1
|
Kuzmanović N, Wolf J, Will SE, Smalla K, diCenzo GC, Neumann-Schaal M. Diversity and Evolutionary History of Ti Plasmids of "tumorigenes" Clade of Rhizobium spp. and Their Differentiation from Other Ti and Ri Plasmids. Genome Biol Evol 2023; 15:evad133. [PMID: 37463407 PMCID: PMC10410297 DOI: 10.1093/gbe/evad133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Agrobacteria are important plant pathogens responsible for crown/cane gall and hairy root diseases. Crown/cane gall disease is associated with strains carrying tumor-inducing (Ti) plasmids, while hairy root disease is caused by strains harboring root-inducing (Ri) plasmids. In this study, we analyzed the sequences of Ti plasmids of the novel "tumorigenes" clade of the family Rhizobiaceae ("tumorigenes" Ti plasmids), which includes two species, Rhizobium tumorigenes and Rhizobium rhododendri. The sequences of reference Ti/Ri plasmids were also included, which was followed by a comparative analysis of their backbone and accessory regions. The "tumorigenes" Ti plasmids have novel opine signatures compared with other Ti/Ri plasmids characterized so far. The first group exemplified by pTi1078 is associated with production of agrocinopine, nopaline, and ridéopine in plant tumors, while the second group comprising pTi6.2 is responsible for synthesis of leucinopine. Bioinformatic and chemical analyses, including opine utilization assays, indicated that leucinopine associated with pTi6.2 most likely has D,L stereochemistry, unlike the L,L-leucinopine produced in tumors induced by reference strains Chry5 and Bo542. Most of the "tumorigenes" Ti plasmids have conjugative transfer system genes that are unusual for Ti plasmids, composed of avhD4/avhB and traA/mobC/parA regions. Next, our results suggested that "tumorigenes" Ti plasmids have a common origin, but they diverged through large-scale recombination events, through recombination with single or multiple distinct Ti/Ri plasmids. Lastly, we showed that Ti/Ri plasmids could be differentiated based on pairwise Mash or average amino-acid identity distance clustering, and we supply a script to facilitate application of the former approach by other researchers.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Urban Green, Braunschweig, Germany
| | - Jacqueline Wolf
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Sabine Eva Will
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| | - George C diCenzo
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| |
Collapse
|
2
|
Kuzmanović N, diCenzo GC, Bunk B, Spröer C, Frühling A, Neumann‐Schaal M, Overmann J, Smalla K. Genomics of the "tumorigenes" clade of the family Rhizobiaceae and description of Rhizobium rhododendri sp. nov. Microbiologyopen 2023; 12:e1352. [PMID: 37186225 PMCID: PMC10064268 DOI: 10.1002/mbo3.1352] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
Tumorigenic members of the family Rhizobiaceae, known as agrobacteria, are responsible for crown and cane gall diseases of various crops worldwide. Tumorigenic agrobacteria are commonly found in the genera Agrobacterium, Allorhizobium, and Rhizobium. In this study, we analyzed a distinct "tumorigenes" clade of the genus Rhizobium, which includes the tumorigenic species Rhizobium tumorigenes, as well as strains causing crown gall disease on rhododendron. Here, high-quality, closed genomes of representatives of the "tumorigenes" clade were generated, followed by comparative genomic and phylogenomic analyses. Additionally, the phenotypic characteristics of representatives of the "tumorigenes" clade were analyzed. Our results showed that the tumorigenic strains isolated from rhododendron represent a novel species of the genus Rhizobium for which the name Rhizobium rhododendri sp. nov. is proposed. This species also includes additional strains originating from blueberry and Himalayan blackberry in the United States, whose genome sequences were retrieved from GenBank. Both R. tumorigenes and R. rhododendri contain multipartite genomes, including a chromosome, putative chromids, and megaplasmids. Synteny and phylogenetic analyses indicated that a large putative chromid of R. rhododendri resulted from the cointegration of an ancestral megaplasmid and two putative chromids, following its divergence from R. tumorigenes. Moreover, gene clusters specific for both species of the "tumorigenes" clade were identified, and their biological functions and roles in the ecological diversification of R. rhododendri and R. tumorigenes were predicted and discussed.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated PlantsInstitute for Plant Protection in Horticulture and Urban GreenBraunschweigGermany
