1
|
Prieto-Santiago V, Aguiló-Aguayo I, Ortiz-Solá J, Anguera M, Abadias M. Efficacy of gaseous ozone for the inactivation of Listeria monocytogenes and Saccharomyces cerevisiae in fresh peach and grape juice. Int J Food Microbiol 2025; 438:111231. [PMID: 40315558 DOI: 10.1016/j.ijfoodmicro.2025.111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 04/21/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
Ozonation is an emerging non-thermal technology with potential applications for reducing the microbial load of foods. The present research aimed to evaluate the impact of gaseous ozone treatment on artificially inoculated Listeria monocytogenes as pathogenic target and Saccharomyces cerevisiae as spoilage target. Moreover, the ozone's effect (with an O3 concentration between 0.49 and 1.14 ppm up to 15 min) on the key quality parameters of the PGJ was also assessed and compared to a conventional thermal treatment (90 ± 1 °C for 1 min). Despite ozone being demonstrated to completely inactivate L. monocytogenes in 4 min, only a 2-log reduction was obtained after 15 min on S. cerevisiae. The juice's physicochemical and microbiological quality parameters were not significantly affected either. Although the decrease in nutritional parameters after the most extended ozone treatments was not significantly different from the ones found with the thermal procedure, color degradation of PGJ resulted significantly more significantly after the thermal treatment, compared to the ozone exposure. Ozonation may be a promising technology to preserve safety, visual aspects, physicochemical, and functional properties while extending the self-life of peach and grape juice.
Collapse
Affiliation(s)
| | | | | | - Marina Anguera
- IRTA, Postharvest, Fruitcentre, 25003 Lleida, Catalonia, Spain
| | - Maribel Abadias
- IRTA, Postharvest, Fruitcentre, 25003 Lleida, Catalonia, Spain.
| |
Collapse
|
2
|
Song WJ. Effects of a combination treatment of cold atmospheric plasma, vacuum packaging, and hot water on inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium on black pepper. Food Sci Biotechnol 2025; 34:2373-2380. [PMID: 40351723 PMCID: PMC12064501 DOI: 10.1007/s10068-025-01845-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 05/14/2025] Open
Abstract
This study aimed to evaluate the effect of a combined treatment using cold atmospheric plasma (CAP), vacuum packaging (VP), and hot water (HW) on the inactivation of foodborne pathogens on black pepper. To assess the impact of the combined treatment on black pepper quality, analyses were performed on its color values, piperine content, and total polyphenol content. Black pepper samples inoculated with Escherichia coli O157:H7 and Salmonella Typhimurium were treated with VP + HW and CAP + VP + HW. The CAP + VP + HW method at 80 °C and 90 °C effectively reduced the two pathogens by approximately 4-5 log CFU/g. Additionally, CAP + VP + HW treatment preserved the color, piperine content, or total phenolic content of the black pepper. These findings suggest that the CAP + VP + HW combination treatment can serve as an innovative approach for reducing foodborne pathogens on black pepper without compromising its quality.
Collapse
Affiliation(s)
- Won-Jae Song
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, Gyeonggi-Do 16227 Republic of Korea
| |
Collapse
|
3
|
Dai M, Tan X, Chen X, Cai K, Zhong Y, Ye Z, Kong D. Green control for inhibiting Rhizopus oryzae growth by stress factors in forage grass factory. Front Microbiol 2024; 15:1437799. [PMID: 39161598 PMCID: PMC11330821 DOI: 10.3389/fmicb.2024.1437799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/22/2024] [Indexed: 08/21/2024] Open
Abstract
The forage grass factory could break through the restrictions of land resources, region and climate to achieve efficient production throughout the year by accurate and intelligent management. However, due to its closed environment, mold outbreaks in the forage grass factory were severe, significantly affecting barley production. In this study, 9 contaminated barley tissues were collected and 45 strains were isolated in forage grass factory. After ITS sequencing, 45 strains were all identified as Rhizopus oryzae. Through stress factor assays, R. oryzae growth was seriously hindered by low concentration of sodium nitrate, high pH value and ozone water treatment. High pH and ozone water affected growth mainly by altering membrane integrity of R. oryzae. Sodium nitrate inhibited the growth of R. oryzae mainly by affecting the amount of sporulation. Low concentration of sodium nitrate and ozone water did not affect the growth of barley. High concentrations of sodium nitrate (100 mM) and pH values (8-8.5) inhibited barley growth. Among them, ozone water had the most obvious inhibition effect on R. oryzae. Large-scale ozone water treatment in the forage grass factory had also played a role in restoring barley production. Taken together, the green techonology to control mold disease and maintain the safety of forage through different physicochemical methods was selected, which was of considerable application value in animal husbandry.
