1
|
Dinu S, Oprea M, Iordache RI, Rusu LC, Usein CR. Genome characterisation of norovirus GII.P17-GII.17 detected during a large gastroenteritis outbreak in Romania in 2021. Arch Virol 2023; 168:116. [PMID: 36947248 DOI: 10.1007/s00705-023-05741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 03/23/2023]
Abstract
Norovirus (NoV) is one of the leading causes of acute gastroenteritis worldwide. Genotype GII.P17-G.II.17 emerged in Asia between 2013 and 2015 and transiently replaced the GII.4 Sydney 2012 variant circulating at that time. We present the genome characterisation of a GII.P17-GII.17 strain causing a large outbreak in Romania in 2021. Our study shows that the 2021 strain belongs to a novel cluster of genotype GII.17, different from the two previously recognised P.17 clusters. Distinctive substitutions in predicted conformational epitopes of VP1 were identified for this new cluster. Also, our phylogenetic analysis showed the existence of another P.17 cluster grouping strains from France and Canada.
Collapse
Affiliation(s)
- Sorin Dinu
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania.
| | - Mihaela Oprea
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| | - Ramona-Ionela Iordache
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| | - Lavinia-Cipriana Rusu
- National Institute of Public Health, National Center for Surveillance and Control of Communicable Diseases, 1-3 Doctor Leonte Anastasievici, Bucharest, 050463, Romania
| | - Codruța-Romanița Usein
- Molecular Epidemiology for Communicable Diseases Laboratory, Cantacuzino National Military Medical Institute for Research and Development, 103 Splaiul Independenței, Bucharest, 050096, Romania
| |
Collapse
|
2
|
Gao J, Zhang Z, Xue L, Li Y, Cheng T, Meng L, Li Y, Cai W, Hong X, Zhang J, Wang J, Chen M, Ye Q, Ding Y, Wu Q. GII.17[P17] and GII.8[P8] noroviruses showed different RdRp activities associated with their epidemic characteristics. J Med Virol 2023; 95:e28216. [PMID: 36254681 DOI: 10.1002/jmv.28216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/23/2022] [Accepted: 10/07/2022] [Indexed: 01/11/2023]
Abstract
Norovirus is the primary foodborne pathogenic agent causing viral acute gastroenteritis. It possesses broad genetic diversity and the prevalence of different genotypes varies substantially. However, the differences in RNA-dependent RNA polymerase (RdRp) activity among different genotypes of noroviruses remain unclear. In this study, the molecular mechanism of RdRp activity difference between the epidemic strain GII.17[P17] and the non-epidemic strain GII.8[P8] was characterized. By evaluating the evolutionary history of RdRp sequences with Markov Chain Monte Carlo method, the evolution rate of GII.17[P17] variants was higher than that of GII.8[P8] variants (1.22 × 10-3 nucleotide substitutions/site/year to 9.31 × 10-4 nucleotide substitutions/site/year, respectively). The enzyme catalytic reaction demonstrated that the Vmax value of GII.17[P17] RdRp was 2.5 times than that of GII.8[P8] RdRp. And the Km of GII.17[P17] and GII.8[P8] RdRp were 0.01 and 0.15 mmol/L, respectively. Then, GII.8[P8] RdRp fragment mutants (A-F) were designed, among which GII.8[P8]-A/B containing the conserved motif G/F were found to have significant effects on improving RdRp activity. The Km values of GII.8[P8]-A/B reached 0.07 and 0.06 mmol/L, respectively. And their Vmax values were 1.34 times than that of GII.8[P8] RdRp. In summary, our results suggested that RdRp activities were correlated with their epidemic characteristics. These findings will ultimately provide a better understanding in replication mechanism of noroviruses and development of antiviral drugs.
Collapse
Affiliation(s)
- Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Zilei Zhang
- Inspection and Quarantine Technology Communication Department, Shanghai Customs College, Shanghai, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Ying Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Tong Cheng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Luobing Meng
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Yijing Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Xiaojing Hong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Qinghua Ye
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| | - Yu Ding
- Department of Food Science & Technology, Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Guangdong, Guangzhou, China
| |
Collapse
|
3
|
Liao Y, Xue L, Gao J, Zuo Y, Liang Y, Jiang Y, Cai W, Yang J, Zhang J, Ding Y, Chen M, Wu A, Kou X, Wu Q. Rapid screening for antigenic characterization of GII.17 norovirus strains with variations in capsid gene. Gut Pathog 2022; 14:31. [PMID: 35879724 PMCID: PMC9309444 DOI: 10.1186/s13099-022-00504-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 06/11/2022] [Indexed: 11/13/2022] Open
Abstract
The emergence of the novel GII.17 Kawasaki 2014 norovirus variant raising the interest of the public, has replaced GII.4 as the predominant cause of noroviruses outbreaks in East Asia during 2014–2015. Antigenic variation of the capsid protein is considered as one of the key mechanisms of norovirus evolution. In this study, we screened a panel of GII.17 mutants. First, we produced norovirus P proteins using cell-free protein synthesis (CFPS) system, comparing the results to pure proteins expressed in a cell-based system. Next, we determined the binding capability of specific monoclonal antibody (mAb) 2D11 using a unique set of wild-type GII.17 strains. Results of the EIA involving a panel of mutant cell-free proteins indicated that Q298 was the key residue within loop 1. These data highlighted the essential residues in the linear antibody binding characteristics of novel GII.17. Furthermore, it supported the CFPS as a promising tool for rapidly screening mutants via the scalable expression of norovirus P proteins.
