1
|
Zhang S, Zhang X, Xiong Z, Li K, Gao Y, Bu Y, Zheng N, Zhao S, Wang J. Effect of red clover isoflavones on hormone, immune, inflammatory, and plasma biochemistry in lactating dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:306-312. [PMID: 38371476 PMCID: PMC10869575 DOI: 10.1016/j.aninu.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 12/20/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024]
Abstract
This study was to conducted to investigate the effect of red clover isoflavones on the health indicated by immune status and blood biochemistry in dairy cows. Sixty-eight healthy Holstein lactating cows were randomly divided into four treatments (n = 17 per treatment) from 5 blocks according to milk yield using a randomized complete block design. No initial differences in parity (2.13 ± 1.21), days in milk (165 ± 21 d), and milk yield (33.93 ± 3.81 kg/d) between groups. Cows were fed the basal diet supplemented with 0, 2, 4, or 8 g/kg red clover extract (RCE) in diet (dry matter based). Feeding, refusal feed weights, and milk yield were recorded three consecutive days in weeks 0, 4, 8, and 12. Blood was collected from the tail vein of the cows on the last day of weeks 4, 8 and 12, 1 h after the morning feeding, and analyzed for hormones, immunoglobulins, inflammatory markers, and markers of liver and kidney activities. The dry matter intake was significantly decreased by 3.7% in the 8 g/kg group (P < 0.05). The fat-corrected milk yield was significantly higher in both of the 2 and 4 g/kg groups (P < 0.01). Plasma estradiol and prolactin showed a quadratic effect with increasing RCE levels, with the highest in the 4 g/kg group (P < 0.05). Plasma tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β levels decreased linearly with increasing dietary RCE levels. Plasma IL-18 levels showed a quadratic effect with increasing dietary RCE levels, with significantly lower levels in both of the 2 and 4 g/kg groups (P < 0.05). Plasma immunoglobulin A and D-lactic acid levels showed a quadratic effect with increasing dietary RCE levels, with significantly higher level in the 4 g/kg group (P < 0.05). The liver function and kidney activity makers were similar (P > 0.05). These results recommend the supplementation of RCE at a level from 2 to 4 g/kg DM.
Collapse
Affiliation(s)
- Shiqi Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoyin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhanbo Xiong
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Kexin Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yuan Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ying Bu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
2
|
Flythe MD, Davis BE, Kagan IA. Reduction in Rumen Tetracycline-Insensitive Bacteria during a Grain Challenge Using the Isoflavone Biochanin A. Vet Sci 2023; 10:vetsci10040273. [PMID: 37104428 PMCID: PMC10143411 DOI: 10.3390/vetsci10040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 04/28/2023] Open
Abstract
The isoflavone biochanin A was previously shown to promote weight gain in growing steers by selectively inhibiting rumen bacteria-like growth-promoting feed antibiotics. The hypothesis that biochanin A inhibited the action of drug efflux pumps was tested by enumerating tetracycline-insensitive bacteria from steers in a subacute rumen acidosis (SARA) challenge. Steers (n = 3/group) treatment groups were forage only, SARA control, SARA with monensin (0.2 g d-1), and SARA with biochanin A (6.0 g d-1). As the steers were stepped up from the forage-only basal diet to 70% cracked corn, the number of rumen bacteria enumerated on two tetracycline-containing media types (nutrient glucose agar and tetracycline, and bile esculin azide and tetracycline) increased (p < 0.05) from as little as 1.7(105) to as great as 6.7(106) cfu mL-1 on the nutrient glucose agar in the SARA and monensin control groups. The biochanin A group maintained the same number of tetracycline-insensitive bacteria as the forage-only controls (p > 0.05). The effects were similar to the more selective media type, but the differences were smaller. These results support the hypothesis that biochanin A inhibits the activity of drug efflux pumps in vivo.
