1
|
Bello A, Liu W, Chang N, Erinle KO, Deng L, Egbeagu UU, Babalola BJ, Yue H, Sun Y, Wei Z, Xu X. Deciphering biochar compost co-application impact on microbial communities mediating carbon and nitrogen transformation across different stages of corn development. ENVIRONMENTAL RESEARCH 2023; 219:115123. [PMID: 36549490 DOI: 10.1016/j.envres.2022.115123] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Under current climatic conditions, developing eco-friendly and climate-smart fertilizers has become increasingly important.The co-application of biochar and compost on agricultural soils has received considerable attention recently.Unfortunately, little is known about its effects on specific microbial taxa involved in carbon and nitrogen transformation in the soil.Herein, we report the efficacy of applying biochar-based amendments on soil physicochemical indices, enzymatic activity, functional genes, bacterial community, and their network patterns in corn rhizosphere at seedling (SS), flowering (FS), and maturity (MS) stages.The applied treatments were: compost alone (COM), biochar alone (BIOC), composted biochar (CMB), fortified compost (CMWB), and the control (no fertilizer (CNTRL).The non-metric multidimensional scaling (NMDS) indicated total nitrogen (TN), pH, NO3--N, urease, protease, and microbial biomass C (MBC) as the dominant environmental factors driving soil bacteria in this study.The dominant N mediating genes belonged to nitrate reductase (narG) and nitronate monooxygenase (amo), while beta-galactosidase, catalase, and alpha-amylase were the dominant genes observed relating to C cycling.Interestingly, the abundance of these genes was higher in COM, CMWB, and CMB compared with the CNTRL and BIOC treatments.The bacteria network properties of CWMB and CMB indicated robust niche overlap associated with high cross-feeding between bacterial communities compared to other treatments.Path and stepwise regression analyses revealed norank_Reyranellaceae and Sphingopyxis in CMWB as the major bacterial genera and the major predictive indices mediating soil organic C (SOC), NH4+-N, NO3--N, and TN transformation.Overall, biochar with compost amendments improved soil nutrient conditions, regulated the composition of the bacterial community, and benefited C/N cycling in the soil ecosystem.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Kehinde Olajide Erinle
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Busayo Joshua Babalola
- Department of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia, 30602, USA
| | - Han Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
2
|
Moneda APC, de Carvalho LAL, Teheran-Sierra LG, Funnicelli MIG, Pinheiro DG. Sugarcane cultivation practices modulate rhizosphere microbial community composition and structure. Sci Rep 2022; 12:19174. [PMID: 36357461 PMCID: PMC9649670 DOI: 10.1038/s41598-022-23562-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/02/2022] [Indexed: 11/12/2022] Open
Abstract
Sugarcane (Saccharum spp.) represents a crop of great economic importance, remarkably relevant in the food industry and energy supply chains from renewable sources. However, its conventional cultivation involves the intensive use of fertilizers, pesticides, and other agrochemical agents whose detrimental effects on the environment are notorious. Alternative systems, such as organic farming, have been presented as an environmentally friendly way of production. Still, the outcomes of different cropping systems on the microbiota associated with sugarcane-whose role in its health and growth is crucial-remain underexplored. Thus, we studied the rhizospheric microbiota of two adjacent sugarcane fields, which differ in terms of the type of farming system. For this, we used the sequencing of taxonomic markers of prokaryotes (gene 16S rRNA, subregions V3-V4) and fungi (Internal transcribed spacer 2) and evaluated the changes caused by the systems. Our results show a well-conserved microbiota composition among farming systems in the highest taxonomic ranks, such as phylum, class, and order. Also, both systems showed very similar alpha diversity indices and shared core taxa with growth-promoting capacities, such as bacteria from the Bacillus and Bradyrhizobium genera and the fungal genus Trichoderma. However, the composition at more specific levels denotes differences, such as the separation of the samples concerning beta diversity and the identification of 74 differentially abundant taxa between the systems. Of these, 60 were fungal taxa, indicating that this microbiota quota is more susceptible to changes caused by farming systems. The analysis of co-occurrence networks also showed the formation of peripheral sub-networks associated with the treatments-especially in fungi-and the presence of keystone taxa in terms of their ability to mediate relationships between other members of microbial communities. Considering that both crop fields used the same cultivar and had almost identical soil properties, we conclude that the observed findings are effects of the activities intrinsic to each system and can contribute to a better understanding of the effects of farming practices on the plant microbiome.
