1
|
Esparza-Mora MA, Mazumdar T, Jiang S, Radek R, Thiem JN, Feng L, Petrašiūnaitė V, Banasiak R, Golian M, Gleske M, Lucas C, Springer A, Buellesbach J, McMahon DP. Defensive behavior is linked to altered surface chemistry following infection in a termite society. Sci Rep 2023; 13:20606. [PMID: 37996442 PMCID: PMC10667546 DOI: 10.1038/s41598-023-42947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/16/2023] [Indexed: 11/25/2023] Open
Abstract
The care-kill response determines whether a sick individual will be treated or eliminated from an insect society, but little is known about the physiological underpinnings of this process. We exploited the stepwise infection dynamics of an entomopathogenic fungus in a termite to explore how care-kill transitions occur, and identify the chemical cues behind these shifts. We found collective responses towards pathogen-injected individuals to vary according to severity and timing of pathogen challenge, with elimination, via cannibalism, occurring sooner in response to a severe active infection. However, injection with inactivated fungal blastospores also resulted in increased albeit delayed cannibalism, even though it did not universally cause host death. This indicates that the decision to eliminate an individual is triggered before pathogen viability or terminal disease status has been established. We then compared the surface chemistry of differently challenged individuals, finding increased amounts of long-chained methyl-branched alkanes with similar branching patterns in individuals injected with both dead and viable fungal blastospores, with the latter showing the largest increase. This coincided with the highest amounts of observed cannibalism as well as signs of severe moribundity. Our study provides new mechanistic insight into the emergent collective behaviors involved in the disease defense of a termite society.
Collapse
Affiliation(s)
- M Alejandra Esparza-Mora
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Tilottama Mazumdar
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Shixiong Jiang
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Renate Radek
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Julian N Thiem
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Linshan Feng
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Vesta Petrašiūnaitė
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany
| | - Ronald Banasiak
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany
| | - Marek Golian
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Melanie Gleske
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Christophe Lucas
- Institut de Recherche sur la Biologie de l'Insecte (UMR7261), CNRS-University of Tours, Tours, France
| | - Andreas Springer
- Core Facility BioSupraMol, Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Jan Buellesbach
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, 48149, Münster, Germany
| | - Dino P McMahon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Straße 1-3, 14195, Berlin, Germany.
- Department for Materials and Environment, BAM Federal Institute for Materials Research and Testing, Unter den Eichen 87, 12205, Berlin, Germany.
| |
Collapse
|
2
|
The Inhibition of Serine/Threonine Protein Phosphatase Type 5 Mediates Cantharidin Toxicity to Control Periplaneta americana (L.). INSECTS 2020; 11:insects11100682. [PMID: 33050059 PMCID: PMC7600710 DOI: 10.3390/insects11100682] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022]
Abstract
The American cockroach, Periplaneta americana (L.), is a notorious urban pest. It has developed insecticidal resistance to commonly used insecticides. Cantharidin (CTD) is a defensive toxin derived from blister beetles. It has been verified to have insecticidal toxicity in a range of pests. In this study, we determined the ingestion toxicity of CTD and norcantharidin (NCTD) to P. americana to test whether they had the potential to be effective against P. americana. Bioassays revealed that CTD produces toxicity against P. americana. The median lethal concentration (LC50) value of CTD was 50.92 μg/mL, while NCTD displayed nearly no toxicity against P. americana. The inhibition assays of serine/threonine protein phosphatases (PSPs) in P. americana indicated that CTD and NCTD could inhibit PSPs. The value of the half maximal inhibitory concentration (IC50) of CTD was 7.21 ± 0.94 μM, whereas that of NCTD was higher, at 31.65 ± 3.87 μM. Furthermore, the inhibition effect of CTD on the serine/threonine protein phosphatase type 5 of P. americana (PaPP5) was superior to that of NCTD. Specifically, the IC50 of CTD reached 0.39 ± 0.04 μM, while the IC50 of NCTD was 1.87 ± 0.23 μM. This study paves the way for insect-derived agents (CTD) to be applied toward controlling P. americana and contributes to the development of novel insecticides based on PP5 as a target.
