep 25 against C. albicans cells and the potential use of hep 25 and its derivatives as novel antifungal agents.
Collapse
|
14
|
Ortiz A, Sansinenea E. The Chemistry of Drugs to Treat Candida albicans. Curr Top Med Chem 2019; 19:2554-2566. [DOI: 10.2174/1568026619666191025153124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
Background::
Candida species are in various parts of the human body as commensals. However,
they can cause local mucosal infections and, sometimes, systemic infections in which Candida
species can spread to all major organs and colonize them.
Objective::
For the effective treatment of the mucosal infections and systemic life-threatening fungal
diseases, a considerably large number of antifungal drugs have been developed and used for clinical
purposes that comprise agents from four main drug classes: the polyenes, azoles, echinocandins, and
antimetabolites.
Method: :
The synthesis of some of these drugs is available, allowing synthetic modification of the
molecules to improve the biological activity against Candida species. The synthetic methodology for
each compound is reviewed.
Results: :
The use of these compounds has caused a high-level resistance against these drugs, and therefore,
new antifungal substances have been described in the last years. The organic synthesis of the
known and new compounds is reported.
Conclusion: :
This article summarizes the chemistry of the existing agents, both the old drugs and new
drugs, in the treatment of infections due to C. albicans, including the synthesis of the existing drugs.
Collapse
Affiliation(s)
- Aurelio Ortiz
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Pue, 72570, Mexico
| | - Estibaliz Sansinenea
- Facultad de Ciencias Quimicas, Benemerita Universidad Autonoma de Puebla, Pue, 72570, Mexico
| |
Collapse
|
15
|
Sida hermaphrodita seeds as the source of anti - Candida albicans activity. Sci Rep 2019; 9:12233. [PMID: 31439915 PMCID: PMC6706583 DOI: 10.1038/s41598-019-48712-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 08/08/2019] [Indexed: 11/15/2022] Open
Abstract
Sida hermaphrodita is a perennial herbaceous plant with potential economic importance; however, there is no information about its antimicrobial properties. The aim of our study was to analyze the morphology and metabolic activity of Candida albicans cells after exposure to the extract from S. hermaphrodita seeds, determine its cytotoxicity against human skin fibroblasts and carry out chemical analysis of the extract. Microscopic analysis showed that the crude seed extract (CSE) caused a significant decrease in the metabolic activity of fungal cells, clear cell deformation, and budding disturbances. The analysis of cytotoxicity showed no influence of the extract on the fibroblasts. The CSE and seed extract after dialysis (DSE) were analyzed using electrophoretic, chromatographic, and spectroscopic methods. SDS-PAGE electrophoresis showed the presence of proteins and carbohydrate compounds in the extract. The Raman spectroscopy analysis of the DSE confirmed the presence of proteins, while FTIR analyses revealed the occurrence of albumin-type proteins. The NMR and GC-MS analyses showed the presence of carbohydrates in the seed extract. The MALDI and ESI LC-MS/MS analysis of the CSE and the DSE fractions revealed the occurrence of vicilin-type and plant lipid transfer proteins. The seed extract is a promising formulation to use in C. albicans infections.
Collapse
|
16
|
Kosgey JC, Jia L, Fang Y, Yang J, Gao L, Wang J, Nyamao R, Cheteu M, Tong D, Wekesa V, Vasilyeva N, Zhang F. Probiotics as antifungal agents: Experimental confirmation and future prospects. J Microbiol Methods 2019; 162:28-37. [PMID: 31071354 DOI: 10.1016/j.mimet.2019.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022]
Abstract
Fungal burden throughout the world is very high and it keeps escalating due to increasing numbers of immunocompromised individuals. In contrast, the drugs used in management of fungal infections are so few some with high toxicity. Furthermore, highly resistant fungal pathogens are emerging for example Candida auris, Candida glabrata, Candida gullemondii and Aspergillus species among others. Thus now, more than ever, there is a need for combined efforts and an all round search for possible solutions to curb these problems. Therefore, the role of probiotics in management of fungal infections is indispensable. In fact, the antimicrobial activity of probiotics has been screened with promising results against microbial pathogens. Although, recent reports indicated that probiotics may also contribute to protect against fungal infections, the research done in checking antifungal activity of probiotics has used varied technology. This calls for harmonization of the methods used to screen and confirm the antimicrobial activity of probiotics and other candidate microorganisms. We therefore sought to address issues of disparity in probiotic research and their outcomes. Thus this paper is in order as it comprehensively reviews' publications, provides a summary of the methods and future prospects of probiotics as antifungal agents.