Collapse
Affiliation(s)
- Michael D Flythe
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY 40546, USA
- Department of Animal & Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Brittany E Davis
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY 40546, USA
- Department of Animal & Food Sciences, University of Kentucky, Lexington, KY 40546, USA
| | - Isabelle A Kagan
- Forage-Animal Production Research Unit, Agricultural Research Service, United States Department of Agriculture, Lexington, KY 40546, USA
| |
Collapse
|
3
|
Soltis MP, Moorey SE, Egert-McLean AM, Voy BH, Shepherd EA, Myer PR. Rumen Biogeographical Regions and Microbiome Variation. Microorganisms 2023; 11:microorganisms11030747. [PMID: 36985320 PMCID: PMC10057925 DOI: 10.3390/microorganisms11030747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/01/2023] [Accepted: 03/11/2023] [Indexed: 03/15/2023] Open
Abstract
The rumen is a complex organ that is critical for its host to convert low-quality feedstuffs into energy. The conversion of lignocellulosic biomass to volatile fatty acids and other end products is primarily driven by the rumen microbiome and its interaction with the host. Importantly, the rumen is demarcated into five distinct rumen sacs as a result of anatomical structure, resulting in variable physiology among the sacs. However, rumen nutritional and microbiome studies have historically focused on the bulk content or fluids sampled from single regions within the rumen. Examining the rumen microbiome from only one or two biogeographical regions is likely not sufficient to provide a comprehensive analysis of the rumen microbiome and its fermentative capacity. Rumen biogeography, digesta fraction, and microbial rumen–tissue association all impact the diversity and function of the entirety of the rumen microbiome. Therefore, this review discusses the importance of the rumen biographical regions and their contribution to microbiome variation.
Collapse
|
4
|
Xu Q, Li Y, Du W, Zheng N, Wang J, Zhao S. Effect of dietary biochanin A on lactation performance, antioxidant capacity, rumen fermentation and rumen microbiome of dairy goat. Front Microbiol 2023; 14:1101849. [PMID: 36814572 PMCID: PMC9939525 DOI: 10.3389/fmicb.2023.1101849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/23/2023] [Indexed: 02/08/2023] Open
Abstract
Biochanin A (BCA), an isoflavone phytoestrogen, is a secondary metabolite produced mainly in leguminous plants. The objective of this study was to evaluate the effect of BCA on lactation performance, nitrogen metabolism, and the health of dairy goat. Thirty mid-lactation Saanen dairy goats were divided into three groups randomly: control, 2 g/d BCA group, and 6 g/d BCA group. After 36 days of feeding, 30 dairy goats were transferred to individual metabolic cages. Subsequently, milk yield, feed intake, total feces, and urine excretion were recorded and samples were collected continuously for 3 days. Blood and ruminal fluid samples were collected over the subsequent 4 days. Milk yield, milk protein, fat content, and the feed conversion ratio of dairy goat were significantly increased by the BCA treatment. The levels of serum 17β-estradiol, growth hormone, insulin-like growth factor 1, glutathione peroxidase activity, and total antioxidant capacity were also increased significantly by BCA, indicating that BCA enhanced the antioxidant capacity of dairy goat. Amino acid degradation was significantly inhibited, while the ammonia nitrogen content was reduced significantly by BCA. Total volatile fatty acids was significantly increased by BCA supplementation. In addition, the relative abundance of Verrucomicrobiota was decreased significantly. However, the growth of nitrogen metabolism and cellulolytic bacteria was significantly increased under BCA treatment, including Prevotella sp., Treponema sp., Ruminococcus flavefaciens, and Ruminobacter amylophilus. In conclusion, supplementation with BCA improved the milk production performance, nitrogen metabolism, rumen fermentation and antioxidant capacity, and regulated the rumen microbiome of dairy goat.
Collapse
Affiliation(s)
- Qingbiao Xu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China,MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Yanjun Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenjuan Du
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,*Correspondence: Jiaqi Wang,
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China,Shengguo Zhao,
| |
Collapse
|
5
|
Zhu K, Lin J, Chen S, Xu Q. miR-9-5p Promotes Lung Adenocarcinoma Cell Proliferation, Migration and Invasion by Targeting ID4. Technol Cancer Res Treat 2021; 20:15330338211048592. [PMID: 34723712 PMCID: PMC8564129 DOI: 10.1177/15330338211048592] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Objectives Evidence reveals that microRNAs (miRNAs) are abnormally
expressed in lung adenocarcinoma (LUAD) tissue and are crucial in LUAD
occurrence. Therefore, this study aims to find the miRNA which could regulate
LUAD and to further explore its regulatory mechanism, thus providing a potential
molecular target for LUAD. Methods miR-9-5p and ID4 expression in
LUAD cells were measured by real-time quantitative PCR and western blot. Cell
functional assays were conducted to detect the biological functions of LUAD
cells. A dual-luciferase reporter assay was utilized to validate the binding
relationship between miR-9-5p and ID4. Results miR-9-5p was highly
expressed whereas ID4 was lowly expressed in LUAD. miR-9-5p facilitated LUAD
cell progression by targeting ID4. Conclusion miR-9-5p promotes
LUAD cell progression by modulating ID4 and may become a potential target for
LUAD.