Collapse
|
3
|
Synergism between Hydramethylnon and Metarhizium anisopliae and Their Influence on the Gut Microbiome of Blattella germanica (L.). INSECTS 2020; 11:insects11080538. [PMID: 32824260 PMCID: PMC7469186 DOI: 10.3390/insects11080538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/11/2020] [Accepted: 08/12/2020] [Indexed: 11/17/2022]
Abstract
Simple Summary The widespread use of insecticides has cause extensive resistance in German cockroach (Blattella germanica) populations globally. Biological control has the potential to mitigate insecticide resistance, and Metarhizium anisopliae, an entomopathogenic fungus, alone and in combination with various insecticides has shown good effects against cockroaches. This experiment compared the cumulative mortality after infecting B. germanica with M. anisopliae conidia by per os infection and topical dorsal infection. To probe the mechanisms that underlie the synergism between M. anisopliae and hydramethylnon, we conducted dose-response assays with cockroaches fed combinations of them and characterized the gut microbiome of treated cockroaches. The results showed that the mortality of per os infection was lower than that of topical dorsal infection. In addition, the combination of M. anisopliae and hydramethylnon had a synergistic effect. The gut microbiome was also altered by hydramethylnon treatment. Therefore, we speculate that one of the mechanism underlying this synergism is that hydramethylnon promotes the survival of M. anisopliae in the harsh gut environment and enhances its virulence on German cockroaches by altering the gut microbiome. This may help to develop new types of bio-control glue baits for the control of cockroaches. Abstract (1) Background: The widespread use of insecticides has cause extensive resistance in German cockroach (Blattella germanica) populations globally. Biological control has the potential to mitigate insecticide resistance, and Metarhizium anisopliae (Meschn.) Sorokin, an entomopathogenic fungus, alone and in combination with various insecticides, has shown good effects against cockroaches. (2) Methods: This experiment compared the cumulative mortality after infecting B. germanica with M. anisopliae conidia by two routes, per os and topical application. To probe the mechanisms that underlie the synergism between M. anisopliae and hydramethylnon, we conducted dose–response assays with cockroaches fed combinations of M. anisopliae and hydramethylnon and characterized the gut microbiomes of the treated cockroaches. (3) Results: The study showed that the mortality with per os infection was lower than that with topical application. In addition, the combination of M. anisopliae and hydramethylnon had a synergistic effect in 16 treatments. The gut microbiome was also altered by hydramethylnon treatment. The abundance of Parabacteroides and Enterococcus declined with the hydramethylnon and combination treatments, which are known to have anti-inflammatory and antifungal activities. The abundance of Alistipes, which is a fungal cell wall component, significantly increased in these treatments. (4) Conclusions: Therefore, we speculate that the major mechanism underlying this synergism is hydramethylnon promoting the survival of M. anisopliae in the harsh gut environment and enhancing its virulence for German cockroaches by altering the gut microbiome. This may provide a method for the fight against B. germanica and lay the foundation for the development of new baits.
Collapse
|
4
|
Luz C, Rocha LFN, Montalva C, Souza DA, Botelho ABRZ, Lopes RB, Faria M, Delalibera I. Metarhizium humberi sp. nov. (Hypocreales: Clavicipitaceae), a new member of the PARB clade in the Metarhizium anisopliae complex from Latin America. J Invertebr Pathol 2019; 166:107216. [PMID: 31299226 DOI: 10.1016/j.jip.2019.107216] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 04/16/2019] [Accepted: 07/09/2019] [Indexed: 01/23/2023]
Abstract
A new species, Metarhizium humberi, from the M. anisopliae complex and sister lineage of the M. anisopliae s.str. in the PARB clade, including M. pingshaense, M. anisopliae, M. robertsii and M. brunneum, is described based on phylogenetic analyses [translation elongation factor 1-alpha (5'TEF and 3'TEF), RNA polymerase II largest subunit (RPB1a), RNA polymerase II second largest subunit (RPB2a) and β-tubulin (BTUB)]. Metarhizium humberi was first collected in 2001 in the Central Brazilian state of Goiás, later found to be a common fungus in soils in Brazil, and since then has also been isolated from coleopteran, hemipteran and lepidopteran insects in Brazil and Mexico. This new species, named in honor of Richard A. Humber, a well-known insect pathologist and taxonomist of entomopathogenic fungi, is characterized by a high insecticidal activity against different developmental stages of arthropod pests with importance in agriculture and vectors of diseases to human and animals.
