1
|
Esteves MAC, Carvalho MF, Viana AS, Martini CL, Longo LGA, Silva DNS, Ferreira ALP, Ferreira-Carvalho BT, Planet PJ, Figueiredo AMS. Decoding the evolutionary history of ST30 Staphylococcus aureus: insights into a potentially silent MSSA bloodstream pathogen. Front Microbiol 2025; 16:1522747. [PMID: 40270815 PMCID: PMC12014664 DOI: 10.3389/fmicb.2025.1522747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/19/2025] [Indexed: 04/25/2025] Open
Abstract
Background Staphylococcus aureus clonal complex 30 (CC30) is a historically significant pathogen affecting both hospital and community settings. The notable pandemic clones, phage-type 80/81 (PT80/81) and the Southwest Pacific clone (SWP) have spread internationally, contributing to significant morbidity and mortality. Despite their importance, research on the evolution of sequence type (ST) 30 has been limited, often focusing on a small number of strains or specific regions. Methods In this study, we analyzed over 500 ST30 genomes from diverse sources, including Brazilian strains sequenced by our team, using genomic, pangenomic, phylogenetic, and time-calibrated phylogenetic analyses. Results We traced key evolutionary events, estimating that the specialization of PT80/81 and SWP occurred after a divergence around 1868, forming a group of PT80/81-related strains and another group formed by SWP-related strains. Our findings highlight major events involving gene acquisition and loss, as well as mobile genetic elements (MGE). Notably, PT80/81 lost most lpl genes during diversification, which may have restricted the circulation of related strains. Contemporary strains-defined as those that emerged in the 21st century-predominantly cluster within a group divided into three subgroups, including Brazilian strains that acquired a novel pathogenicity island. Also clustering within the contemporary group, most toxic shock syndrome toxin-1 (TSST-1)-producing strains are methicillin-susceptible S. aureus (MSSA) that have gained additional virulence traits, including sea, which enhance their adaptability and virulence. Conclusion Our study revises the evolutionary history of ST30 S. aureus uncovering critical pathoadaptive events that may explain its success. Additionally, our findings emphasize a neglected issue: the high prevalence of MSSA in hospital infections, particularly the silent circulation of TSST-1 producing strains, capable of causing severe infections. Robust surveillance studies to monitor these strains are crucial.
Collapse
Affiliation(s)
- Matheus Assis Côrtes Esteves
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Fernandes Carvalho
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Alice Slotfeldt Viana
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Caroline Lopes Martini
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luis Guilherme Araújo Longo
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Faculdade de Medicina, Instituto de Educação Médica (IDOMED), Universidade Estácio de Sá, Rio de Janeiro, RJ, Brazil
| | - Deborah Nascimento Santos Silva
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Bernadete Teixeira Ferreira-Carvalho
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paul Joseph Planet
- Children’s Hospital of Philadelphia, Philadelphia, PA, United States
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Agnes Marie Sá Figueiredo
- Departamento de Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Programa de Pós-Graduação em Patologia, Faculdade de Medicina, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
2
|
Suzuki Y, Ishitsuka T, Takagi M, Sasaki Y, Kakuda T, Kobayashi K, Kubota H, Ono HK, Kabeya H, Irie T, Andoh M, Asakura H, Takai S. Isolation and genetic characterization of Staphylococcus aureus from wild animal feces and game meats. Folia Microbiol (Praha) 2024; 69:347-360. [PMID: 37405631 DOI: 10.1007/s12223-023-01071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023]
Abstract
The populations of Japanese deer and boar have increased dramatically and have a serious impact on farming and mountain villages. Although the Japanese government promotes the use of captured wild animals, game meat is not subject to sanitary control considering that it is not subject to meat inspection or quality control. Here, we have attempted to isolate Staphylococcus aureus, a typical foodborne pathogen, as a part of an investigation of contamination in the meats of wild animals and their processing stages. We examined 390 samples of deer feces, 117 samples of wild boar feces, and 75 samples of disemboweled deer meat for isolation of S. aureus; ultimately, 30 (positive rate: 7.7%), 2 (1.7%), and 21 (28.0%) strains were isolated, respectively, from the samples. The genome sequences of these isolates were analyzed and were subjected to multilocus sequence typing. We identified 12 new sequence types (STs) and a dominant population of S. aureus with a characteristic genetic background in wild animals, namely, the ST groups derived from CC121 (number of strains = 39). These strains did not harbor the enterotoxin gene or only harbored egc-related enterotoxin, which is of low involvement in Staphylococcal food poisoning. However, one ST2449 strain, which produces causative enterotoxins, was isolated from a deer's feces. Since there are several common STs isolated from feces and dismembered meat and because fecal contamination during dismemberment is suspected, continuous monitoring and guidance for improving sanitary management conditions during processing and handling of the meat are highly warranted with immediate effect.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan.