Collapse
Affiliation(s)
- Kai Zhu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Jinlan Lin
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Shengjia Chen
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| | - Qian Xu
- Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou, China
| |
Collapse
|
6
|
Křížová L, Němcová Z, Dadáková K, Chrenková M. In sacco evaluation of ruminal degradability of isoflavones from full-fat soybean and extracted soybean meal-A pilot study. J Anim Physiol Anim Nutr (Berl) 2021; 105:832-840. [PMID: 33656771 DOI: 10.1111/jpn.13511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/15/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
The aim of the study was to determine the ruminal degradability of dry matter (DM), daidzein, genistein, glycitein and total isoflavones in ground full-fat soybean (GFFS) and solvent-extracted soybean meal (SSBM) using the in sacco method. The experiment was carried out in three replications on ruminally cannulated sheep that were fed twice a day with a diet consisted of hay and supplemental mixture (6:4, DM basis). The nylon bags with 2 g feed samples ground to 2 mm were incubated in the rumen for 0, 2, 4, 8, 16 and 24 h. The effective degradability (ED) of DM, daidzein, genistein, glycitein and total isoflavones was calculated at outflow rate of 0.06 h. The ED of DM in GFFS was 77.8% and was higher than in SSBM being 71.8% (p < 0.001). The ED of daidzein (96.8%) and genistein (93.6%) was higher for SSBM compared with GFFS (93.9% and 92.8%, p < 0.001 and p = 0.003, respectively) while ED of glycitein was lower for SSBM than for GFFS (75.5 and 81.7%, respectively, p < 0.001). All isoflavones in the incubations were extensively degraded in the rumen, and regardless of dietary source, they were almost completely degraded after 16 h of incubation. Further, the disappearance patterns, that is the functions describing the time courses of the analyte disappearance, were assessed. The disappearance patterns of daidzein, genistein, glycitein and total isoflavones were similar and showed greater disappearance of mentioned isoflavones from SSBM compared to GFFS (p < 0.001 for daidzein, genistein and total isoflavones and p = 0.002 for glycitein). The study provides knowledge on the effect of processing on degradability of isoflavones in rumen that can be used to clarify the interrelationship between isoflavones and rumen microbiota.
Collapse
Affiliation(s)
- Ludmila Křížová
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Zuzana Němcová
- Department of Animal Breeding, Animal Nutrition and Biochemistry, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Mária Chrenková
- Department for Nutrition, Research Institute for Animal Production in Nitra, National Agricultural and Food Centre, Luzianky, Slovak Republic
| |
Collapse
|
7
|
Harlow BE, Flythe MD, Klotz JL, Harmon DL, Aiken GE. Effect of biochanin A on the rumen microbial community of Holstein steers consuming a high fiber diet and subjected to a subacute acidosis challenge. PLoS One 2021; 16:e0253754. [PMID: 34288928 PMCID: PMC8294529 DOI: 10.1371/journal.pone.0253754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 06/11/2021] [Indexed: 11/21/2022] Open
Abstract
Subacute rumen acidosis (SARA) occurs when highly fermentable carbohydrates are introduced into the diet, decreasing pH and disturbing the microbial ecology of the rumen. Rumen amylolytic bacteria rapidly catabolize starch, fermentation acids accumulate in the rumen and reduce environmental pH. Historically, antibiotics (e.g., monensin, MON) have been used in the prevention and treatment of SARA. Biochanin A (BCA), an isoflavone produced by red clover (Trifolium pratense), mitigates changes associated with starch fermentation ex vivo. The objective of the study was to determine the effect of BCA on amylolytic bacteria and rumen pH during a SARA challenge. Twelve rumen fistulated steers were assigned to 1 of 4 treatments: HF CON (high fiber control), SARA CON, MON (200 mg d-1), or BCA (6 g d-1). The basal diet consisted of corn silage and dried distiller’s grains ad libitum. The study consisted of a 2-wk adaptation, a 1-wk HF period, and an 8-d SARA challenge (d 1–4: 40% corn; d 5–8: 70% cracked corn). Samples for pH and enumeration were taken on the last day of each period (4 h). Amylolytic, cellulolytic, and amino acid/peptide-fermenting bacteria (APB) were enumerated. Enumeration data were normalized by log transformation and data were analyzed by repeated measures ANOVA using the MIXED procedure of SAS. The SARA challenge increased total amylolytics and APB, but decreased pH, cellulolytics, and in situ DMD of hay (P < 0.05). BCA treatment counteracted the pH, microbiological, and fermentative changes associated with SARA challenge (P < 0.05). Similar results were also observed with MON (P < 0.05). These results indicate that BCA may be an effective alternative to antibiotics for mitigating SARA in cattle production systems.