Collapse
Affiliation(s)
- Janet Cheruiyot Kosgey
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China; School of biological and life sciences, Technical University of Kenya, 52428-00200, Kenya
| | - Lina Jia
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Yong Fang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Jianxun Yang
- WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China; Department of Dermatology, The 2nd Hospital of Harbin Medical University, Harbin 150081, China
| | - Lei Gao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; Electron Microscopy Center, Basic Medical Science College, Harbin Medical University, China
| | - Jielin Wang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Rose Nyamao
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Martin Cheteu
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China
| | - Dandan Tong
- Department of Microbiology, Harbin Medical University, Harbin 150081, China
| | - Vitalis Wekesa
- School of biological and life sciences, Technical University of Kenya, 52428-00200, Kenya; Flamingo Horticulture, Dudutech Division, P.O Box 1927, 20117, Naivasha, Kenya
| | - Natalia Vasilyeva
- Kashkin Research Institute of Medical Mycology, Department of Microbiology, North-Western State Medical University named after Machnikov, Saint Petersburg, Russia
| | - Fengmin Zhang
- Department of Microbiology, Harbin Medical University, Harbin 150081, China; WU Lien-Teh Institute, Harbin Medical University, Harbin 150081, China.
| |
Collapse
|
17
|
Kim S, Woo ER, Lee DG. Synergistic Antifungal Activity of Isoquercitrin: Apoptosis and Membrane Permeabilization Related to Reactive Oxygen Species inCandida albicans. IUBMB Life 2018; 71:283-292. [DOI: 10.1002/iub.1973] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 10/21/2018] [Accepted: 10/29/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Suhyun Kim
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group; Kyungpook National University; Daegu Korea
| | - Eun-Rhan Woo
- College of Pharmacy; Chosun University; Gwangju Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group; Kyungpook National University; Daegu Korea
| |
Collapse
|
18
|
Lee W, Lee DG. Reactive oxygen species modulate itraconazole-induced apoptosis via mitochondrial disruption in Candida albicans. Free Radic Res 2017; 52:39-50. [PMID: 29157011 DOI: 10.1080/10715762.2017.1407412] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Itraconazole (ITC), a well-known fungistatic agent, has potent fungicidal activity against Candida albicans. However, its mechanism of fungicidal activity has not been elucidated yet, and we aimed to identify the mechanism of ITC against C. albicans. ITC caused cell shrinkage via potassium leakage through the ion channel. Since shrunken cells could indicate apoptosis, we investigated apoptotic features. Annexin V-FITC and TUNEL assays indicated that fungicidal activity of ITC was involved in apoptosis. Subsequently, we confirmed an intracellular factor that could cause apoptosis. ITC treatment caused reactive oxygen species (ROS) accumulation. To confirm whether ROS is related with ITC-triggered cell death, cell viability was examined using the ROS scavenger N-acetylcysteine (NAC). NAC pretreatment recovered ITC-induced cell death, indicating that antifungal activity of ITC is associated with ROS, which is also confirmed by impaired glutathione-related antioxidant system and oxidized intracellular lipids. Moreover, ITC-induced mitochondrial dysfunction, in turn, triggered cytochrome c release and metacaspase activation, leading to apoptosis. Unlike the only ITC-treatment group, cells with NAC pretreatment did not show significant damage to mitochondria, and attenuated apoptotic features. Therefore, our results suggest that ITC induces apoptosis as fungicidal mechanism, and intracellular ROS is major factor to trigger the apoptosis by ITC in C. albicans.