| | | | - Boyke Bunk
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Cathrin Spröer
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Anja Frühling
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Meina Neumann‐Schaal
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
| | - Jörg Overmann
- Leibniz Institute DSMZ‐German Collection of Microorganisms and Cell CulturesBraunschweigGermany
- MicrobiologyTechnical University of BraunschweigBraunschweigGermany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated PlantsInstitute for Epidemiology and Pathogen DiagnosticsBraunschweigGermany
| |
Collapse
|
3
|
Kuzmanović N, Biondi E, Overmann J, Puławska J, Verbarg S, Smalla K, Lassalle F. Genomic analysis provides novel insights into diversification and taxonomy of Allorhizobium vitis (i.e. Agrobacterium vitis). BMC Genomics 2022; 23:462. [PMID: 35733110 PMCID: PMC9219206 DOI: 10.1186/s12864-022-08662-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/17/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Allorhizobium vitis (formerly named Agrobacterium vitis or Agrobacterium biovar 3) is the primary causative agent of crown gall disease of grapevine worldwide. We obtained and analyzed whole-genome sequences of diverse All. vitis strains to get insights into their diversification and taxonomy. RESULTS Pairwise genome comparisons and phylogenomic analysis of various All. vitis strains clearly indicated that All. vitis is not a single species, but represents a species complex composed of several genomic species. Thus, we emended the description of All. vitis, which now refers to a restricted group of strains within the All. vitis species complex (i.e. All. vitis sensu stricto) and proposed a description of a novel species, All. ampelinum sp. nov. The type strain of All. vitis sensu stricto remains the current type strain of All. vitis, K309T. The type strain of All. ampelinum sp. nov. is S4T. We also identified sets of gene clusters specific to the All. vitis species complex, All. vitis sensu stricto and All. ampelinum, respectively, for which we predicted the biological function and infer the role in ecological diversification of these clades, including some we could experimentally validate. All. vitis species complex-specific genes confer tolerance to different stresses, including exposure to aromatic compounds. Similarly, All. vitis sensu stricto-specific genes confer the ability to degrade 4-hydroxyphenylacetate and a putative compound related to gentisic acid. All. ampelinum-specific genes have putative functions related to polyamine metabolism and nickel assimilation. Congruently with the genome-based classification, All. vitis sensu stricto and All. ampelinum were clearly delineated by MALDI-TOF MS analysis. Moreover, our genome-based analysis indicated that Allorhizobium is clearly separated from other genera of the family Rhizobiaceae. CONCLUSIONS Comparative genomics and phylogenomic analysis provided novel insights into the diversification and taxonomy of Allorhizobium vitis species complex, supporting our redefinition of All. vitis sensu stricto and description of All. ampelinum. Our pan-genome analyses suggest that these species have differentiated ecologies, each relying on specialized nutrient consumption or toxic compound degradation to adapt to their respective niche.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104, Braunschweig, Germany.
- Present address, Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Horticulture and Forests, Messeweg 11-12, 38104, Braunschweig, Germany.
| | - Enrico Biondi
- Department of Agricultural and Food Sciences (DISTAL), Plant Pathology, Alma Mater Studiorum-University of Bologna, Viale G. Fanin, 42, 40127, Bologna, Italy
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
| | - Joanna Puławska
- The National Institute of Horticultural Research, ul. Konstytucji 3 Maja 1/3, 96-100, Skierniewice, Poland
| | - Susanne Verbarg
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124, Braunschweig, Germany
| | - Kornelia Smalla
- Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11-12, 38104, Braunschweig, Germany
| | - Florent Lassalle
- Department of Infectious Disease Epidemiology, Imperial College London, St-Mary's Hospital Campus, Praed Street, London, W2 1NY, UK.
- Imperial College London, St-Mary's Hospital Campus, MRC Centre for Global Infectious Disease Analysis, Praed Street, London, W2 1NY, UK.
- Wellcome Sanger Institute, Pathogens and Microbes Programme, Wellcome Genome Campus, Saffron Walden, Hinxton, CB10 1RQ, UK.