Collapse
Affiliation(s)
- Brittany E. Harlow
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
- * E-mail:
| | - Michael D. Flythe
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
| | - James L. Klotz
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, KY, United States of America
| | - David L. Harmon
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Glen E. Aiken
- North Florida Research and Education Center, University of Florida, Quincy, FL, United States of America
| |
Collapse
|
8
|
Production of Bovine Equol-Enriched Milk: A Review. Animals (Basel) 2021; 11:ani11030735. [PMID: 33800327 PMCID: PMC7999515 DOI: 10.3390/ani11030735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022] Open
Abstract
Simple Summary Milk and dairy products contain many substances beneficial to human health; moreover, the contents of some of these substances can be enhanced. This is also the case of isoflavones which are compounds of plant origin that can be ingested and metabolized by cattle and, subsequently, secreted into bovine milk. An especially healthful substance called equol is ranked among isoflavone metabolites, commonly produced in the digestive tract of cattle. Equol content in milk can be modified by using feedstuffs with different contents of isoflavones or by milk processing and storage. Abstract Milk and dairy products are important sources of nutrients in the human diet because they contain a number of essential substances and other biologically active components. Many of these substances can be modified, and thus offer opportunities to use milk and dairy products as functional food. Isoflavones are particularly important in human nutrition due to their diverse pharmacological and antioxidant properties. The clinical effectiveness of isoflavone-rich products is believed to be dependent on their ability to metabolize daidzein to equol, which may directly exert cancer preventive effects. However, only approximately 30–40% of humans are able to produce equol, while animals, in general, produce equol. Equol is the predominant product of bacterial metabolism of isoflavones and can be found in various amounts in some food of animal origin, especially in milk. Therefore, milk and dairy products can be considered to be sources of equol for humans who are not able to produce this metabolite. When the content of isoflavones in milk is to be modified, two groups of factors should be considered, i.e., dietary factors that include the source of isoflavones and the processing effects on feedstuffs and animal factors that include the intake of isoflavones, ruminal and postruminal changes, and the health and physiological status of animals. The approximate content of isoflavones in milk can be predicted using carry-over rates for different dietary sources or using a formula that describes the relationship between equol concentration in milk and formononetin intake. Processing and storage can affect the content and profile of isoflavones in milk and dairy products.
Collapse
|
9
|
Dadáková K, Trnková A, Kašparovská J, Křížová L, Lochman J, Kašparovský T. In vitro metabolism of red clover isoflavones in rumen fluid. J Anim Physiol Anim Nutr (Berl) 2020; 104:1647-1654. [PMID: 32542765 DOI: 10.1111/jpn.13402] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/11/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
The degradation of red clover isoflavones was studied in vitro using a rumen fluid buffer system. Various amounts of red clover extract (5-75 mg) together with hay or concentrate-rich diet were added to 40 ml of rumen fluid obtained from non-lactating and lactating dairy cows, respectively, and incubated for 0, 3, 6, 12 or 24 hr. Following incubation, concentrations of daidzein, genistein, formononetin, biochanin A and equol were determined in the samples. After 3 hr of incubation, isoflavone metabolism and equol production could be observed. The results obtained indicate that hay diet provides better conditions for isoflavone metabolism, as concentrations of daidzein, formononetin and biochanin A were higher in incubations based on the concentrate-rich diet and the production of equol was higher in incubations based on the hay diet. Furthermore, in incubations with higher amounts of added clover extract, a decrease in equol production was observed. Further studies are needed to clarify the role of adaptation of rumen microflora on isoflavone degradation kinetics and to clarify the interrelationship between various dietary factors, rumen microbiota and isoflavones. The knowledge of isoflavone metabolism kinetics in dependence on studied factors will be useful for the optimization of feeding dose.