| | - Toko Ishitsuka
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Miu Takagi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Kai Kobayashi
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, 3-24-1 Hyakunin-Cho, Shinjuku-Ku, Tokyo, 169-0073, Japan
| | - Hisaya K Ono
- Laboratory of Zoonoses, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Hidenori Kabeya
- Laboratory of Veterinary Food Hygiene, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Takao Irie
- Laboratory of Veterinary Parasitic Diseases, Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen-Kibanadai-Nishi, Miyazaki, 889-2192, Japan
| | - Masako Andoh
- Department of Pathogenetic and Preventive Veterinary Science, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima, 890-0065, Japan
| | - Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-Ku, Kawasaki, Kanagawa, 210-9501, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
3
|
Goswami C, Fox S, Holden M, Leanord A, Evans TJ. Genomic Analysis of Global Staphylococcus argenteus Strains Reveals Distinct Lineages With Differing Virulence and Antibiotic Resistance Gene Content. Front Microbiol 2021; 12:795173. [PMID: 34925305 PMCID: PMC8677677 DOI: 10.3389/fmicb.2021.795173] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Infections due to Staphylococcus argenteus have been increasingly reported worldwide and the microbe cannot be distinguished from Staphylococcus aureus by standard methods. Its complement of virulence determinants and antibiotic resistance genes remain unclear, and how far these are distinct from those produced by S. aureus remains undetermined. In order to address these uncertainties, we have collected 132 publicly available sequences from fourteen different countries, including the United Kingdom, between 2005 and 2018 to study the global genetic structure of the population. We have compared the genomes for antibiotic resistance genes, virulence determinants and mobile genetic elements such as phages, pathogenicity islands and presence of plasmid groups between different clades. 20% (n = 26) isolates were methicillin resistant harboring a mecA gene and 88% were penicillin resistant, harboring the blaZ gene. ST2250 was identified as the most frequent strain, but ST1223, which was the second largest group, contained a marginally larger number of virulence genes compared to the other STs. Novel S. argenteus pathogenicity islands were identified in our isolates harboring tsst-1, seb, sec3, ear, selk, selq toxin genes, as well as chromosomal clusters of enterotoxin and superantigen-like genes. Strain-specific type I modification systems were widespread which would limit interstrain transfer of genetic material. In addition, ST2250 possessed a CRISPR/Cas system, lacking in most other STs. S. argenteus possesses important genetic differences from S. aureus, as well as between different STs, with the potential to produce distinct clinical manifestations.