Collapse
Affiliation(s)
- Ana Paula Corrêa Moneda
- grid.410543.70000 0001 2188 478XLaboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP 14884-900 Brazil ,grid.410543.70000 0001 2188 478XGraduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Lucas Amoroso Lopes de Carvalho
- grid.410543.70000 0001 2188 478XLaboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP 14884-900 Brazil ,grid.410543.70000 0001 2188 478XGraduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Luis Guillermo Teheran-Sierra
- grid.410543.70000 0001 2188 478XLaboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP 14884-900 Brazil ,grid.410543.70000 0001 2188 478XGraduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Michelli Inácio Gonçalves Funnicelli
- grid.410543.70000 0001 2188 478XLaboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP 14884-900 Brazil ,grid.410543.70000 0001 2188 478XGraduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| | - Daniel Guariz Pinheiro
- grid.410543.70000 0001 2188 478XLaboratory of Bioinformatics, Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP 14884-900 Brazil ,grid.410543.70000 0001 2188 478XGraduate Program in Agricultural and Livestock Microbiology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal, SP Brazil
| |
Collapse
|
3
|
van Rijssel SQ, Veen GFC, Koorneef GJ, Bakx-Schotman JMTT, Ten Hooven FC, Geisen S, van der Putten WH. Soil microbial diversity and community composition during conversion from conventional to organic agriculture. Mol Ecol 2022; 31:4017-4030. [PMID: 35726521 PMCID: PMC9545909 DOI: 10.1111/mec.16571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 05/25/2022] [Accepted: 06/06/2022] [Indexed: 11/30/2022]
Abstract
It is generally assumed that the dependence of conventional agriculture on artificial fertilizers and pesticides strongly impacts the environment, while organic agriculture relying more on microbial functioning may mitigate these impacts. However, it is not well known how microbial diversity and community composition change in conventionally managed farmers' fields that are converted to organic management. Here, we sequenced bacterial and fungal communities of 34 organic fields on sand and marine clay soils in a time series (chronosequence) covering 25 years of conversion. Nearby conventional fields were used as references. We found that community composition of bacteria and fungi differed between organic and conventionally managed fields. In the organic fields, fungal diversity increased with time since conversion. However, this effect disappeared when the conventional paired fields were included. There was a relationship between pH and soil organic matter content and the diversity and community composition of bacteria and fungi. In marine clay soils, when time since organic management increased, fungal communities in organic fields became more dissimilar to those in conventional fields. We conclude that conversion to organic management in these Dutch farmers' fields did not increase microbial community diversity. Instead, we observed that in organic fields in marine clay when time since conversion increased soil fungal community composition became progressively dissimilar from that in conventional fields. Our results also showed that the paired sampling approach of organic and conventional fields was essential in order to control for environmental variation that was otherwise unaccounted for.