Collapse
Affiliation(s)
- Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Andrea Trnková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Kašparovská
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ludmila Křížová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
10
|
Harlow BE, Flythe MD, Kagan IA, Goodman JP, Klotz JL, Aiken GE. Isoflavone supplementation, via red clover hay, alters the rumen microbial community and promotes weight gain of steers grazing mixed grass pastures. PLoS One 2020; 15:e0229200. [PMID: 32168321 PMCID: PMC7069683 DOI: 10.1371/journal.pone.0229200] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/31/2020] [Indexed: 01/08/2023] Open
Abstract
Biochanin A, an isoflavone present in the pasture legume red clover (Trifloium pratense L.), alters fermentation in the rumen of cattle and other ruminants. Biochanin A inhibits hyper-ammonia-producing bacteria and promotes cellulolytic bacteria and fiber catalysis in vitro and ex vivo. Consequently, biochanin A supplementation improves weight gain in grazing steers. Red clover contains biologically active isoflavones that may act synergistically. Therefore, the objective was to evaluate the effect of two levels of red clover hay on growth performance and the microbial community in growing steers grazing mixed grass pastures. A grazing experiment was conducted over 2 early growing seasons (2016 and 2017) with 36 cross-bred steers and twelve rumen-fistulated, growing Holstein steers for evaluation of average daily gain and rumen microbiota, respectively. Steers were blocked by body weight and assigned to pastures with one of four treatments: 1) pasture only, 2) pasture + dry distillers' grains (DDG), 3) pasture + DDG + low level of red clover hay (~15% red clover diet), or 4) pasture + DDG + high level of red clover hay (~30% red clover diet). DDG were added to treatments to meet protein requirements and to balance total protein supplementation between treatments. All supplementation strategies (DDG ± red clover hay) increased average daily gains in comparison to pasture-only controls (P < 0.05), with a low level of red clover supplementation being the most effective (+0.17 kg d-1 > DDG only controls; P < 0.05). Similarly, hyper-ammonia-producing bacteria inhibition (10-100-fold; P < 0.05), fiber catalysis (+10-25%; P < 0.05) and short chain fatty acid concentrations were greatest with the low red clover supplement (+~25%; P < 0.05). These results provide evidence that lower levels or red clover supplementation may be optimal for maximizing overall microbial community function and animal performance in grazing steers.
Collapse
Affiliation(s)
- Brittany E. Harlow
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Michael D. Flythe
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Isabelle A. Kagan
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Jack P. Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - James L. Klotz
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| | - Glen E. Aiken
- United States Department of Agriculture, Forage Animal Production Research Unit, Agricultural Research Service, Lexington, Kentucky, United States of America
| |
Collapse
|
11
|
Liu S, Zhang Z, Hailemariam S, Zheng N, Wang M, Zhao S, Wang J. Biochanin A Inhibits Ruminal Nitrogen-Metabolizing Bacteria and Alleviates the Decomposition of Amino Acids and Urea In Vitro. Animals (Basel) 2020; 10:ani10030368. [PMID: 32106487 PMCID: PMC7142414 DOI: 10.3390/ani10030368] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/17/2020] [Indexed: 11/27/2022] Open
Abstract
Simple Summary Plant bioactive compounds have been chosen as alternative antibiotic to promote animal productivity. Biochanin A is a type of naturally occurring bioactive compound. It is O-methylated isoflavone and is found in red clover, alfalfa sprouts, and other legumes. The aim of this study was to determine the effect of biochanin A on rumen microbial fermentation and composition. The results show that biochanin a increases microbial gas production, but has no effect on volatile fatty acid (VFA) production. Microbial urease activity was inhibited by Biochanin A with the IC50 of 320 nM. Biochanin A also inhibited the degradation rate of Val, Lys, Met, Leu and total amino acids, respectively. The inhibition of urease activity and amino acid decomposition by biochanin A resulted in a reduction in ammonia. The 16S rRNA gene sequencing showed that biochanin A reduced the abundance of proteolytic bacteria Prevotella and Streptococcus. Therefore, biochanin A reduced the production of ammonia by inhibiting proteolytic bacteria and its decomposition of urea and amino acids activity. Abstract Biochanin A is a naturally occurring flavonoid compound that is found in plant species such as red clover (Trifolium pretense) and alfalfa (Medicago sativa). Flavonoids have been reported to regulate ruminal fermentation, and the objective of this study was to evaluate the effects of