1
|
Eka Ningrum N, Cahyaning Rahamjnhyu DU, Dianhar H, Wongso H, Keller PA, Satia Nugraha A. Chemical Diversity, Pharmacology, Synthesis and Detection of Naturally Occurring Peroxides. Chem Biodivers 2024; 21:e202400794. [PMID: 38997231 DOI: 10.1002/cbdv.202400794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/14/2024]
Abstract
Natural occurring peroxides are interesting bioprospecting targets due to their molecular structural diversity and the wide range of pharmacological activities. In this systematic review, a total of 123 peroxide compounds were analysed from 99 published papers with the compounds distributed in 31 plants, 18 animals and 41 microorganisms living in land and water ecosystems. The peroxide moiety exists as both cyclic and acyclic entities and can include 1,2-dioxolanes, 1,2-dioxane rings and common secondary metabolites with a peroxo group. These peroxides possessed diverse bioactivities including anticancer, antimalarial, antimicrobial, anti-inflammatory, neuroprotective, adipogenic suppressor, antituberculosis, anti-melanogenic and anti-coagulant agents. Biosynthetic pathways and mechanisms of most endoperoxides have not been well established. Method development in peroxide detection has been a challenging task requiring multidisciplinary investigation and exploration on peroxy-containing secondary metabolites are necessary.
Collapse
Affiliation(s)
- Nindya Eka Ningrum
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
| | - Dyah Utami Cahyaning Rahamjnhyu
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok, 16424, Indonesia
| | - Hanhan Dianhar
- Universitas Negeri Jakarta, Chemistry Study Program, Faculty of Mathematics and Natural Sciences, Research Center for Radioisotope, East Jakarta, 13220, Indonesia
| | - Hendris Wongso
- Research Collaboration Center for Theranostic Radiopharmaceuticals, National Research and Innovation Agency, Sumedang, Indonesia
- Radiopharmaceutical, and Biodosimetry Technology, Research Organization for Nuclear Energy, National Research and Innovation Agency, Banten, Indonesia
| | - Paul A Keller
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| | - Ari Satia Nugraha
- Drug Utilisation and Discovery Research Group, Faculty of Pharmacy, Universitas Jember, Jember, 68121, Indonesia
- School of Chemistry and Molecular Biosciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, 2522, Australia
| |
Collapse
|
2
|
Li Z, Gan Y, Gou C, Ye Q, Wu Y, Wu Y, Yang T, Fan B, Ji A, Shen Q, Duan L. Efficient biosynthesis of β-caryophyllene in Saccharomyces cerevisiae by β-caryophyllene synthase from Artemisia argyi. Synth Syst Biotechnol 2024; 10:158-164. [PMID: 39498451 PMCID: PMC11532932 DOI: 10.1016/j.synbio.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 11/07/2024] Open
Abstract
Artemisia argyi H. Lév. & Vaniot is an important traditional Chinese medicinal plant known for its volatile oils, which are the main active components of A. argyi, including monoterpenes, sesquiterpenes and their derivatives. Despite its medicinal significance, the biosynthesis of sesquiterpenoids in A. argyi remains underexplored. In this study, we identified four β-caryophyllene synthases from A. argyi. A high-yield β-caryophyllene engineered Saccharomyces cerevisiae cell factory has been built in this study. By fusing ERG20 and AarTPS88 with a flexible linker (GGGS)2 and enhancing metabolic flux in the MVA pathway (HIF-1, tHMGR, and UPC2-1), we achieved a titer of β-caryophyllene reached 15.6 g/L by fed-batch fermentation in a 5 L bioreactor. To our knowledge, this represents the highest reported titer of β-caryophyllene in yeast to date. This study provides a valuable tool for the industrial-scale production of β-caryophyllene.