Collapse
Affiliation(s)
- Christian Luz
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO 74690-900, Brazil.
| | - Luiz F N Rocha
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO 74690-900, Brazil; Federal Institute of Education, Science and Technology of Goiás, Aparecida de Goiânia, GO 74968-755, Brazil.
| | - Cristian Montalva
- Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, GO 74690-900, Brazil; Instituto de Conservación, Biodiversidad y Territorio, Facultad de Ciencias Forestales y Recursos Naturales, Universidad Austral de Chile, Chile.
| | - Daniela A Souza
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil.
| | - Ana Beatriz R Z Botelho
- ESALQ, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| | - Rogerio B Lopes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil.
| | - Marcos Faria
- Embrapa Genetic Resources and Biotechnology, Brasília, DF 70770-917, Brazil.
| | - Italo Delalibera
- ESALQ, Department of Entomology and Acarology, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, SP 13418-900, Brazil.
| |
Collapse
|
5
|
Rodrigues J, Borges PR, Fernandes ÉKK, Luz C. Activity of additives and their effect in formulations of Metarhizium anisopliae s.l. IP 46 against Aedes aegypti adults and on post mortem conidiogenesis. Acta Trop 2019; 193:192-198. [PMID: 30836061 DOI: 10.1016/j.actatropica.2019.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 03/02/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND Oil formulations of entomopathogenic fungi have interest for biological mosquito control. OBJECTIVES The activities of M. anisopliae s.l. IP 46 conidia were tested in Aedes aegypti adults either without any formulation or formulated with vegetable or mineral oil and in combination with diatomaceous earth. FINDINGS IP 46 was highly active against adults, the vector of important arboviruses in the tropics and subtropics. At an exposure of adults to 3.3 × 107 conidia/cm2, values of lethal times TL50 and TL90 reached minimal 3.8 and 4.6 days, respectively, and lethal concentrations LC50 and LC90 were 2.7 × 105 and 2.4 × 106 conidia/cm2, respectively, after 10 days of exposure. Activity against adults was improved by diatomaceous earth (KeepDry® KD) combined with mineral oil (Naturol® N) or vegetable oil (Graxol® G). Additives KD or N separately (and G to a lesser extent) or in combination, KD + N and KD + G without conidia had also a clear adulticidal effect. Efficacy of conidia formulated or not with KD + N decreased somewhat at shorter exposure periods. Time of exposure (0.017, 12, 48, 72 or 120 h) of adults to KD and N or IP 46 or conidia and KD and N had no significant effect on mortality. M. anisopliae s.l. recycled on fungus-killed mosquitoes producing high quantities of new conidia regardless of the conidial concentrations or formulations tested. Additives tested had no clear effect on quantitative conidiogenesis on cadavers. MAIN CONCLUSIONS Formulations of IP 46 conidia with mineral oil and diatomaceous earth represent a promising tool for the development of potent strategies of focal control of this important vector with entomopathogenic fungi.