Collapse
Affiliation(s)
- Sophie Q van Rijssel
- Department of Terrestrial Ecology; Netherlands Institute for Ecology (NIOO-KNAW), PO box 50, 6700, AB, Wageningen, The Netherlands
| | - G F Ciska Veen
- Department of Terrestrial Ecology; Netherlands Institute for Ecology (NIOO-KNAW), PO box 50, 6700, AB, Wageningen, The Netherlands
| | - Guusje J Koorneef
- Department of Soil Chemistry and Chemical Soil Quality; Wageningen University & Research, AA, Wageningen, The Netherlands
| | - J M T Tanja Bakx-Schotman
- Department of Terrestrial Ecology; Netherlands Institute for Ecology (NIOO-KNAW), PO box 50, 6700, AB, Wageningen, The Netherlands
| | - Freddy C Ten Hooven
- Department of Terrestrial Ecology; Netherlands Institute for Ecology (NIOO-KNAW), PO box 50, 6700, AB, Wageningen, The Netherlands
| | - Stefan Geisen
- Department of Terrestrial Ecology; Netherlands Institute for Ecology (NIOO-KNAW), PO box 50, 6700, AB, Wageningen, The Netherlands.,Laboratory of Nematology, Wageningen University, AA, Wageningen, The Netherlands
| | - Wim H van der Putten
- Department of Terrestrial Ecology; Netherlands Institute for Ecology (NIOO-KNAW), PO box 50, 6700, AB, Wageningen, The Netherlands.,Laboratory of Nematology, Wageningen University, AA, Wageningen, The Netherlands
| |
Collapse
|
4
|
de Carvalho LAL, Teheran-Sierra LG, Funnicelli MIG, da Silva RC, Campanari MFZ, de Souza RSC, Arruda P, Soares MA, Pinheiro DG. Farming systems influence the compositional, structural, and functional characteristics of the sugarcane-associated microbiome. Microbiol Res 2021; 252:126866. [PMID: 34536678 DOI: 10.1016/j.micres.2021.126866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/24/2021] [Accepted: 09/06/2021] [Indexed: 12/26/2022]
Abstract
Sugarcane (Saccharum spp.) has been produced worldwide as a relevant source of food and sustainable energy. However, the constant need to increase crop yield has led to excessive use of synthetic agrochemical inputs such as inorganic fertilizers, herbicides, and pesticides in plant cultures. It is known that these conventional practices can lead to deleterious effects on health and the environment. Organic farming emerges as a sustainable alternative to conventional systems; however, farm management influences in plant-associated microbiomes remain unclear. Here, the aim is to identify the effects of farming systems on the sugarcane microbiota. To address this issue, we sampled the microbiota from soils and plants under organic and conventional farming from two crop fields in Brazil. Then, we evaluated their compositional, structural, and functional traits through amplification and sequencing of phylogenetic markers of bacteria (16S rRNA gene, V3-V4 region) and fungi (Internal Transcribed Spacer - ITS2). The data processing and analyses by the DADA2 pipeline revealed 12,839 bacterial and 3,222 fungal sequence variants. Moreover, differences between analogous niches were detected considering the contrasting farming systems, with samples from the conventional system showing a slightly greater richness and diversity of microorganisms. The composition is also different between the farming systems, with 389 and 401 differentially abundant taxa for bacteria and fungi, respectively, including taxa capable of promoting plant growth. The microbial co-occurrence networks showed structural changes in microbial communities, where organic networks were more cohesive since they had closer taxa and less modularity by niches. Finally, the functional prediction revealed enriched metabolic pathways, including the increased presence of antimicrobial resistance in the conventional farming system. Taken together, our findings reveal functional, structural, and compositional adaptations of the microbial communities associated with sugarcane plants in the field, according to farming management. With this, we point out the need to unravel the mechanisms driving these adaptations.
Collapse
Affiliation(s)
- Lucas Amoroso Lopes de Carvalho
- Laboratory of Bioinformatics, Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil.
| | - Luis Guillermo Teheran-Sierra
- Laboratory of Bioinformatics, Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil
| | - Michelli Inácio Gonçalves Funnicelli
- Laboratory of Bioinformatics, Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil
| | - Rafael Correia da Silva
- Laboratory of Bioinformatics, Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil
| | - Maria Fernanda Zaneli Campanari
- Laboratory of Bioinformatics, Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil; Graduate Program in Agricultural and Livestock Microbiology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil
| | - Rafael Soares Correa de Souza
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, 13083-875, SP, Brazil; Genomics for Climate Change Research Center (GCCRC), University of Campinas (UNICAMP), Campinas, 13083-875, SP, Brazil
| | - Paulo Arruda
- Center for Molecular Biology and Genetic Engineering, University of Campinas (UNICAMP), Campinas, 13083-875, SP, Brazil; Genomics for Climate Change Research Center (GCCRC), University of Campinas (UNICAMP), Campinas, 13083-875, SP, Brazil; Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Marcos Antônio Soares
- Department of Botany and Ecology, Federal University of Mato Grosso (UFMT), Av. Fernando Corrêa 2367, Cuiabá, MT, Brazil
| | - Daniel Guariz Pinheiro
- Laboratory of Bioinformatics, Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinary Sciences, Jaboticabal, 14884-900, SP, Brazil.