biochanin A on ruminal microbial composition and nitrogen metabolism. The experiment was performed by in vitro batch culturing of a control (without biochanin A) and a biochanin A treatment. Following a 24-h incubation, gas production and the amounts of ammonia-nitrogen (NH3-N), volatile fatty acid (VFA), and amino acids were measured. Microbial population using 16S rRNA gene sequence. We found that the addition of biochanin A significantly increased microbial gas production; but had no effect on VFA production. Biochanin A supplementation also resulted in reduced microbial urease activity with half the maximal inhibitory concentration of 320 nM and also inhibited the degradation rates of total amino acids, valine, lysine, methionine and leucine by 18%, 56%, 37%, 13%, and 12%, respectively. This inhibition of urease activity and amino acid decomposition resulted in a significant reduction in the NH3-N concentration. High-throughput sequencing of the 16S rRNA sequence to monitor microbial composition showed that biochanin A significantly reduced the abundance of the proteolytic bacteria Prevotella and ureolytic bacteria Selenomonas, but increased the abundance of the lactic acid metabolizing bacteria Veillonella and Megasphaera. In conclusion, biochanin A reduced the production of ammonia by inhibiting proteolytic bacteria and their decomposition of urea and amino acids.
Collapse
Affiliation(s)
- Sijia Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Zhenyu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Samson Hailemariam
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Nan Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
| | - Min Wang
- State Key Laboratory of Animal Nutrition, The Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125, Hunan, China;
| | - Shengguo Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
- Correspondence: (S.Z.); (J.W.)
| | - Jiaqi Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (S.L.); (Z.Z.); (S.H.); (N.Z.)
- Correspondence: (S.Z.); (J.W.)
| |
Collapse
|
12
|
Melchior EA, Smith JK, Schneider LG, Mulliniks JT, Bates GE, Flythe MD, Klotz JL, Ji H, Goodman JP, Lee AR, Caldwell JM, Myer PR. Effects of endophyte-infected tall fescue seed and red clover isoflavones on rumen microbial populations and physiological parameters of beef cattle. Transl Anim Sci 2018; 3:315-328. [PMID: 32704802 PMCID: PMC7252513 DOI: 10.1093/tas/txy147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/21/2018] [Accepted: 12/27/2018] [Indexed: 11/13/2022] Open
Abstract
Lolium arundinaceum [(Darbyshire) tall fescue] toxicosis is responsible for substantial beef production losses in the United States, due to its negative effects on reproduction, growth, and feed efficiency. These effects are consequences of toxic alkaloids within tall fescue. Interseeding legumes, such as Trifolium pratense (red clover), into pastures has been shown to mitigate a portion of these effects. Clovers contain isoflavones, which may play a role in tall fescue toxicosis mitigation. The present study utilized 36 Angus steers to determine the effects of daily supplementation with a red clover-isolated isoflavone feed additive on physiological symptoms of tall fescue toxicosis and the rumen microbial environment over a 21-d period. Angus steers were initially stratified based upon their single nucleotide polymorphism genotype at the DRD2 receptor. Treatments were then randomly assigned in a 2 × 2 factorial arrangement within a completely randomized design, where treatment factors consisted of tall fescue seed type (endophyte-infected tall fescue seed vs. endophyte-free tall fescue seed) supplemented with and without the isoflavone additive. Steers that consumed endophyte-infected tall fescue seed had lower serum prolactin concentrations (P = 0.0007), average daily gain (ADG; P = 0.003), final body weight (BW; P = 0.004), and feed efficiency (P = 0.018) when compared with steers that consumed endophyte-free tall fescue seed. Serum insulin-like growth factor-1 (IGF-1) tended to be reduced with supplementation of isoflavones (P = 0.06) but was unaffected by seed type (P ≥ 0.10) and seed by treatment interaction (P ≥ 0.10). Isoflavones reduced serum glucose levels (P = 0.023), but neither seed type, isoflavones, or their interaction affected serum urea nitrogen (SUN), nonesterified fatty acids (NEFA), or insulin (P ≥ 0.10). Volatile fatty acid concentrations, dry matter intake (DMI), ruminal pH, and overall feeding behaviors were also unaffected by seed type or isoflavone treatments (P ≥ 0.10). Twenty-eight ruminal bacteria taxa shifted as a result of seed type or isoflavone treatment (P < 0.05). In this experiment, feeding isoflavones to Angus cattle did not completely mitigate all symptoms of fescue toxicosis. However, dose–response trials may aid future research to determine if dietary supplementation with isoflavones alleviates fescue toxicosis symptoms and promotes livestock growth and performance.