Collapse
Affiliation(s)
- Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xuting Chen
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kangfeng Cai
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Hangzhou, China
| | - Yuanxiang Zhong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Key Laboratory of Digital Dry Land Crops of Zhejiang Province, Hangzhou, China
| | - Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
4
|
Xue W, Macleod J, Blaxland J. The Use of Ozone Technology to Control Microorganism Growth, Enhance Food Safety and Extend Shelf Life: A Promising Food Decontamination Technology. Foods 2023; 12:foods12040814. [PMID: 36832889 PMCID: PMC9957223 DOI: 10.3390/foods12040814] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The need for microorganism control in the food industry has promoted research in food processing technologies. Ozone is considered to be a promising food preserving technique and has gained great interest due to its strong oxidative properties and significant antimicrobial efficiency, and because its decomposition leaves no residues in foods. In this ozone technology review, the properties and the oxidation potential of ozone, and the intrinsic and extrinsic factors that affect the microorganism inactivation efficiency of both gaseous and aqueous ozone, are explained, as well as the mechanisms of ozone inactivation of foodborne pathogenic bacteria, fungi, mould, and biofilms. This review focuses on the latest scientific studies on the effects of ozone in controlling microorganism growth, maintaining food appearance and sensorial organoleptic qualities, assuring nutrient contents, enhancing the quality of food, and extending food shelf life, e.g., vegetables, fruits, meat, and grain products. The multifunctionality effects of ozone in food processing, in both gaseous and aqueous form, have promoted its use in the food industries to meet the increased consumer preference for a healthy diet and ready-to-eat products, although ozone may present undesirable effects on physicochemical characteristics on certain food products at high concentrations. The combined uses of ozone and other techniques (hurdle technology) have shown a promotive future in food processing. It can be concluded from this review that the application of ozone technology upon food requires increased research; specifically, the use of treatment conditions such as concentration and humidity for food and surface decontamination.
Collapse
Affiliation(s)
- Wenya Xue
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - Joshua Macleod
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
| | - James Blaxland
- ZERO2FIVE Food Industry Centre, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Cardiff School of Sports and Health Science, Cardiff Metropolitan University, Cardiff CF5 2YB, UK
- Correspondence:
| |
Collapse
|
5
|
Ozonation: an Evolving Disinfectant Technology for the Food Industry. FOOD BIOPROCESS TECH 2022; 15:2102-2113. [PMID: 35855202 PMCID: PMC9284478 DOI: 10.1007/s11947-022-02876-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
The food processing industry is currently facing challenges in delivering safe, healthy, and high-quality food. Constant monitoring at each step of the supply chain of food is vital to resolve the issue of food contamination. To achieve this aim and to meet consumer prospects, the technologies promoting the concept of clean label food have been widely cherished. Ozonation is one such advanced technology that assists in maintaining food product quality and safety. Its manifold approach and zero-by-product production make it a promising food disinfectant technique. Ozone due to its oxidative property has been widely used in sanitizing, washing, odor removal, water treatment, and in equipment, fruits, vegetable, and meat processing disinfection. Ozonation in foods is done in such a way that no nutritional, sensory, and physicochemical characteristics are altered. In this review, an attempt is made to give an overview of the impact and contribution of ozone as a disinfectant in food processing while comparing it with conventional disinfectants and its overall application in the food industry.