Collapse
|
4
|
Zuo Y, Xue L, Gao J, Liao Y, Liang Y, Jiang Y, Cai W, Qin Z, Yang J, Zhang J, Wang J, Chen M, Ding Y, Wu Q. Evolutionary Mechanism of Immunological Cross-Reactivity Between Different GII.17 Variants. Front Microbiol 2021; 12:653719. [PMID: 33889144 PMCID: PMC8055840 DOI: 10.3389/fmicb.2021.653719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/09/2021] [Indexed: 11/25/2022] Open
Abstract
Human norovirus is regarded as the leading cause of epidemic acute gastroenteritis with GII.4 being the predominant genotype during the past decades. In the winter of 2014/2015, the GII.17 Kawasaki 2014 emerged as the predominant genotype, surpassing GII.4 in several East Asian countries. Hence, the influence of host immunity response on the continuous evolution of different GII.17 variants needs to be studied in depth. Here, we relate the inferences of evolutionary mechanisms of different GII.17 variants with the investigation of cross-reactivity and cross-protection of their respective antisera using the expression of norovirus P particles in Escherichia coli. The cross-reactivity assay showed that the antisera of previous strains (GII.17 A and GII.17 B) reacted with recent variants (GII.17 C and GII.17 D) at high OD values from 0.8 to 1.16, while recent variant antisera cross-reacting with previous strains were weak with OD values between 0.26 and 0.56. The cross-protection assay indicated that the antisera of previous strains had no inhibitory effect on recent variants. Finally, mutations at amino acids 353–363, 373–384, 394–404, and 444–454 had the greatest impact on cross-reactivity. These data indicate that the recent pandemic variants GII.17 C and GII.17 D avoided the herd immunity effect of previous GII.17 A and GII.17 B strains through antigenic variation.
Collapse
Affiliation(s)
- Yueting Zuo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China.,Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Junshan Gao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yingyin Liao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yanhui Liang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yueting Jiang
- Department of Laboratory Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weicheng Cai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Zhiwei Qin
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jiale Yang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Moutong Chen
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yu Ding
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
5
|
Genome characterization and temporal evolution analysis of a non-epidemic norovirus variant GII.8. INFECTION GENETICS AND EVOLUTION 2019; 70:15-23. [PMID: 30776488 DOI: 10.1016/j.meegid.2019.02.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/25/2019] [Accepted: 02/14/2019] [Indexed: 01/28/2023]
Abstract
Noroviruses are the primary cause of non-bacterial acute gastroenteritis worldwide, and GII.8 belongs to a non-epidemic genotype with a limited understanding currently. In this study, we assembled the first GII.8 norovirus genome from China and clarified the temporal evolutionary process of this non-epidemic variant. Using the "4+1+1" application strategy with newly designed primer sets, the genome of one GII.8 strain GZ2017-L601 from China was firstly sequenced that comprised 7476 nucleotides. The homology of the new genome and the previous only GII.8 genome reached 93.8% identity at the nucleotide level, but only 10, 6, 7 amino acid mutations occurred in three ORFs. When compared the new strain with other GII reference strains, p22 and P2 were calculated as the variable encoding regions, and NTPase, VPg, 3CL, RdRp and S were shown as the conserved ones. We then reconstructed the evolutionary process of the GII.8 genotype using other available sequences in GenBank. Based on the partial N/C region, all GII.8 strains could be subdivided chronologically into four clusters, which spans 1967-1994, 1997-2005, 2003-2009, and 2007-2017, respectively. Moreover, differences of capsid P proteins between GII.8 strains and the epidemic GII.4 strain VA387 were also compared. There existed 147/310 distinct amino acid sites in the alignment, including two insertion and three deletion mutations. Distribution of antigen epitopes of two GII.8 variants was comparable, but the numbers of antigenic sites of GII.8 strains were less than that of VA387. In summary, the first GII.8 genome from China was assembled and extensively characterized, and a time-order evolutionary process of this genotype was identified with a static pattern of antigenic variations.