| |
Collapse
|
5
|
Palma-Cano LE, Piñon-Castillo HA, Tarango-Rivero SH, Carbon A, Salas-Leiva J, Muñoz-Castellanos LN, Cravo-Laureau C, Duran R, Orrantia-Borunda E. Effect of organic and conventional farming on soil bacterial diversity of pecan tree (Carya illinoensis K. Kosh) orchard across two phenological stages. Lett Appl Microbiol 2021; 72:556-569. [PMID: 33453128 DOI: 10.1111/lam.13452] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 12/29/2020] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
We described the bacterial diversity of walnut grove soils under organic and conventional farming. The bacterial communities of rhizospheric and nonrhizospheric soils of pecan tree (Carya illinoensis K. Koch) were compared considering two phenological stages (sprouting and ripening). Sixteen operational taxonomic units (OTUs) were identified significantly more abundant according to the plant development, only one according to the farming condition, and none according to the soil origin. The OTUs specificaly abundant according to plant development included Actinobateria (2) and Betaproteobacteria (1) related OTUs more abundant at the sprouting stage, while at the fruit ripening (FR) stage the more abundant OTUs were related to Actinobacteria (6), Alphaproteobacteria (6), and unclassified Bacteria (1). The Gaiellaceae OTU18 (Actinobacteria) was more abundant under conventional farming. Thus, our study revealed that the plant development stage was the main factor shaping the bacterial community structure, while less influence was noticed for the farming condition. The bacterial communities exhibited specific metabolic capacities, a large range of carbon sources being used at the FR stage. The identified OTUs specifically more abundant represent indicators providing useful information on soil condition, potential tools for the management of soil bacterial communities.
Collapse
Affiliation(s)
- L E Palma-Cano
- Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - H A Piñon-Castillo
- Facultad de Ciencias Químicas de la Universidad Autónoma de Chihuahua, Chihuahua, México
| | | | - A Carbon
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM, UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - J Salas-Leiva
- Centro de Investigación en Materiales Avanzados, Chihuahua, México.,Cátedra-CONACyT, Centro de Investigación en Materiales Avanzados, Chihuahua, México
| | - L N Muñoz-Castellanos
- Facultad de Ciencias Químicas de la Universidad Autónoma de Chihuahua, Chihuahua, México
| | - C Cravo-Laureau
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM, UMR CNRS 5254, Bat. IBEAS, Pau, France
| | - R Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM, UMR CNRS 5254, Bat. IBEAS, Pau, France
| | | |
Collapse
|
6
|
Harkes P, Suleiman AKA, van den Elsen SJJ, de Haan JJ, Holterman M, Kuramae EE, Helder J. Conventional and organic soil management as divergent drivers of resident and active fractions of major soil food web constituents. Sci Rep 2019; 9:13521. [PMID: 31534146 PMCID: PMC6751164 DOI: 10.1038/s41598-019-49854-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 08/27/2019] [Indexed: 11/09/2022] Open
Abstract
Conventional agricultural production systems, typified by large inputs of mineral fertilizers and pesticides, reduce soil biodiversity and may negatively affect ecosystem services such as carbon fixation, nutrient cycling and disease suppressiveness. Organic soil management is thought to contribute to a more diverse and stable soil food web, but data detailing this effect are sparse and fragmented. We set out to map both the resident (rDNA) and the active (rRNA) fractions of bacterial, fungal, protozoan and metazoan communities under various soil management regimes in two distinct soil types with barley as the main crop. Contrasts between resident and active communities explained 22%, 14%, 21% and 25% of the variance within the bacterial, fungal, protozoan, and metazoan communities. As the active fractions of organismal groups define the actual ecological functioning of soils, our findings underline the relevance of characterizing both resident and active pools. All four major organismal groups were affected by soil management (p < 0.01), and most taxa showed both an increased presence and an enlarged activity under the organic regime. Hence, a prolonged organic soil management not only impacts the primary decomposers, bacteria and fungi, but also major representatives of the next trophic level, protists and metazoa.