| |
Collapse
|
4
|
Kawaguchi A, Sone T, Ochi S, Matsushita Y, Noutoshi Y, Nita M. Origin of Pathogens of Grapevine Crown Gall Disease in Hokkaido in Japan as Characterized by Molecular Epidemiology of Allorhizobium vitis Strains. Life (Basel) 2021; 11:life11111265. [PMID: 34833141 PMCID: PMC8620909 DOI: 10.3390/life11111265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Crown gall is a globally distributed and economically important disease of grapevine and other important crop plants. The causal agent of grapevine crown gall is tumorigenic Allorhizobium vitis (Ti) strains that harbor a tumor-inducing plasmid (pTi). The epidemic of grapevine crown gall has not been widely elucidated. In this study, we investigated the genetic diversity of 89 strains of Ti and nonpathogenic A. vitis to clarify their molecular epidemiology. Multi-locus sequence analysis (MLSA) of the partial nucleotide sequences of pyrG, recA, and rpoD was performed for molecular typing of A. vitis strains isolated from grapevines with crown gall symptoms grown in 30 different vineyards, five different countries, mainly in Japan, and seven genomic groups A to F were obtained. The results of MLSA and logistic regression indicated that the population of genetic group A was significantly related to a range of prefectures and that the epidemic of group A strains originated mainly in Hokkaido in Japan through soil infection. Moreover, group E strains could have been transported by infected nursery stocks. In conclusion, this study indicates that both soil infection and transporting of infected nursery stocks are working as infection source in Hokkaido.
Collapse
Affiliation(s)
- Akira Kawaguchi
- Western Region Agricultural Research Center (WARC) (Kinki, Chugoku, and Shikoku Regions), National Agriculture and Food Research Organization (NARO), 6-12-1 Nishifukatsu-cho, Fukuyama, Hiroshima 721-8514, Japan
- Correspondence: ; Tel.: +81-84-923-5336
| | - Teruo Sone
- Research Faculty of Agriculture, Hokkaido University, Kita 9 Nishi 9, Kita-ku, Sapporo 060-8589, Japan;
| | - Sunao Ochi
- Institute of Plant Protection, National Agriculture and Food Research Organization (NIPP), 2-1-18 Kannondai, Tsukuba, Ibaraki 721-8514, Japan; (S.O.); (Y.M.)
| | - Yosuke Matsushita
- Institute of Plant Protection, National Agriculture and Food Research Organization (NIPP), 2-1-18 Kannondai, Tsukuba, Ibaraki 721-8514, Japan; (S.O.); (Y.M.)
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan;
| | - Mizuho Nita
- Alson H. Smith, Jr. Agricultural Research and Extension Center, School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Winchester, VA 22602, USA;
| |
Collapse
|
5
|
Habbadi K, Duplay Q, Chapulliot D, Kerzaon I, Benkirane R, Benbouazza A, Wisniewski-Dyé F, Lavire C, Achbani EH, Vial L. Characterization and phylogenetic diversity of Allorhizobium vitis isolated from grapevine in Morocco. J Appl Microbiol 2019; 128:828-839. [PMID: 31755153 DOI: 10.1111/jam.14523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
AIMS Crown gall, a phytobacteriosis characterized by the formation of tumours on plant roots was observed in recently planted vineyards of the Meknes region (Morocco). The objective of this research was to analyse the diversity of pathogenic agrobacteria isolated from grapevine in Morocco. METHODS AND RESULTS Eighty-two isolates from 11 affected vineyards were characterized by recA sequencing and were found to belong to Agrobacterium tumefaciens genomospecies G1, G4 or G7, Rhizobium rhizogenes, and to Allorhizobium vitis. Only the All. vitis isolates appeared to be pathogenic on tomato and multilocus sequence analysis phylogenetic analyses revealed a weak genetic diversity, with the definition of only four genomic groups. Definition of the All. vitis genomic groups correlated with specific pathogenic traits: indeed, genomic groups differed with respect to the severity of hypersensitive response symptoms on tobacco leaves, the intensity of necrotic response on grapevine explants and opine profiles. Both vitopine and octopine were detected by UHPLC in tumours induced by isolates of three genomic groups, an opine signature scarcely ever reported. CONCLUSIONS Allorhizobium vitis is the only causative agent of crown gall on grape in Morocco, pathogenic isolates can be separated into four genomic groups. SIGNIFICANCE AND IMPACT OF THE STUDY This study of recently crown-gall-infested vineyards demonstrated that All. vitis is the only causative agent and revealed the presence of nonpathogenic Agrobacterium strain within tumours. Moreover, as the genetic diversity of the All. vitis isolates is relatively narrow, this study lays the basis for further analyses on the evolution of the disease, on the dissemination of the pTi and more globally on the fate of the different genomic groups in this newly colonized environment.