Collapse
|
6
|
Nasirian H, Salehzadeh A. Control of Cockroaches (Blattaria) in Sewers: A Practical Approach Systematic Review. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:181-191. [PMID: 30462285 DOI: 10.1093/jme/tjy205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Indexed: 06/09/2023]
Abstract
Periplaneta americana (L.) (Blattaria: Blattidae), the American cockroach, is the most important invasive urban pest of sewer environments colonizing there with high significance of human public health and household allergens need to be controlled. Therefore this practical approach systematic review perform internationally to highlight and provide a detailed P. americana control in sewers. Of the 474 papers, 129 papers were selected to become this practical approach systematic review study of cockroach control in sewers. To control the American cockroaches, many studies have been conducted in various fields describing from an angle. The results were classified and discussed in getting cockroaches from sewers into buildings and their elimination, insecticide susceptibility, application of dust, bait and Inesfly paint insecticide formulations, biocontrol, and futuristic action categories. A recommending manner to achieve a successful P. americana cockroach control in sewers is using a combination of Integrated Pest Management (IPM) strategies resulted in significant reductions of cockroach infestations and asthma health outcomes. Use of P. americana breeding thelytoky, push-pull strategies and an automated sewer robot, and integrating health into the future buildings may be new approaches of P. americana control strategies.
Collapse
Affiliation(s)
- Hassan Nasirian
- Department of Medical Entomology and Vector Control, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Salehzadeh
- Department of Medical Entomology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
7
|
Pereira-Junior RA, Huarte-Bonnet C, Paixão FRS, Roberts DW, Luz C, Pedrini N, Fernandes ÉKK. Riboflavin induces Metarhizium spp. to produce conidia with elevated tolerance to UV-B, and upregulates photolyases, laccases and polyketide synthases genes. J Appl Microbiol 2018; 125:159-171. [PMID: 29473986 DOI: 10.1111/jam.13743] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/07/2018] [Accepted: 02/18/2018] [Indexed: 11/30/2022]
Abstract
AIMS The effect of nutritional supplementation of two Metarhizium species with riboflavin (Rb) during production of conidia was evaluated on (i) conidial tolerance (based on germination) to UV-B radiation and on (ii) conidial expression following UV-B irradiation, of enzymes known to be active in photoreactivation, viz., photolyase (Phr), laccase (Lac) and polyketide synthase (Pks). METHODS AND RESULTS Metarhizium acridum (ARSEF 324) and Metarhizium robertsii (ARSEF 2575) were grown either on (i) potato dextrose agar medium (PDA), (ii) PDA supplemented with 1% yeast extract (PDAY), (iii) PDA supplemented with Rb (PDA+Rb), or (iv) PDAY supplemented with Rb (PDAY+Rb). Resulting conidia were exposed to 866·7 mW m-2 of UV-B Quaite-weighted irradiance to total doses of 3·9 or 6·24 kJ m-2 . Some conidia also were exposed to 16 klux of white light (WL) after being irradiated, or not, with UV-B to investigate the role of possible photoreactivation. Relative germination of conidia produced on PDA+Rb (regardless Rb concentration) or on PDAY and exposed to UV-B was higher compared to conidia cultivated on PDA without Rb supplement, or to conidia suspended in Rb solution immediately prior to UV-B exposure. The expression of MaLac3 and MaPks2 for M. acridum, as well as MrPhr2, MrLac1, MrLac2 and MrLac3 for M. robertsii was higher when the isolates were cultivated on PDA+Rb and exposed to UV-B followed by exposure to WL, or exposed to WL only. CONCLUSIONS Rb in culture medium increases the UV-B tolerance of M. robertsii and M. acridum conidia, and which may be related to increased expression of Phr, Lac and Pks genes in these conidia. SIGNIFICANCE AND IMPACT OF THE STUDY The enhanced UV-B tolerance of Metarhizium spp. conidia produced on Rb-enriched media may improve the effectiveness of these fungi in biological control programs.
Collapse
Affiliation(s)
- R A Pereira-Junior
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - C Huarte-Bonnet
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - F R S Paixão
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil.,Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - D W Roberts
- Department of Biology, Utah State University, Logan, UT, USA
| | - C Luz
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| | - N Pedrini
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Universidad Nacional de La Plata - CONICET, La Plata, Buenos Aires, Argentina
| | - É K K Fernandes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil
| |
Collapse
|