Collapse
|
6
|
Assessment Impacts of Ozone on Salmonella Typhimurium and Escherichia coli O157:H7 in Liquid Dairy Waste. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Liquid dairy manure, which is produced in enormous quantities in flush dairy manure management systems, is commonly used as an alternative to chemical fertilizers. It provides nutrient benefits to crops and soils. While dairy waste is a well-accepted and widely used fertilizer, the presence of indicator organisms and human pathogens in manure may lead to pathogen contamination in crops and soils. This study is focused on the examination of ozone gas-based sterilization. In the past, ozone (O3) has been used for sanitizing various foods and solid surfaces, but the potential of O3 for eliminating human pathogens in liquid dairy waste is not studied yet. Pathogens such as Salmonella Typhimurium and Escherichia coli O157:H7 are reported to be present in liquid dairy manure, and this research evaluated the effects of various levels of ozone on the survival of these two pathogens. We designed a continuous type O3 treatment system that has four major components: (1) ozone generator using oxygen; (2) ozone concentration control by mixing with pure air; (3) continuous monitoring of ozone concentrations; and (4) ozone experiment chambers. Various levels of ozone (43.26, 87.40, and 132.46 mg·L−1) were produced in the ozone system, and subsequently, ozone was diffused through liquid manure. Liquid manure was exposed to ozone for multiple durations (30, 60, and 120 min). To determine the effectiveness of O3 in eliminating pathogens, time-series samples were collected and analyzed for determining the levels of S. typhimurium and E. coli O157:H7. Preliminary results showed that ozone concentrations of 132.46 mg/L, and exposure time of 120 min resulted in the reduced levels of E. coli and Salmonella. Low levels of ozone and limited exposure time were found to be less effective in pathogen removal potentially due to high solid contents. Additional studies carrying out experiments to evaluate the impacts of solids in combination with ozone concentrations will provide further insights into developing full-scale ozone-based treatment systems.
Collapse
|
7
|
Panigrahi C, Mishra HN, De S. Ozone treatment of ultrafiltered sugarcane juice: Process optimization using multi-objective genetic algorithm and correlation analysis by multivariate technique. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Lim JS, Ha JW. Growth-Inhibitory Effect of X-ray Irradiation on Gram-Negative and Gram-Positive Pathogens in Apple, Orange, and Tomato Juices. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02686-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
9
|
Panigrahi C, Vishwakarma S, Mishra HN, De S. Kinetic modeling for inactivation of polyphenoloxidase and peroxidase enzymes during ozonation of sugarcane juice. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.15094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | - Hari Niwas Mishra
- Agricultural and Food Engineering Department IIT Kharagpur Kharagpur India
| | - Sirshendu De
- Chemical Engineering Department IIT Kharagpur Kharagpur India
| |
Collapse
|
10
|
Chang R, Pandey P, Li Y, Venkitasamy C, Chen Z, Gallardo R, Weimer B, Jay-Russell M, Weimer B. Assessment of gaseous ozone treatment on Salmonella Typhimurium and Escherichia coli O157:H7 reductions in poultry litter. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 117:42-47. [PMID: 32805600 DOI: 10.1016/j.wasman.2020.07.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/10/2020] [Accepted: 07/23/2020] [Indexed: 05/03/2023]
Abstract
Poultry litter is used as soil amendment or organic fertilizer. While poultry litter is enriched with organic matter suitable for land, the presence of pathogens such as Salmonella in poultry litter is a concern. To investigate the effect of gaseous ozone on pathogen reductions in poultry litter, this study conducted a series of experiments that involved understanding of Salmonella Typhimurium and Escherichia coli O157:H7 inactivation at various doses of Ozone (O3) in wet and dry poultry litter conditions. Previously, ozone treatment has been shown to disinfect the surface of foods and plant materials including fruits, juices, and wastewater, however, additional research are needed to better understand the impacts of ozone on treatment of soil amendments. Sanitizing methods capable of eliminating pathogens of soil amendments are crucial to mitigate disease outbreaks related with litter/manure-based fertilizers. In this study, a bench scale continuous ozone treatment system was designed to produce O3 gas, with a range O3 concentrations (7.15-132.46 mg·L-1), monitor ozone concentrations continuously, and control the ozone exposure time (15 to 90 mins) to understand the effectiveness of O3 in eliminating S. Typhimurium and E. coli O157:H7 in poultry litter. Results showed that 7.15 mg·L-1 did not reduce the counts of S. Typhimurium until exposure to O3 for 90 min. The O3 concentrations of 43.26 ~ 132.46 mg·L-1 exposure reduced the bacterial counts. Furthermore, the moisture content of poultry litter was found to be an influencing factor for pathogen reduction. The pathogen reduction rates were reduced when the moisture content was increased. At higher moisture content, high concentrations of O3 (132.46 mg·L-1) were needed for pathogen reductions. The moisture content of 30% or lower was found to be more effective for controlling pathogen levels in poultry litter. Our study demonstrates that gaseous O3 treatment could be used as an additional decontamination technique to ensure the certain degree of microbiological safety of poultry litter based soil amendment.