Collapse
Affiliation(s)
- Wonjong Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| | - Dong Gun Lee
- a School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences , Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
19
|
Anticandidal activity of hetero-dinuclear copper(II) Mn(II) Schiff base and its potential action of the mechanism. World J Microbiol Biotechnol 2017; 33:202. [PMID: 29080032 DOI: 10.1007/s11274-017-2368-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 10/14/2017] [Indexed: 12/14/2022]
Abstract
Invasive fungal infections are one of the major challenges especially for immunosuppressed patients since they are drug resistant and pathogen to patients. Therefore, developing new, efficient and nonresistant antifungal agents have been a primary focus of international research. In the current study, a novel Schiff base [hetero-dinuclear copper(II) Mn(II) complex] (SB) derivative was investigated for its anticandidal activity against Candida albicans and possible mechanisms inducing cell death. The results revealed that SB treatment induces apoptotic and necrotic pathways in C. albicans ATCC10231 strain. Intracellular reactive oxygen species production determined by 2',7'-dichlorofluorescein diacetate staining was triggered by SB and amphotericin B administrations in a dose-dependent manner. Gene expression analysis demonstrated that SB exposure resulted in regulation of critical development and stress related gene expressions. SB treatment directly upregulated expression of stress related genes, DDR48 and RIM101, while suppressed important cell signaling and antibiotic resistance acquiring related genes such as HSP90, ERG11 and EFG1. Furthermore, CaMCA1 mRNA levels were found to be significantly high in SB-treated yeast cells, indicating possible caspase-like mechanism activation. Scanning electron microscopy analysis confirmed that SB treatment led to severe cell wall integrity disruption and wrinkling. The study will encourage development of SB-based anticandidal regimens but further studies are highly warranted to understand limitations and the extended use in the routine.
Collapse
|
20
|
Feng M, Yin H, Peng H, Liu Z, Lu G, Dang Z. Hexavalent chromium induced oxidative stress and apoptosis in Pycnoporus sanguineus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:128-139. [PMID: 28528260 DOI: 10.1016/j.envpol.2017.05.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/29/2017] [Accepted: 05/03/2017] [Indexed: 06/07/2023]
Abstract
White rot fungi have been proved to be a promising option for the removal of heavy metals, understanding their toxic response to heavy metals is conducive to developing and popularizing fungi-based remediation technologies so as to lessen the hazard of heavy metals. In this study, Cr(VI)-induced oxidative stress and apoptosis in Pycnoporus sanguineus, a species of white rot fungi were investigated. The results suggested that high level of Cr(VI) promoted the formation of ROS, including H2O2, O2•- and ·OH. With the increment of Cr(VI) concentration, the SOD and CAT activity along with GSH content increased within the first 24 h, but decreased afterward, companied with a significant enhancement of MDA content. Cr(VI)-induced oxidative damage further caused and aggravated apoptosis in P. sanguineus, especially at Cr(VI) concentrations above 20 mg/L. Cr(VI)-induced apoptosis was involved with mitochondrial dysfunction including mitochondrial depolarization, the enhancement of mitochondrial permeability and release of cytochrome c. The early and late apoptosis hallmarks, such as metacaspase activation, phosphatidylserine (PS) externalization, DNA fragmentation and the nuclear condensation and fragmentation were observed. Moreover, we also found disturbances of ion homeostasis, which was featured by K+ effluxes and overload of cytoplasmic and mitochondrial Ca2+.Based on these results, we suggest that Cr(VI) induced oxidative stress and apoptosis in white rot fungi, P. sanguineus.
Collapse
Affiliation(s)
- Mi Feng
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Hua Yin
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China.
| | - Hui Peng
- Department of Chemistry, Jinan University, Guangzhou 510632, Guangdong, China
| | - Zehua Liu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Guining Lu
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| | - Zhi Dang
- Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, School of Environment and Energy, South China University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
21
|
Kumar SN, Mohandas C. An Antifungal Mechanism of Protolichesterinic Acid from the Lichen Usnea albopunctata Lies in the Accumulation of Intracellular ROS and Mitochondria-Mediated Cell Death Due to Apoptosis in Candida tropicalis. Front Pharmacol 2017; 8:301. [PMID: 28611662 PMCID: PMC5447038 DOI: 10.3389/fphar.2017.00301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 05/10/2017] [Indexed: 12/12/2022] Open
Abstract
Candida species causes superficial and life-threatening systemic infections and are difficult to treat due to the resistance of these organism to various clinically used drugs. Protolichesterinic acid is a well-known lichen compound. Although the antibacterial activity of protolichesterinic acid has been reported earlier, the antifungal property and its mechanism of action are still largely unidentified. The goal of the present investigation is to explore the anticandidal activity and mechanism of action of protolichesterinic acid, especially against Candida tropicalis. The Minimum Inhibitory Concentration (MIC) value was established through microdilution techniques against four Candida species and out of four species tested, C. tropicalis showed a significant effect (MIC: 2 μg/ml). In the morphological interference assay, we observed the enhanced inhibition of hyphae when the cells were treated with protolichesterinic acid. Time-kill assay demonstrated that the maximum rate of killing was recorded between 2 and 6 h. C. tropicalis exposed to protolichesterinic acid exhibited an increased ROS production, which is one of the key factors of fungal death. The rise in ROS was due to the dysfunction of mitochondria caused by protolichesterinic acid. We confirmed that protolichesterinic acid-induced dysfunction of mitochondria in C. tropicalis. The damage of cell membrane due to protolichesterinic acid treatment was confirmed by the influx of propidium iodide and was further confirmed by the release of potassium ions. The treatment of protolichesterinic acid also triggered calcium ion signaling. Moreover, it commenced apoptosis which is clearly evidenced by Annexin V and propidium iodide staining. Interestingly protolichesterinic acid recorded excellent immunomodulatory property when tested against lymphocytes. Finally protolichesterinic acid showed low toxicity toward a normal human cell line Foreskin (FS) normal fibroblast. In in vivo test, protolichesterinic acid significantly enhanced the survival of C. tropicalis infected Caenorhabditis elegans. This investigation proposes that the protolichesterinic acid induces apoptosis in C. tropicalis via the enhanced accumulation of intracellular ROS and mitochondrial damage, which leads fungal cell death via apoptosis. Our work revealed a new key aspect of mechanisms of action of protolichesterinic acid in Candida species. This article is the first study on the antifungal and mechanism of action of protolichesterinic acid in Candida species.