Collapse
Affiliation(s)
- Paula Harkes
- Laboratory of Nematology, Dept. Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Afnan K A Suleiman
- Department Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
- KWR Watercycle Research Institute, Groningenhaven 7, 3433, PE, Nieuwegein, The Netherlands
| | - Sven J J van den Elsen
- Laboratory of Nematology, Dept. Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Johannes J de Haan
- Wageningen University & Research Open Teelten, Edelhertweg 10, Lelystad, The Netherlands
| | - Martijn Holterman
- Laboratory of Nematology, Dept. Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Eiko E Kuramae
- Department Microbial Ecology, Droevendaalsesteeg 10, 6708 PB, Wageningen, The Netherlands
| | - Johannes Helder
- Laboratory of Nematology, Dept. Plant Sciences, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
7
|
Potential Benefits and Risks for Soil Health Derived From the Use of Organic Amendments in Agriculture. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9090542] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The use of organic amendments in agriculture is a common practice due to their potential to increase crop productivity and enhance soil health. Indeed, organic amendments of different origin and composition (e.g., animal slurry, manure, compost, sewage sludge, etc.) can supply valuable nutrients to the soil, as well as increase its organic matter content, with concomitant benefits for soil health. However, the application of organic amendments to agricultural soil entails a variety of risks for environmental and human health. Organic amendments often contain a range of pollutants, including heavy metals, persistent organic pollutants, potential human pathogens, and emerging pollutants. Regarding emerging pollutants, the presence of antibiotic residues, antibiotic-resistant bacteria, and antibiotic-resistance genes in agricultural amendments is currently a matter of much concern, due to the concomitant risks for human health. Similarly, currently, the introduction of microplastics to agricultural soil, via the application of organic amendments (mainly, sewage sludge), is a topic of much relevance, owing to its magnitude and potential adverse effects for environmental health. There is, currently, much interest in the development of efficient strategies to mitigate the risks associated to the application of organic amendments to agricultural soil, while benefiting from their numerous advantages.
Collapse
|
8
|
Zheng Q, Hu Y, Zhang S, Noll L, Böckle T, Dietrich M, Herbold CW, Eichorst SA, Woebken D, Richter A, Wanek W. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. SOIL BIOLOGY & BIOCHEMISTRY 2019; 136:107521. [PMID: 31700196 PMCID: PMC6837881 DOI: 10.1016/j.soilbio.2019.107521] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Microorganisms are critical in mediating carbon (C) and nitrogen (N) cycling processes in soils. Yet, it has long been debated whether the processes underlying biogeochemical cycles are affected by the composition and diversity of the soil microbial community or not. The composition and diversity of soil microbial communities can be influenced by various environmental factors, which in turn are known to impact biogeochemical processes. The objectives of this study were to test effects of multiple edaphic drivers individually and represented as the multivariate soil environment interacting with microbial community composition and diversity, and concomitantly on multiple soil functions (i.e. soil enzyme activities, soil C and N processes). We employed high-throughput sequencing (Illumina MiSeq) to analyze bacterial/archaeal and fungal community composition by targeting the 16S rRNA gene and the ITS1 region of soils collected from three land uses (cropland, grassland and forest) deriving from two bedrock forms (silicate and limestone). Based on this data set we explored single and combined effects of edaphic variables on soil microbial community structure and diversity, as well as on soil enzyme activities and several soil C and N processes. We found that both bacterial/archaeal and fungal communities were shaped by the same edaphic factors, with most single edaphic variables and the combined soil environment representation exerting stronger effects on bacterial/archaeal communities than on fungal communities, as demonstrated by (partial) Mantel tests. We also found similar edaphic controls on the bacterial/archaeal/fungal richness and diversity. Soil C processes were only directly affected by the soil environment but not affected by microbial community composition. In contrast, soil N processes were significantly related to bacterial/archaeal community composition and bacterial/archaeal/fungal richness/diversity but not directly affected by the soil environment. This indicates direct control of the soil environment on soil C processes and indirect control of the soil environment on soil N processes by structuring the microbial communities. The study further highlights the importance of edaphic drivers and microbial communities (i.e. composition and diversity) on important soil C and N processes.