Collapse
Affiliation(s)
- Ruixue Chang
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, CA 95616, USA; Department of Environmental Sciences and Technology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Pramod Pandey
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, CA 95616, USA.
| | - Yanming Li
- Department of Environmental Sciences and Technology, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Chandrasekar Venkitasamy
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, CA 95616, USA; Food Science and Human Nutrition, Iowa State University, Ames, IA 50011, USA
| | - Zhao Chen
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, CA 95616, USA
| | - Rodrigo Gallardo
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, CA 95616, USA
| | - Bart Weimer
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, CA 95616, USA
| | - Michele Jay-Russell
- Western Center for Food Safety, University of California, Davis, CA 95616, USA
| | - Bart Weimer
- Department of Population Health and Reproduction, Veterinary Medicine School, University of California, Davis, CA 95616, USA
| |
Collapse
|
11
|
Chen H, Zhang Y, Zhong Q. Potential of acidified sodium benzoate as an alternative wash solution of cherry tomatoes: Changes of quality, background microbes, and inoculated pathogens during storage at 4 and 21°C post-washing. Food Microbiol 2019; 82:111-118. [DOI: 10.1016/j.fm.2019.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
|
12
|
Skowron K, Wałecka-Zacharska E, Grudlewska K, Białucha A, Wiktorczyk N, Bartkowska A, Kowalska M, Kruszewski S, Gospodarek-Komkowska E. Biocidal Effectiveness of Selected Disinfectants Solutions Based on Water and Ozonated Water against Listeria monocytogenes Strains. Microorganisms 2019; 7:E127. [PMID: 31083467 PMCID: PMC6560509 DOI: 10.3390/microorganisms7050127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 01/07/2023] Open
Abstract
The aim of this study was to compare the biocidal effectiveness of disinfectants solutions prepared with ozonated and non-ozonated water against Listeria monocytogenes. Six L. monocytogenes strains were the research material (four isolates from food: meat (LMO-M), dairy products (LMO-N), vegetables (LMO-W), and fish (LMO-R); one clinical strain (LMO-K) and reference strain ATCC 19111). The evaluation of the biocidal effectiveness of disinfectant solutions (QAC-quaternary ammonium compounds; OA-oxidizing agents; ChC-chlorine compounds; IC-iodine compounds; NANO-nanoparticles) was carried out, marking the MBC values. Based on the obtained results, the effectiveness coefficient (A) were calculated. The smaller the A value, the greater the efficiency of disinfection solutions prepared on the basis of ozonated versus non-ozonated water. Ozonated water showed biocidal efficacy against L. monocytogenes. Among tested disinfectentants, independent on type of water used for preparation, the most effective against L. monocytogenes were: QAC 1 (benzyl-C12-18-alkydimethyl ammonium chlorides) (1.00 × 10-5-1.00 × 10-4 g/mL) in quaternary ammonium compounds, OA 3 (peracetic acid, hydrogen peroxide, bis (sulphate) bis (peroxymonosulfate)) (3.08 × 10-4 -3.70 × 10-3 g/mL) in oxidizing agents, ChC 1 (chlorine dioxide) (5.00 × 10-8 -7.00 × 10-7 g/mL) in chlorine compounds, IC 1 (iodine) (1.05-2.15 g/mL) in iodine compounds, and NANO 1 (nanocopper) (1.08 × 10-4 - 1.47 × 10-4 g/mL) in nanoparticles. The values of the activity coefficient for QAC ranged from 0.10 to 0.40, for OA-0.15-0.84, for ChC-0.25-0.83, for IC-0.45-0.60, and for NANO-0.70-0.84. The preparation of disinfectants solution on the basis of ozonated water, improved the microbicidal efficiency of the tested disinfectant, especially the quaternary ammonium compounds. An innovative element of our work is the use of ozonated water for the preparation of working solutions of the disinfection agents. Use ozonated water can help to reduce the use of disinfectant concentrations and limit the increasing of microbial resistance to disinfectants. This paper provides many new information to optimize hygiene plans in food processing plants and limit the spread of microorganisms such as L. monocytogenes.