Collapse
Affiliation(s)
- S N Kumar
- Division of Crop Protection, Central Tuber Crops Research InstituteSreekariyam, India
| | - C Mohandas
- Division of Crop Protection, Central Tuber Crops Research InstituteSreekariyam, India
| |
Collapse
|
22
|
Hwang J, Choi H, Kim A, Yun J, Yu R, Woo ER, Lee D. Corrigendum: Hibicuslide C-induced cell death inCandida albicansinvolves apoptosis mechanism. J Appl Microbiol 2016; 121:1789. [DOI: 10.1111/jam.13334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- J.H. Hwang
- School of Life Sciences; BK 21 Plus KNU Creative BioResearch Group; College of Natural Sciences; Kyungpook National University; Daegu Korea
| | - H. Choi
- School of Life Sciences; BK 21 Plus KNU Creative BioResearch Group; College of Natural Sciences; Kyungpook National University; Daegu Korea
| | - A.R. Kim
- College of Pharmacy; Chosun University; Gwangju South Korea
| | - J.W. Yun
- Department of Biotechnology; Daegu University; Kyungsan Korea
| | - R. Yu
- Department of Food Science and Nutrition; University of Ulsan; Ulsan Korea
| | - E.-R. Woo
- College of Pharmacy; Chosun University; Gwangju South Korea
| | - D.G. Lee
- School of Life Sciences; BK 21 Plus KNU Creative BioResearch Group; College of Natural Sciences; Kyungpook National University; Daegu Korea
| |
Collapse
|
23
|
Antibacterial Activity of Hibicuslide C on Multidrug-Resistant Pseudomonas aeruginosa Isolates. Curr Microbiol 2016; 73:519-26. [DOI: 10.1007/s00284-016-1092-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 06/21/2016] [Indexed: 10/21/2022]
|
24
|
Ding Y, Li Z, Li Y, Lu C, Wang H, Shen Y, Du L. HSAF-induced antifungal effects in Candida albicans through ROS-mediated apoptosis. RSC Adv 2016; 6:30895-30904. [PMID: 27594989 PMCID: PMC5006743 DOI: 10.1039/c5ra26092b] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Heat-stable antifungal factor (HSAF) belongs to polycyclic tetramate macrolactams (PTMs), which inhibits many fungal pathogens and is effective in inhibiting Candida albicans (C. albicans). In this study, we found that HSAF induced the apoptosis of Candida albicans SC5314 through inducing the production of reactive oxygen species (ROS). Nevertheless, we validated the efficacy of HSAF against candidiasis caused by C. albicans in a murine model in vivo, and HSAF significantly improved survival and reduced fungal burden compared to vehicles. A molecular dynamics (MD) simulation was also investigated, revealing the theoretical binding mode of HSAF to the β-tubulin of C. albicans. This study first found PTMs-induced fungal apoptosis through ROS accumulation in C. albicans and its potential as a novel agent for fungicides.
Collapse
Affiliation(s)
- Yanjiao Ding
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Zhenyu Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Yaoyao Li
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
| | - Haoxin Wang
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, No. 44 West Wenhua Road, Jinan, Shandong 250012, P. R. China
- State Key laboratory of Microbial Technology, Shandong University, No. 27 South Shanda Road, Jinan, Shandong 250100, P. R. China
| | - Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|