Collapse
Affiliation(s)
- Qing Zheng
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Yuntao Hu
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Shasha Zhang
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Lisa Noll
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Theresa Böckle
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Marlies Dietrich
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Craig W. Herbold
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Stephanie A. Eichorst
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Dagmar Woebken
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Althanstrasse 14, 1090 Vienna, Austria
| | - Andreas Richter
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| | - Wolfgang Wanek
- University of Vienna, Center for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Terrestrial Ecosystem Research, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
9
|
Response of soil bacterial community structure to different reclamation years of abandoned salinized farmland in arid China. Arch Microbiol 2019; 201:1219-1232. [PMID: 31190086 DOI: 10.1007/s00203-019-01689-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
In recent years, understanding the impact of reclamation of abandoned salinized field on microbial community structure is of great importance for ecosystem restoration in arid regions. The aim of this work was to investigate the effects of reclamation years on soil properties, bacterial community composition and diversity based on field sampling and llumina MiSeq sequencing. The five reclamation years are: unreclaimed salinized and reclaimed (1, 5, 10, and 15 years) fields. The results showed soil properties are significantly altered by abandoned salinized field. In particular, reclamation significantly decreased soil electrical conductivity, Cl-, SO42-, Na+, and Ca2+, during 5 years of reclamation. In addition, reclamation increased the richness and diversity of the bacterial community, except for the 1-year field soils. There was a large difference in the abundant bacterial phyla in 1-year field soils compared with other field soils. Proteobacteria were the most abundant in all of the field soils. Principal coordinates analysis showed that the abandoned and 1-year field soils exhibited specific differences in bacterial community structures compared with other field soils. Statistical analyses showed that available phosphorus, SO42-, Mg2+, and Ca2+ were the main physicochemical properties affecting the soil bacterial communities. Overall, reclamation improved soil physicochemical properties and altered the structure and composition of soil bacterial communities compared with unreclaimed salinized soil.
Collapse
|
10
|
Falardeau J, Walji K, Haure M, Fong K, Taylor G, Ma Y, Smukler S, Wang S. Native bacterial communities and Listeria monocytogenes survival in soils collected from the Lower Mainland of British Columbia, Canada. Can J Microbiol 2018; 64:695-705. [PMID: 29775543 DOI: 10.1139/cjm-2018-0115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Soil is an important reservoir for Listeria monocytogenes, a foodborne pathogen implicated in numerous produce-related outbreaks. Our objectives were to (i) compare the survival of L. monocytogenes among three soils, (ii) compare the native bacterial communities across these soils, and (iii) investigate relationships between L. monocytogenes survival, native bacterial communities, and soil properties. Listeria spp. populations were monitored on PALCAM agar in three soils inoculated with L. monocytogenes (∼5 × 106 CFU/g): conventionally farmed (CS), grassland transitioning to conventionally farmed (TS), and uncultivated grassland (GS). Bacterial diversity of the soils was analyzed using 16S rRNA targeted amplicon sequencing. A 2 log reduction of Listeria spp. was observed in all soils within 10 days, but at a significantly lower rate in GS (Fisher's least significant difference test; p < 0.05). Survival correlated with increased moisture and a neutral pH. GS showed the highest microbial diversity. Acidobacteria was the dominant phylum differentiating CS and TS from GS, and was negatively correlated with pH, carbon, nitrogen, and moisture. High moisture content and neutral pH are likely to increase the ability of L. monocytogenes to persist in soil. This study confirmed that native bacterial communities and short-term survival of L. monocytogenes varies across soils.