Collapse
Affiliation(s)
- Krzysztof Skowron
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 50-375 Wrocław, Poland.
| | - Katarzyna Grudlewska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| | - Agata Białucha
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| | - Natalia Wiktorczyk
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| | - Agata Bartkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| | - Maria Kowalska
- Department of Food Analytics and Environmental Protection, Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, Seminaryjna 3, 85-326 Bydgoszcz, Poland.
| | - Stefan Kruszewski
- Biophysics Department, Faculty of Pharmacy, Collegium Medicum of Nicolaus Copernicus University, Jagiellońska 13-15 St., 85⁻067 Bydgoszcz, Poland.
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, L. Rydygier Collegium Medicum in Bydgoszcz, 9 M. Skłodowska-Curie St., 85-094 Bydgoszcz, Poland.
| |
Collapse
|
13
|
Kang JW, Kang DH. Increased Resistance of Salmonella enterica Serovar Typhimurium and Escherichia coli O157:H7 to 222-Nanometer Krypton-Chlorine Excilamp Treatment by Acid Adaptation. Appl Environ Microbiol 2019; 85:e02221-18. [PMID: 30610077 PMCID: PMC6414383 DOI: 10.1128/aem.02221-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022] Open
Abstract
In this study, we examined the change in resistance of Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 to 222-nm krypton-chlorine (KrCl) excilamp treatment as influenced by acid adaptation and identified a mechanism of resistance change. In addition, we measured changes in apple juice quality indicators, such as color, total phenols, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, during treatment. Non-acid-adapted and acid-adapted pathogens were induced by growing the cells in tryptic soy broth without dextrose (TSB w/o D) at pH 7.3 and in TSB w/o D at pH 5.0 (adjusted with HCl), respectively. For the KrCl excilamp treatment, acid-adapted pathogens exhibited significantly (P < 0.05) higher D5d values, which indicate dosages required to achieve a 5-log reduction, than those for non-acid-adapted pathogens in both commercially clarified apple juice and phosphate-buffered saline (PBS), and the pathogens in the juice showed significantly (P < 0.05) higher D5d values than those for pathogens in PBS because of the UV-absorbing characteristics of apple juice. Through mechanism identification, it was found that the generation of lipid peroxidation in the cell membrane, inducing cell membrane destruction, was significantly (P < 0.05) lower in acid-adapted cells than in non-acid-adapted cells for the same amount of reactive oxygen species (ROS) generated at the same dose because the ratio of unsaturated to saturated fatty acids (USFA/SFA) in the cell membrane was significantly (P < 0.05) decreased as a result of acid adaptation. Treated apple juice showed no significant (P > 0.05) difference in quality indicators compared to those of untreated controls during treatment at 1,773 mJ/cm2IMPORTANCE There is a need for novel, mercury-free UV lamp technology to replace germicidal lamps containing harmful mercury, which are routinely utilized for UV pasteurization of apple juice. In addition, consideration of the changes in response to antimicrobial treatments that may occur when pathogens are adapted to the acid in an apple juice matrix is critical to the practical application of this technology. Based on this, an investigation using 222-nm KrCl excilamp technology, an attractive alternative to mercury lamps, was conducted. Our study demonstrated increased resistance to 222-nm KrCl excilamp treatment as pathogens adapted to acids, and this was due to changes in reactivity to ROS with changes in the fatty acid composition of the cell membrane. Despite increased resistance, the 222-nm KrCl excilamp achieved pathogen reductions of 5 log or more at laboratory scale without affecting apple juice quality. These results provide valuable baseline data for application of 222-nm KrCl excilamps in the apple juice industry.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|