Collapse
Affiliation(s)
- Cosmika Goswami
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Stephen Fox
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Matthew Holden
- School of Medicine, University of St Andrews, St Andrews, United Kingdom
| | - Alistair Leanord
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- Scottish Microbiology Reference Laboratories, Glasgow, United Kingdom
| | - Thomas J. Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Chieffi D, Fanelli F, Cho GS, Schubert J, Blaiotta G, Franz CMAP, Bania J, Fusco V. Novel insights into the enterotoxigenic potential and genomic background of Staphylococcus aureus isolated from raw milk. Food Microbiol 2020; 90:103482. [PMID: 32336356 DOI: 10.1016/j.fm.2020.103482] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/27/2020] [Accepted: 02/29/2020] [Indexed: 11/17/2022]
Abstract
In this study, 53 Staphylococcus (S.) aureus strains were typed by 16S-23S rDNA intergenic spacer region (ISR) typing and staphylococcal enterotoxin gene (SEg) typing for all the staphylococcal enterotoxin (se) and staphylococcal enterotoxin-like toxin (sel) genes known to date, revealing a higher discriminatory power than that of multi locus sequence typing. Six strains, one of each ISR- and SEg-type, were genome sequenced and the ability to produce some classical and new SEs when growing in milk was investigated. The manual analysis of the six genomes allowed us to confirm, correct and expand the results of common available genomic data pipelines such as VirulenceFinder. Moreover, it enabled us to (i) investigate the actual location of se and sel genes, even for genes such as selY, whose location (in the core genome) was so far unknown, (ii) find novel allelic variants of se and sel genes and pseudogenes, (iii) correctly annotate se and sel genes and pseudogenes, and (iv) discover a novel type of enterotoxin gene cluster (egc), i.e. the egc type 5 in strains 356P and 364P, while S. argenteus MSHR1132 harbored the egc type 6. Four of the six S. aureus strains produced sufficient amounts of SEA, SEC, SED and SEH in milk to cause staphylococcal food poisoning (SFP), with S. aureus 372 P being the highest producer of SED in milk found to date, producing as much as ca. 47,300 ng/mL and 49,200 ng/mL of SED, after 24 and 48 h of incubation in milk at 37 °C, respectively. S. aureus 372 P released a low amount of SER in milk, most likely because the seR gene was present as a pseudogene, putatively encoding only 51 amino acids. These findings confirm that not only the classical SEs, but also the new ones can represent a potential hazard for the consumers' health if produced in foods in sufficient amounts. Therefore, the detection of SEs in foods, especially if involved in SFP cases, should focus not only on classical, but also on all the new SEs and SEls known to date. Where reference methods are unavailable, the presence of the relevant genes, by using the conventional and real time PCR protocols we exhaustively provided herein, and their nucleotide sequences, should be investigated.
Collapse
Affiliation(s)
- Daniele Chieffi
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Francesca Fanelli
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy
| | - Gyu-Sung Cho
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Justyna Schubert
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Giuseppe Blaiotta
- Department of Agricultural Sciences, Division of Vine and Wine Sciences, University of Naples Federico II, Viale Italia, 83100, Avellino, Italy
| | - Charles M A P Franz
- Max Rubner-Institut, Department of Microbiology and Biotechnology, Hermann-Weigmann-Straße 1, 24103, Kiel, Germany
| | - Jacek Bania
- Department of Food Hygiene and Consumer Health Protection, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Vincenzina Fusco
- National Research Council of Italy, Institute of Sciences of Food Production (CNR-ISPA), Bari, Italy.
| |
Collapse
|
5
|
|
6
|
Suzuki Y. Current Studies of Staphylococcal Food Poisoning. Food Hygiene and Safety Science (Shokuhin Eiseigaku Zasshi) 2019; 60:27-37. [DOI: 10.3358/shokueishi.60.27] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
You Y, Song L, Nonyane BAS, Price LB, Silbergeld EK. Genomic differences between nasal Staphylococcus aureus from hog slaughterhouse workers and their communities. PLoS One 2018; 13:e0193820. [PMID: 29509797 PMCID: PMC5839586 DOI: 10.1371/journal.pone.0193820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/20/2018] [Indexed: 01/31/2023] Open
Abstract
New human pathogens can emerge from the livestock-human interface and spread into human populations through many pathways including livestock products. Occupational contact with livestock is a risk factor for exposure to those pathogens and may cause further spreading of those pathogens in the community. The current study used whole genome sequencing to explore nasal Staphylococcus aureus obtained from hog slaughterhouse workers and their community members, all of whom resided in a livestock-dense region in rural North Carolina. Sequence data were analyzed for lineage distribution, pathogenicity-related genomic features, and mobile genetic elements. We observed evidence of nasal S. aureus differences between hog workers and non-workers. Nasal S. aureus from hog workers showed a greater lineage diversity than nasal S. aureus from community residents. Hog worker isolates were less likely to carry the φSa3 prophage and human-specific immune evasion cluster genes than community resident isolates (φSa3 prophage: 54.5% vs. 91.7%, Benjamini-Hochberg (BH) corrected p = 0.035; immune evasion cluster genes: 66.7% vs. 100%, BH p = 0.021). Hog worker isolates had a lower prevalence and diversity of enterotoxins than community resident isolates, particularly lacking the enterotoxin gene cluster (39.4% vs. 70.8%, BH p = 0.125). Moreover, hog worker isolates harbored more diverse antibiotic resistance genes, with a higher prevalence of carriage of multiple resistance genes, than community resident isolates (75.8% vs. 29.2%, BH p = 0.021). Phylogenetic analysis of all ST5 isolates, the most abundant lineage in the collection, further supported separation of isolates from hog workers and non-workers. Together, our observations suggest impact of occupational contact with livestock on nasal S. aureus colonization and highlight the need for further research on the complex epidemiology of S. aureus at the livestock-human interface.