Collapse
Affiliation(s)
- Justin Falardeau
- a Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Khalil Walji
- b Applied Biology and Soil Science, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Maxime Haure
- c Agri-food engineering, Agrosup Dijon, 21000 Dijon, France
| | - Karen Fong
- a Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Greg Taylor
- d British Columbia Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada
| | - Yussanne Ma
- d British Columbia Genome Sciences Centre, Vancouver, BC V5Z 4S6, Canada
| | - Sean Smukler
- b Applied Biology and Soil Science, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Siyun Wang
- a Food, Nutrition and Health, Faculty of Land and Food Systems, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
11
|
Peralta AL, Sun Y, McDaniel MD, Lennon JT. Crop rotational diversity increases disease suppressive capacity of soil microbiomes. Ecosphere 2018. [DOI: 10.1002/ecs2.2235] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Ariane L. Peralta
- Department of Biology East Carolina University S301B Howell Science Complex Greenville North Carolina 27858 USA
| | - Yanmei Sun
- Department of Biology East Carolina University S301B Howell Science Complex Greenville North Carolina 27858 USA
- School of Environment and Civil Engineering Dongguan University of Technology Dongguang 523808 China
| | - Marshall D. McDaniel
- Department of Agronomy Iowa State University 2517 Agronomy Hall Ames Iowa 50014 USA
| | - Jay T. Lennon
- Department of Biology Indiana University 261 Jordan Hall Bloomington Indiana 47405 USA
| |
Collapse
|
12
|
An F, Diao Z, Lv J. Microbial diversity and community structure in agricultural soils suffering from 4 years of Pb contamination. Can J Microbiol 2018; 64:305-316. [DOI: 10.1139/cjm-2017-0278] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heavy metal pollution has become a widespread environmental problem due to rapid economic development. The phylogenetic diversity and structure of microbial communities in lead (Pb)-contaminated Lou soils were investigated using Illumina MiSeq sequencing of 16S rRNA genes. The presence of Pb2+ in soil showed weak impact on the diversity of soil bacteria community, but it influenced the abundance of some genera of bacteria, as well as soil physicochemical properties. We found significant differences in the relative abundances of heavy-metal-resistant bacteria such as Bacillus, Streptococcus, and Arthrobacter at the genus level. Available Pb and total Pb negatively correlated with soil organic matter but positively affected available phosphorus. The abundance of main bacteria phyla was highly correlated with total Pb. The relative abundance of Gemmatimonadetes, Nitrospirae, and Planctomycetes was negatively correlated with total Pb. Collectively, Pb influences both the microbial community composition and physicochemical properties of soil.
Collapse
Affiliation(s)
- Fengqiu An
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People’s Republic of China
- College of Environmental and Chemical Engineering, Polytechnic University, Xi’an 710048, People’s Republic of China
| | - Zhan Diao
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People’s Republic of China
- Law School & Intellectual Property School, JiNan University, Guangzhou 510632, People’s Republic of China
| | - Jialong Lv
- College of Natural Resources and Environment, Northwest A&F University, Ministry of Agriculture Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Yangling 712100, People’s Republic of China
| |
Collapse
|
13
|
Parelho C, Rodrigues AS, Barreto MC, Ferreira NGC, Garcia P. Assessing microbial activities in metal contaminated agricultural volcanic soils--An integrative approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:242-249. [PMID: 27057992 DOI: 10.1016/j.ecoenv.2016.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/01/2016] [Accepted: 03/19/2016] [Indexed: 06/05/2023]
Abstract
Volcanic soils are unique naturally fertile resources, extensively used for agricultural purposes and with particular physicochemical properties that may result in accumulation of toxic substances, such as trace metals. Trace metal contaminated soils have significant effects on soil microbial activities and hence on soil quality. The aim of this study is to determine the soil microbial responses to metal contamination in volcanic soils under different agricultural land use practices (conventional, traditional and organic), based on a three-tier approach: Tier 1 - assess soil microbial activities, Tier 2 - link the microbial activity to soil trace metal contamination and, Tier 3 - integrate the microbial activity in an effect-based soil index (Integrative Biological Response) to score soil health status in metal contaminated agricultural soils. Our results showed that microbial biomass C levels and soil enzymes activities were decreased in all agricultural soils. Dehydrogenase and β-glucosidase activities, soil basal respiration and microbial biomass C were the most sensitive responses to trace metal soil contamination. The Integrative Biological Response value indicated that soil health was ranked as: organic>traditional>conventional, highlighting the importance of integrative biomarker-based strategies for the development of the trace metal "footprint" in Andosols.
Collapse
Affiliation(s)
- C Parelho
- Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Portugal; cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores, 9501-801 Ponta Delgada, Portugal.
| | - A S Rodrigues
- Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Portugal; CVARG, Center of Volcanology and Geological Risks Assessment, University of the Azores, 9501-801 Ponta Delgada, Portugal.
| | - M C Barreto
- cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores, 9501-801 Ponta Delgada, Portugal; Department of Technologic Sciences and Development, University of the Azores, 9501-801 Ponta Delgada, Portugal.
| | - N G C Ferreira
- CIIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Rua dos Bragas 289, 4050-123 Porto, Portugal.
| | - P Garcia
- Department of Biology, University of the Azores, 9501-801 Ponta Delgada, Portugal; cE3c, Centre for Ecology, Evolution and Environmental Changes, and Azorean Biodiversity Group, University of the Azores, 9501-801 Ponta Delgada, Portugal.
| |
Collapse
|