14
|
Chen H, Zhong Q. Antibacterial activity of acidified sodium benzoate against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in tryptic soy broth and on cherry tomatoes. Int J Food Microbiol 2018; 274:38-44. [PMID: 29597137 DOI: 10.1016/j.ijfoodmicro.2018.03.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/12/2018] [Accepted: 03/20/2018] [Indexed: 10/17/2022]
Abstract
Concerns about undesirable by-products from chlorine sanitation of fresh produce and the limited efficacy with the presence of organic matter, have led to studies on alternative washing solutions. The aim of this study was to evaluate the antibacterial activities of acidified sodium benzoate (NaB) solutions against Escherichia coli O157:H7, Salmonella enterica and Listeria monocytogenes in growth medium and on cherry tomatoes. Experimentally, the minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs, >3 Log reduction) of NaB against E. coli O157:H7 ATCC 43895, S. Enteritidis, and L. monocytogenes Scott A were determined at pH 7.0-4.0 using micro-broth dilution method and agar plating method, respectively. The reduction of the three bacteria in tryptic soy broth (TSB) by 500 and 1000 ppm NaB at pH 2.0, 2.5 and 3.0 for 30 min at 21 °C was compared. Residual bacterial cocktails inoculated on cherry tomatoes were determined after soaking in 3000 ppm NaB solution adjusted to pH 2.0 for 3 min at 21 °C. Results showed that the MBC of NaB reduced from >10,000 ppm at pH 7.0 to 1000 ppm at pH 4.0 and was identical for the three bacteria. The log reduction of bacteria in TSB indicated that 1000 ppm NaB at pH 2.0 was the most effective in killing the three pathogens. The respective reduction of E. coli O157:H7 and S. enterica cocktails inoculated on cherry tomatoes immersed in 3000 ppm NaB (pH 2.0) at 21 °C for 3 min was 4.99 ± 0.57 and 4.08 ± 0.65 log CFU/g, which was significantly higher (p < 0.05) than the treatments of 200 ppm free chlorine at pH 6.5. Conversely, the reduction of L. monocytogenes on tomatoes by 3000 ppm NaB (4.88 ± 0.73 log CFU/g) was similar (p > 0.05) to 200 ppm chlorine. Furthermore, the reduction of bacterial cocktails on tomatoes by 3000 ppm NaB at pH 2.0 was not affected after adding 1% tomato puree, and bacteria were not detected in NaB washing solutions with and without 1% tomato puree and on following un-inoculated tomatoes. This study showed that acidified NaB solution may be used as an alternative post-harvest wash of produce.
Collapse
Affiliation(s)
- Huaiqiong Chen
- Department of Food Science, University of Tennessee, Knoxville, TN, USA
| | - Qixin Zhong
- Department of Food Science, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
15
|
Bevilacqua A, Petruzzi L, Perricone M, Speranza B, Campaniello D, Sinigaglia M, Corbo MR. Nonthermal Technologies for Fruit and Vegetable Juices and Beverages: Overview and Advances. Compr Rev Food Sci Food Saf 2017; 17:2-62. [DOI: 10.1111/1541-4337.12299] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 01/04/2023]
Affiliation(s)
- Antonio Bevilacqua
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Leonardo Petruzzi
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Marianne Perricone
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Barbara Speranza
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Daniela Campaniello
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Milena Sinigaglia
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| | - Maria Rosaria Corbo
- Dept. of the Science of Agriculture, Food and Environment; Univ. of Foggia; Foggia Italy
| |
Collapse
|