Collapse
Affiliation(s)
- K Habbadi
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, Meknes, Maroc.,Laboratoire de Botanique, Faculté des Sciences, Biotechnologie, et Protection des Plantes, Kenitra, Maroc.,CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - Q Duplay
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - D Chapulliot
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - I Kerzaon
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - R Benkirane
- Laboratoire de Botanique, Faculté des Sciences, Biotechnologie, et Protection des Plantes, Kenitra, Maroc
| | - A Benbouazza
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, Meknes, Maroc
| | - F Wisniewski-Dyé
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - C Lavire
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| | - E H Achbani
- Laboratoire de recherche et de protection des plantes URPP-INRA-Meknès, Meknes, Maroc
| | - L Vial
- CNRS-UMR 5557, Ecologie Microbienne, INRA-UMR1418, Université de Lyon, Université Lyon 1, Villeurbanne, France
| |
Collapse
|
6
|
Kuzmanović N, Behrens P, Idczak E, Wagner S, Götz M, Spröer C, Bunk B, Overmann J, Smalla K. A Novel Group of Rhizobium tumorigenes-Like Agrobacteria Associated with Crown Gall Disease of Rhododendron and Blueberry. PHYTOPATHOLOGY 2019; 109:1840-1848. [PMID: 31294681 DOI: 10.1094/phyto-05-19-0167-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Crown gall is an economically important and widespread plant disease caused by tumorigenic bacteria that are commonly affiliated within the genera Agrobacterium, Allorhizobium, and Rhizobium. Although crown gall disease was reported to occur on rhododendron, literature data regarding this disease are limited. In this study, an atypical group of tumorigenic agrobacteria belonging to the genus Rhizobium was identified as a causative agent of crown gall on rhododendron. Genome analysis suggested that tumorigenic bacteria isolated from rhododendron tumors are most closely related to Rhizobium tumorigenes, a new tumorigenic bacterium discovered recently on blackberry in Serbia. However, R. tumorigenes and novel rhododendron strains belong to separate species and form a homogenous clade within the genus Rhizobium, which we named the "tumorigenes" clade. Moreover, tumorigenic bacteria isolated from rhododendron seem to carry a distinct tumor-inducing (Ti) plasmid, compared with those carried by R. tumorigenes strains and Ti plasmids described thus far. To facilitate rapid identification of bacteria belonging to the "tumorigenes" clade, regardless of whether they are pathogenic or not, a conventional PCR method targeting putative chromosomal gene-encoding flagellin protein FlaA was developed in this study. Finally, our results suggested that this novel group of tumorigenic agrobacteria occurs on blueberry but it cannot be excluded that it is distributed more widely.
Collapse
Affiliation(s)
- Nemanja Kuzmanović
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Patric Behrens
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Elke Idczak
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Stefan Wagner
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Monika Götz
- Institute for Plant Protection in Horticulture and Forests, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, 38124 Braunschweig, Germany
- Microbiology, Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Kornelia Smalla
- Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, 38104 Braunschweig, Germany
| |
Collapse
|
7
|
The Ecology of Agrobacterium vitis and Management of Crown Gall Disease in Vineyards. Curr Top Microbiol Immunol 2019; 418:15-53. [PMID: 29556824 DOI: 10.1007/82_2018_85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Agrobacterium vitis is the primary causal agent of grapevine crown gall worldwide. Symptoms of grapevine crown gall disease include tumor formation on the aerial plant parts, whereas both tumorigenic and nontumorigenic strains of A. vitis cause root necrosis. Genetic and genomic analyses indicated that A. vitis is distinguishable from the members of the Agrobacterium genus and its transfer to the genus Allorhizobium was suggested. A. vitis is genetically diverse, with respect to both chromosomal and plasmid DNA. Its pathogenicity is mainly determined by a large conjugal tumor-inducing (Ti) plasmid characterized by a mosaic structure with conserved and variable regions. Traditionally, A. vitis Ti plasmids and host strains were differentiated into octopine/cucumopine, nopaline, and vitopine groups, based on opine markers. However, tumorigenic and nontumorigenic strains of A. vitis may carry other ecologically important plasmids, such as tartrate- and opine-catabolic plasmids. A. vitis colonizes vines endophytically. It is also able to survive epiphytically on grapevine plants and is detected in soil exclusively in association with grapevine plants. Because A. vitis persists systemically in symptomless grapevine plants, it can be efficiently disseminated to distant geographical areas via international trade of propagation material. The use of healthy planting material in areas with no history of the crown gall represents the crucial measure of disease management. Moreover, biological control and production of resistant grape varieties are encouraging as future control measures.
Collapse
|