Collapse
Affiliation(s)
- Zhengping Li
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuhong Gan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Changyu Gou
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qiongyu Ye
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yang Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Yuhong Wu
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Tingxing Yang
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Baolian Fan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Aijia Ji
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Qi Shen
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| | - Lixin Duan
- Guangdong Provincial Key Laboratory of Translational Cancer Research of Chinese Medicines, Joint International Research Laboratory of Translational Cancer Research of Chinese Medicines, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, PR China
| |
Collapse
|
3
|
Long Y, Han X, Meng X, Xu P, Tao F. A robust yeast chassis: comprehensive characterization of a fast-growing Saccharomyces cerevisiae. mBio 2024; 15:e0319623. [PMID: 38214535 PMCID: PMC10865977 DOI: 10.1128/mbio.03196-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/13/2024] Open
Abstract
Robust chassis are critical to facilitate advances in synthetic biology. This study describes a comprehensive characterization of a new yeast isolate Saccharomyces cerevisiae XP that grows faster than commonly used research and industrial S. cerevisiae strains. The genomic, transcriptomic, and metabolomic analyses suggest that the fast growth rate is, in part, due to the efficient electron transport chain and key growth factor synthesis. A toolbox for genetic manipulation of the yeast was developed; we used it to construct l-lactic acid producers for high lactate production. The development of genetically malleable yeast strains that grow faster than currently used strains may significantly enhance the uses of S. cerevisiae in biotechnology.IMPORTANCEYeast is known as an outstanding starting strain for constructing microbial cell factories. However, its growth rate restricts its application. A yeast strain XP, which grows fast in high concentrations of sugar and acidic environments, is revealed to demonstrate the potential in industrial applications. A toolbox was also built for its genetic manipulation including gene insertion, deletion, and ploidy transformation. The knowledge of its metabolism, which could guide the designing of genetic experiments, was generated with multi-omics analyses. This novel strain along with its toolbox was then tested by constructing an l-lactic acid efficient producer, which is conducive to the development of degradable plastics. This study highlights the remarkable competence of nonconventional yeast for applications in biotechnology.
Collapse
Affiliation(s)
- Yangdanyu Long
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Han
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuanlin Meng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Shen ZY, Wang YF, Wang LJ, Wang Y, Liu ZQ, Zheng YG. Local metabolic response of Escherichia coli to the module genetic perturbations in l-methionine biosynthetic pathway. J Biosci Bioeng 2023; 135:217-223. [PMID: 36707399 DOI: 10.1016/j.jbiosc.2022.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/16/2022] [Accepted: 12/19/2022] [Indexed: 01/27/2023]
Abstract
l-Methionine biosynthesis is through multilevel regulated and multibranched biosynthetic pathway (MRMBP). Because of the complex regulatory mechanism and the imbalanced metabolic flux between branched pathways, microbial production of l-methionine has not been commercialized. In this study, local metabolic response in MRMBP of l-methionine was investigated and various crucial genes in branched pathways were determined. In l-serine pathway, the crucial gene was serABC. In O-succinyl homoserine (OSH) pathway, which was the C4 backbone of l-methionine, metB and metL controlled the metabolic flux jointly. In l-cysteine pathway, the crucial gene cysEfbr could disturb the flux distribution of local network in l-methionine biosynthesis. However, no crucial gene for l-methionine production in 5-methyl tetrahydrofolate (CH3-THF) pathway was found. The relation between these pathways was also researched. l-Serine pathway, as the upstream pathway of l-cysteine and CH3-THF, played a crucial role in l-methionine biosynthesis. l-Cysteine pathway showed the strongest controlling force of the metabolic flux, and OSH pathway was second to l-cysteine pathway. In contrast, CH3-THF pathway was the weakest, which was probably the mainly limited steps at present and had great potential in further research. In addition, constructed W3110 IJAHFEBC/pA∗HAmL was able to produce 2.62 g/L l-methionine in flask. This study is instructive for l-methionine biosynthesis and provides a new research method of biosynthesizing other metabolic products in MRMBPs.
Collapse
Affiliation(s)
- Zhen-Yang Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Yi-Feng Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Li-Juan Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Ying Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou 310014, PR China
| |
Collapse
|
5
|
Mori T, Abe I. Structural basis for endoperoxide-forming oxygenases. Beilstein J Org Chem 2022; 18:707-721. [PMID: 35821691 PMCID: PMC9235837 DOI: 10.3762/bjoc.18.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/10/2022] [Indexed: 12/04/2022] Open
Abstract
Endoperoxide natural products are widely distributed in nature and exhibit various biological activities. Due to their chemical features, endoperoxide and endoperoxide-derived secondary metabolites have attracted keen attention in the field of natural products and organic synthesis. In this review, we summarize the structural analyses, mechanistic investigations, and proposed reaction mechanisms of endoperoxide-forming oxygenases, including cyclooxygenase, fumitremorgin B endoperoxidase (FtmOx1), and the asnovolin A endoperoxygenase NvfI.