Collapse
Affiliation(s)
- Emily A Melchior
- Department of Animal Science, University of Tennessee, Knoxville, TN.,Department of Animal Science, University of Tennessee, Knoxville, TN
| | - Jason K Smith
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | | | | | - Gary E Bates
- Department of Plant Sciences, University of Tennessee, Knoxville, TN
| | | | - James L Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY
| | - Huihua Ji
- Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY
| | - Jack P Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY
| | - Amanda R Lee
- Department of Animal Science, University of Tennessee, Knoxville, TN
| | - J Marc Caldwell
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN
| | - Phillip R Myer
- Department of Animal Science, University of Tennessee, Knoxville, TN
| |
Collapse
|
13
|
Melchior EA, Smith JK, Schneider LG, Mulliniks JT, Bates GE, McFarlane ZD, Flythe MD, Klotz JL, Goodman JP, Ji H, Myer PR. Effects of red clover isoflavones on tall fescue seed fermentation and microbial populations in vitro. PLoS One 2018; 13:e0201866. [PMID: 30335760 PMCID: PMC6193618 DOI: 10.1371/journal.pone.0201866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 10/07/2018] [Indexed: 01/08/2023] Open
Abstract
Negative impacts of endophyte-infected Lolium arundinaceum (Darbyshire) (tall fescue) are responsible for over $2 billion in losses to livestock producers annually. While the influence of endophyte-infected tall fescue has been studied for decades, mitigation methods have not been clearly elucidated. Isoflavones found in Trifolium pratense (red clover) have been the subject of recent research regarding tall fescue toxicosis mitigation. Therefore, the aim of this study was to determine the effect of ergovaline and red clover isoflavones on rumen microbial populations, fiber degradation, and volatile fatty acids (VFA) in an in vitro system. Using a dose of 1.10 mg × L-1, endophyte-infected or endophyte-free tall fescue seed was added to ANKOM fiber bags with or without 2.19 mg of isoflavones in the form of a control, powder, or pulverized tablet, resulting in a 2 × 3 factorial arrangements of treatments. Measurements of pH, VFA, bacterial taxa, as well as the disappearance of neutral detergent fiber (aNDF), acid detergent fiber (ADF), and crude protein (CP) were taken after 48 h of incubation. aNDF disappearance values were significantly altered by seed type (P = 0.003) and isoflavone treatment (P = 0.005), and ADF disappearance values were significantly different in a seed × isoflavone treatment interaction (P ≤ 0.05). A seed × isoflavone treatment interaction was also observed with respect to CP disappearance (P ≤ 0.05). Eighteen bacterial taxa were significantly altered by seed × isoflavone treatment interaction groups (P ≤ 0.05), eight bacterial taxa were increased by isoflavones (P ≤ 0.05), and ten bacterial taxa were altered by seed type (P ≤ 0.05). Due to the beneficial effect of isoflavones on tall fescue seed fiber degradation, these compounds may be viable options for mitigating fescue toxicosis. Further research should be conducted to determine physiological implications as well as microbiological changes in vivo.