Collapse
|
6
|
Xue L, Wu Q, Dong R, Cai W, Wu H, Chen M, Chen G, Wang J, Zhang J. Comparative phylogenetic analyses of recombinant noroviruses based on different protein-encoding regions show the recombination-associated evolution pattern. Sci Rep 2017; 7:4976. [PMID: 28694427 PMCID: PMC5504017 DOI: 10.1038/s41598-017-01640-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/31/2017] [Indexed: 11/08/2022] Open
Abstract
Noroviruses are the major cause of acute gastroenteritis worldwide, and recombination is recognized as the important mechanism for its continuous emergence. In this study, for the common GII.P12 and GII.3 recombinants, phylogenetic relationships based on different proteins in three ORFs were comparatively analyzed, focusing on the influence of intergenic recombination. By using newly designed primers, genomes of two GII.P12/GII.3 Guangzhou recombinants were firstly amplified. Combined with other reported sequences of GII.P12_ORF1 (n = 20), GII.3_ORF2 (n = 131), GII.3_ORF3 (n = 36), all GII.P12 and GII.3 strains could be divided into 6, 8, and 7 clusters based on different ORFs, which showed an obvious recombination-associated and temporally sequential evolution pattern (with the exception of GII.P12/GII.13 recombinants). Based on multiple alignments, 126 informative sites were identified in three ORFs (44, 54, and 28), and four proteins (p48, p22, VP1, and VP2) were found under positive selection. Furthermore, by using homology modeling, predicted epitopes were mapped on the P proteins of seven GII.3 representative strains, without one (Epi: 353-361) specific to the GII.4 VA387 strain. In summary, via the genome analyses, phylogenetic relationships of GII.P12 and GII.3 recombinants based on the different proteins presented a special temporally sequential evolution process associated with their recombinant types.
Collapse
Affiliation(s)
- Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China.
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China.
| | - Ruimin Dong
- Department of Cardiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Weicheng Cai
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Haoming Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Moutong Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Gang Chen
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, P. R. China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou, P. R. China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou, P. R. China
| |
Collapse
|
7
|
Andrade JSR, Fumian TM, Leite JPG, Assis MRD, Bello G, Mir D, Miagostovich MP. Detection and molecular characterization of emergent GII.P17/GII.17 Norovirus in Brazil, 2015. INFECTION GENETICS AND EVOLUTION 2017; 51:28-32. [PMID: 28300648 DOI: 10.1016/j.meegid.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 03/09/2017] [Accepted: 03/10/2017] [Indexed: 10/20/2022]
Abstract
A newly GII.17 Kawazaki_2014 variant strain was detected recently in Brazil. Phylogenetic analysis reveals at least four independent introduction events of this lineage into this country that took place throughout 2014, coinciding with FIFA World Cup in Brazil, 2014, and Hong Kong has been identified as the most likely source of introduction. This variant emerged in Asia causing outbreaks and replacing prevalent GII.4. Emergence of GII.P17/GII.17 variant emphasizes the need for active laboratory surveillance for NoV including molecular epidemiology and studies on virus evolution.
Collapse
Affiliation(s)
| | | | | | | | | | - Daiana Mir
- Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | |
Collapse
|
8
|
Complete Genome Sequence of a GII.17 Norovirus Isolated from a Rhesus Monkey in China. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00904-16. [PMID: 27609911 PMCID: PMC5017216 DOI: 10.1128/genomea.00904-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The previously silent GII.17 norovirus was found to be the predominant genotype causing major epidemics in China in the 2014–2015 winter epidemic season. We report here the complete genomic sequence of a GII.17 norovirus (mky/GII.17/KM1509/CHN/2015) that infected rhesus monkeys at a monkey farm in southwestern China.
Collapse
|
9
|
Xue L, Wu Q, Cai W, Zhang J, Guo W. Molecular characterization of new emerging GII.17 norovirus strains from South China. INFECTION GENETICS AND EVOLUTION 2016; 40:1-7. [PMID: 26923075 DOI: 10.1016/j.meegid.2016.02.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 02/03/2016] [Accepted: 02/20/2016] [Indexed: 01/01/2023]
Abstract
Noroviruses are still the primary cause of non-bacterial acute gastroenteritis worldwide. Recently, a novel GII.17 norovirus variant emerged and caused an infection peak in the cold season of 2014/2015 in some Asian countries, including China. In this study, in order to understand the evolutionary advantage of the novel variant, complete genomic sequences of GII.17 NoV strains from South China were comprehensively analyzed. Pairwise alignments of new GII.17 genomes with representative sequences of each GII genotype were performed. Inconsistent homology was observed between different protein-encoding regions, of which VPg (NS5) and P2 were found to be the most conserved and variable ones, respectively. The differences between new sequences and other reported GII.17 genomes were also compared, and 84 mismatched nucleotides were found, resulting in 15 amino acid changes. Then, all capsid sequences of different GII.17 NoV variants were collected for multiple alignments, and a total of 87 spots were identified during their evolution process. Homology modeling of capsid proteins of four GII.17 variants was carried out based on comparison with GII.4 VA387 strain, and structural differences were mainly embodied in five extended loops. Furthermore, positions of potential conformational epitope regions of new GII.17 variants were found more similar or adjacent to those of GII.4 rather than those of the former GII.17 variants. In summary, nine GII.17 strains from South China were extensively characterized based on their complete genomes, and a different distribution pattern of epitope residues was predicted on the new GII.17 variant capsid from that of the former ones.
Collapse
Affiliation(s)
- Liang Xue
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Qingping Wu
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China.
| | - Weicheng Cai
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Jumei Zhang
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Weipeng Guo
- Guangdong Institute of Microbiology, State Key Laboratory of Applied Microbiology Southern China, Guangzhou 510070, PR China; Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| |
Collapse
|