Collapse
Affiliation(s)
- Takahiro Mori
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama 332-0012, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
6
|
Gong DY, Chen XY, Guo SX, Wang BC, Li B. Recent advances and new insights in biosynthesis of dendrobine and sesquiterpenes. Appl Microbiol Biotechnol 2021; 105:6597-6606. [PMID: 34463801 DOI: 10.1007/s00253-021-11534-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
Sesquiterpenes are one of the most diverse groups of secondary metabolites that have mainly been observed in terpenoids. It is a natural terpene containing 15 carbon atoms in the molecule and three isoprene units with chain, ring, and other skeleton structures. Sesquiterpenes have been shown to display multiple biological activities such as anti-inflammatory, anti-feedant, anti-microbial, anti-tumor, anti-malarial, and immunomodulatory properties; therefore, their therapeutic effects are essential. In order to overcome the problem of low-yielding sesquiterpene content in natural plants, regulating their biosynthetic pathways has become the focus of many researchers. In plant and microbial systems, many genetic engineering strategies have been used to elucidate biosynthetic pathways and high-level production of sesquiterpenes. Here, we will introduce the research progress and prospects of the biosynthesis of artemisinin, costunolide, parthenolide, and dendrobine. Furthermore, we explore the biosynthesis of dendrobine by evaluating whether the biosynthetic strategies of these sesquiterpene compounds can be applied to the formation of dendrobine and its intermediate compounds. KEY POINTS: • The development of synthetic biology has promoted the study of terpenoid metabolism and provided an engineering platform for the production of high-value terpenoid products. • Some possible intermediate compounds of dendrobine were screened out and the possible pathway of dendrobine biosynthesis was speculated. • The possible methods of dendrobine biosynthesis were explored and speculated.
Collapse
Affiliation(s)
- Dao-Yong Gong
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China
| | - Xing-Yue Chen
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Shun-Xing Guo
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China
| | - Bo-Chu Wang
- College of Bioengineering of Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Biao Li
- Institute of Medicinal Plant Development, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Mai J, Li W, Ledesma-Amaro R, Ji XJ. Engineering Plant Sesquiterpene Synthesis into Yeasts: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9498-9510. [PMID: 34376044 DOI: 10.1021/acs.jafc.1c03864] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sesquiterpenes are natural compounds composed of three isoprene units. They represent the largest class of terpene compounds found in plants, and many have remarkable biological activities. Furthermore, sesquiterpenes have broad applications in the flavor, pharmaceutical and biofuel industries due to their complex structures. With the development of metabolic engineering and synthetic biology, the production of different sesquiterpenes has been realized in various chassis microbes. The microbial production of sesquiterpenes provides a promising alternative to plant extraction and chemical synthesis, enabling us to meet the increasing market demand. In this review, we summarized the heterologous production of different plant sesquiterpenes using the eukaryotic yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, followed by a discussion of common metabolic engineering strategies used in this field.
Collapse
Affiliation(s)
- Jie Mai
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Wenjuan Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
8
|
Zanetti A, Schwertz G, de Oliveira MN, Gomez Fernandez MA, Amara Z, Cossy J. Palladium-Catalyzed Regioselective Allylic Oxidation of Amorphadiene, a Precursor of Artemisinin. J Org Chem 2021; 86:7603-7608. [PMID: 33983733 DOI: 10.1021/acs.joc.1c00653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A regioselective Pd-catalyzed allylic oxidation of amorphadiene, a key precursor to the antimalarial drug artemisinin, is described. Amorphadiene can be obtained in high yields by fermentation, but it is currently treated as a waste in the industrial semisynthetic artemisinin process. The catalytic step described here is a substitute for the P450 enzymes involved in the artemisinin biosynthesis and opens up new opportunities to supplement a critical step in the current semisynthetic route and increase the potential of the fermentation process.