Collapse
Affiliation(s)
- Yaqi You
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Li Song
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland, United States of America
- Center for Computational Biology, McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Bareng A. S. Nonyane
- Department of International Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Lance B. Price
- Department of Environmental and Occupational Health, Milken Institute School of Public Health, George Washington University, Washington, DC, United States of America
- Division of Pathogen Genomics, Translational Genomics Research Institute, Flagstaff, Arizona, United States of America
| | - Ellen K. Silbergeld
- Department of Environmental Health Sciences, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
8
|
Suzuki Y, Kubota H, Ono HK, Kobayashi M, Murauchi K, Kato R, Hirai A, Sadamasu K. Food poisoning outbreak in Tokyo, Japan caused by Staphylococcus argenteus. Int J Food Microbiol 2017; 262:31-37. [DOI: 10.1016/j.ijfoodmicro.2017.09.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 06/08/2017] [Accepted: 09/10/2017] [Indexed: 10/18/2022]
|
9
|
Franck KT, Gumpert H, Olesen B, Larsen AR, Petersen A, Bangsborg J, Albertsen P, Westh H, Bartels MD. Staphylococcal aureus Enterotoxin C and Enterotoxin-Like L Associated with Post-partum Mastitis. Front Microbiol 2017; 8:173. [PMID: 28223977 PMCID: PMC5293744 DOI: 10.3389/fmicb.2017.00173] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/24/2017] [Indexed: 11/17/2022] Open
Abstract
Denmark is a low prevalence country with regard to methicillin resistant Staphylococcus aureus (MRSA). In 2008 and 2014, two neonatal wards in the Copenhagen area experienced outbreaks with a typical community acquired MRSA belonging to the same spa type and sequence type (t015:ST45) and both were PVL and ACME negative. In outbreak 1, the isolates harbored SCCmec IVa and in outbreak 2 SCCmec V. The clinical presentation differed between the two outbreaks, as none of five MRSA positive mothers in outbreak 1 had mastitis vs. five of six MRSA positive mothers in outbreak 2 (p < 0.02). To investigate if whole-genome sequencing could identify virulence genes associated with mastitis, t015:ST45 isolates from Denmark (N = 101) were whole-genome sequenced. Sequence analysis confirmed two separate outbreaks with no sign of sustained spread into the community. Analysis of the accessory genome between isolates from the two outbreaks revealed a S. aureus pathogenicity island containing enterotoxin C and enterotoxin-like L only in isolates from outbreak 2. Enterotoxin C and enterotoxin-like L carrying S. aureus are associated with bovine mastitis and our findings indicate that these may also be important virulence factors for human mastitis.
Collapse
Affiliation(s)
- Kristina T Franck
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen Herlev, Denmark
| | - Heidi Gumpert
- Department of Clinical Microbiology, Hvidovre Hospital, University of Copenhagen Hvidovre, Denmark
| | - Bente Olesen
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen Herlev, Denmark
| | - Anders R Larsen
- Reference Laboratory for Antimicrobial Resistance and Staphylococci, Statens Serum Institut Copenhagen, Denmark
| | - Andreas Petersen
- Reference Laboratory for Antimicrobial Resistance and Staphylococci, Statens Serum Institut Copenhagen, Denmark
| | - Jette Bangsborg
- Department of Clinical Microbiology, Herlev and Gentofte Hospital, University of Copenhagen Herlev, Denmark
| | - Per Albertsen
- Department of Pediatrics, Nordsjællands Hospital, University of Copenhagen Hillerød, Denmark
| | - Henrik Westh
- Department of Clinical Microbiology, Hvidovre Hospital, University of CopenhagenHvidovre, Denmark; Faculty of Health Sciences, Institute of Clinical Medicine, University of CopenhagenCopenhagen, Denmark
| | - Mette D Bartels
- Department of Clinical Microbiology, Hvidovre Hospital, University of Copenhagen Hvidovre, Denmark
| |
Collapse
|