Collapse
Affiliation(s)
- Andrea Zanetti
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, Paris 75005 Cedex 5, France
| | - Geoffrey Schwertz
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, Paris 75005 Cedex 5, France
| | - Marllon Nascimento de Oliveira
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris Cedex 03, France
| | - Mario Andrés Gomez Fernandez
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris Cedex 03, France
| | - Zacharias Amara
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire, (GBCM) Conservatoire National des Arts et Métiers, HESAM Université, 2 rue Conté, Paris Cedex 03, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials (C3M), ESPCI Paris/CNRS/PSL Research University, Paris 75005 Cedex 5, France
| |
Collapse
|
9
|
De novo biosynthesis of linalool from glucose in engineered Escherichia coli. Enzyme Microb Technol 2020; 140:109614. [DOI: 10.1016/j.enzmictec.2020.109614] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/02/2020] [Accepted: 06/04/2020] [Indexed: 11/21/2022]
|
10
|
Sun H, Yang J, Lin X, Li C, He Y, Cai Z, Zhang G, Song H. De Novo High-Titer Production of Delta-Tocotrienol in Recombinant Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7710-7717. [PMID: 32580548 DOI: 10.1021/acs.jafc.0c00294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Delta-tocotrienol as a vitamin E isomer has received much attention because of its diverse biomedical applications. Microbial biosynthesis of delta-tocotrienol is a promising strategy for its economic and environmental advantages. Here, we accomplished complete biosynthesis of delta-tocotrienol in Saccharomyces cerevisiae from glucose. We first constructed and incorporated a heterologous pathway into the genome of S. cerevisiae by incorporating the genes hpd (from Pseudomonas putida KT2440), hpt (from Synechocystis sp. PCC 6803), and vte1 (from Arabidopsis thaliana) for the biosynthesis of delta-tocotrienol. We further enhanced the biosynthesis of the precursor geranylgeranyl diphosphate by overexpressing the thmg1 and ggppssa (from Sulfolobus acidocaldarius) genes, leading to a production titer of delta-tocotrienol of 1.39 ± 0.01 mg/L. Finally, we optimized the fermentation medium using the response surface methodology, enabling a high-titer production of delta-tocotrienol (3.56 ± 0.25 mg/L), ∼2.6-fold of that of the initial culture medium. Fed-batch fermentation in a 2 L fermenter was further used to enhance the production titer of delta-tocotrienol (4.10 ± 0.10 mg/L). To the best of our knowledge, this is the first report on the de novo biosynthesis of delta-tocotrienol in S. cerevisiae, and the highest titer obtained for microbial production of delta-tocotrienol.
Collapse
Affiliation(s)
- Hong Sun
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Jingli Yang
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| | - Xue Lin
- College of Food Science and Technology, Hainan University, Haikou 570228, P. R. China
| | - Congfa Li
- College of Food Science and Technology, Hainan University, Haikou 570228, P. R. China
| | - Yongjin He
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, P. R. China
| | - Zhigang Cai
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, P. R. China
| | - Guoyin Zhang
- Chifeng Pharmaceutical Company Limited, Chifeng, Inner Mongolia 024000, P. R. China
| | - Hao Song
- Frontier Science Center for Synthetic Biology, Key Laboratory of Systems Bioengineering (MOE), Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
11
|
Schwertz G, Zanetti A, de Oliveira MN, Fernandez MAG, Amara Z, Cossy J. Chemo- and Diastereoselective Hydrosilylation of Amorphadiene toward the Synthesis of Artemisinin. J Org Chem 2020; 85:9607-9613. [PMID: 32643937 PMCID: PMC7418106 DOI: 10.1021/acs.joc.0c00617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
![]()
A formal synthesis
of artemisinin starting from amorphadiene is
described. This new route relies on the development of a catalytic
chemo- and diastereoselective hydrosilylation. The practicability
of this method is demonstrated by converting amorphadiene to dihydroartemisinic
aldehyde using a one-pot hydrosilylation/oxidation sequence, minimizing
the number of purifications and maximizing the productivity through
a practical one-pot procedure. In addition, this approach can be coupled
with a crystallization-induced diastereoselective transformation (CIDT)
to enhance the optical purity of the key target intermediate, dihydroartemisinic
aldehyde.
Collapse
Affiliation(s)
- Geoffrey Schwertz
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75231 Paris cedex 05, France
| | - Andrea Zanetti
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75231 Paris cedex 05, France
| | - Marllon Nascimento de Oliveira
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris cedex 03, France
| | - Mario Andrés Gomez Fernandez
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris cedex 03, France
| | - Zacharias Amara
- Equipe de Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris cedex 03, France
| | - Janine Cossy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris/CNRS/PSL Research University, 10 rue Vauquelin, 75231 Paris cedex 05, France
| |
Collapse
|
12
|
Cao M, Gao M, Suástegui M, Mei Y, Shao Z. Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products. Metab Eng 2020; 58:94-132. [DOI: 10.1016/j.ymben.2019.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/03/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023]
|
13
|
Ahmed MS, Ikram S, Rasool A, Li C. Design and construction of short synthetic terminators for β-amyrin production in Saccharomyces cerevisiae. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Zhang C, Liu J, Zhao F, Lu C, Zhao GR, Lu W. Production of sesquiterpenoid zerumbone from metabolic engineered Saccharomyces cerevisiae. Metab Eng 2018; 49:28-35. [DOI: 10.1016/j.ymben.2018.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
|
15
|
Mori Y, Shirai T. Designing artificial metabolic pathways, construction of target enzymes, and analysis of their function. Curr Opin Biotechnol 2018; 54:41-44. [PMID: 29452926 DOI: 10.1016/j.copbio.2018.01.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/26/2017] [Accepted: 01/22/2018] [Indexed: 11/24/2022]
Abstract
Artificial design of metabolic pathways is essential for the production of useful compounds using microbes. Based on this design, heterogeneous genes are introduced into the host, and then various analysis and evaluation methods are conducted to ensure that the target enzyme reactions are functionalized within the cell. In this chapter, we list successful examples of useful compounds produced by designing artificial metabolic pathways, and describe the methods involved in analyzing, evaluating, and optimizing the target enzyme reaction.
Collapse
Affiliation(s)
- Yutaro Mori
- Biomass Engineering Research Division, Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Tomokazu Shirai
- Biomass Engineering Research Division, Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|
16
|
Kadisch M, Willrodt C, Hillen M, Bühler B, Schmid A. Maximizing the stability of metabolic engineering-derived whole-cell biocatalysts. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201600170] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/22/2017] [Accepted: 06/08/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Marvin Kadisch
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Christian Willrodt
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Michael Hillen
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Bruno Bühler
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| | - Andreas Schmid
- Department Solar Materials; Helmholtz Centre for Environmental Research - UFZ; Leipzig Germany
| |
Collapse
|
17
|
Affiliation(s)
- Ganapathy Sivakumar
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA
| |
Collapse
|
18
|
Singh D, McPhee D, Paddon CJ, Cherry J, Maurya G, Mahale G, Patel Y, Kumar N, Singh S, Sharma B, Kushwaha L, Singh S, Kumar A. Amalgamation of Synthetic Biology and Chemistry for High-Throughput Nonconventional Synthesis of the Antimalarial Drug Artemisinin. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.6b00414] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Dharmendra Singh
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Derek McPhee
- Research
and Development, Amyris Inc., 5885 Hollis Street, Suite 100, Emeryville, California 94608, United States
| | - Christopher J. Paddon
- Research
and Development, Amyris Inc., 5885 Hollis Street, Suite 100, Emeryville, California 94608, United States
| | - Joel Cherry
- Research
and Development, Amyris Inc., 5885 Hollis Street, Suite 100, Emeryville, California 94608, United States
| | - Ghanshyam Maurya
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Ganesh Mahale
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Yogesh Patel
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Neeraj Kumar
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Subhash Singh
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Brajesh Sharma
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Lavkesh Kushwaha
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Satinder Singh
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| | - Ashok Kumar
- Chemistry
Research and Development, Plot Number 123-AB, Ipca Laboratories Limited, Kandivali Industrial Estate, Kandivali
West, Mumbai 400067, India
| |
Collapse
|