Collapse
Affiliation(s)
- Emily A. Melchior
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Jason K. Smith
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Liesel G. Schneider
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - J. Travis Mulliniks
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Gary E. Bates
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Zachary D. McFarlane
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| | - Michael D. Flythe
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, United States of America
| | - James L. Klotz
- USDA-ARS, Forage-Animal Production Research Unit, Lexington, KY, United States of America
| | - Jack P. Goodman
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States of America
| | - Huihua Ji
- College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States of America
| | - Phillip R. Myer
- Department of Animal Sciences, University of Tennessee, Knoxville, TN, United States of America
| |
Collapse
|
14
|
Melchior EA, Myer PR. Fescue toxicosis and its influence on the rumen microbiome: mitigation of production losses through clover isoflavones. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2018.1496920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Emily A. Melchior
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, USA
| | - Phillip R. Myer
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, USA
| |
Collapse
|
15
|
Trnková A, Šancová K, Zapletalová M, Kašparovská J, Dadáková K, Křížová L, Lochman J, Hadrová S, Ihnatová I, Kašparovský T. Determination of in vitro isoflavone degradation in rumen fluid. J Dairy Sci 2018; 101:5134-5144. [PMID: 29550126 DOI: 10.3168/jds.2017-13610] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/26/2018] [Indexed: 11/19/2022]
Abstract
The aim of this study was to determine the degradation of dietary isoflavones in rumen fluid under 2 feeding regimens. The experiments were performed in vitro using a rumen fluid buffer system. The rumen fluid was taken from cows fed either a hay diet or a concentrate-rich diet (the diet consisted of 34.6% maize silage, 17.6% haylage, 12.8% alfalfa hay, and 35.0% supplemental mixture on a dry matter basis). As a source of isoflavones, 40% soybean extract (Biomedica, Prague, Czech Republic) at levels of 5, 25, 50, and 75 mg per 40 mL of rumen fluid was used. Samples of soybean extract were incubated in triplicate at 39°C for 0, 3.0, 6.0, 12.0, and 24.0 h in incubation solution. The metabolism of daidzein and genistein was faster under concentrate-rich diet conditions. In general, production of equol started after 3 to 6 h of incubation and reached the highest rate after approximately 12 h of incubation regardless of the type of diet or concentration of extract. In most of the experiments, production of equol continued after 24 h of incubation. Generally, equol production was greater under the hay diet conditions. Furthermore, experiments with higher amounts of added soybean extract revealed possible inhibitory effects of high levels of isoflavones on the rumen microflora.
Collapse
Affiliation(s)
- Andrea Trnková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Kateřina Šancová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Martina Zapletalová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jitka Kašparovská
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Ludmila Křížová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Jan Lochman
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Sylvie Hadrová
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Ivana Ihnatová
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Kotlarska 2, 61137 Brno, Czech Republic.
| |
Collapse
|
16
|
Harlow BE, Flythe MD, Aiken GE. Biochanin A improves fibre fermentation by cellulolytic bacteria. J Appl Microbiol 2017; 124:58-66. [PMID: 29112792 DOI: 10.1111/jam.13632] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/30/2017] [Accepted: 11/02/2017] [Indexed: 11/29/2022]
Abstract
AIMS The objective was to determine the effect of the isoflavone biochanin A (BCA) on rumen cellulolytic bacteria and consequent fermentative activity. METHODS AND RESULTS When bovine microbial rumen cell suspensions (n = 3) were incubated (24 h, 39°C) with ground hay, cellulolytic bacteria proliferated, short-chain fatty acids were produced and pH declined. BCA (30 μg ml-1 ) had no effect on the number of cellulolytic bacteria or pH, but increased acetate, propionate and total SCFA production. Addition of BCA improved total digestibility when cell suspensions (n = 3) were incubated (48 h, 39°C) with ground hay, Avicel, or filter paper. Fibrobacter succinogenes S85, Ruminococcus flavefaciens 8 and Ruminococcus albus 8 were directly inhibited by BCA. Synergistic antimicrobial activity was observed with BCA and heat killed cultures of cellulolytic bacteria, but the effects were species dependent. CONCLUSIONS These results indicate that BCA improves fibre degradation by influencing cellulolytic bacteria competition and guild composition. SIGNIFICANCE AND IMPACT OF THE STUDY BCA could serve as a feed additive to improve cellulosis when cattle are consuming high-fibre diets. Future research is needed to evaluate the effect of BCA on fibre degradation and utilization in vivo.
Collapse
Affiliation(s)
- Brittany E Harlow
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, USA
| | - Michael D Flythe
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, USA
| | - Glen E Aiken
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, USA
| |
Collapse
|
17
|
Flythe MD, Kagan IA, Wang Y, Narvaez N. Hops ( Humulus lupulus L.) Bitter Acids: Modulation of Rumen Fermentation and Potential As an Alternative Growth Promoter. Front Vet Sci 2017; 4:131. [PMID: 28871284 PMCID: PMC5566628 DOI: 10.3389/fvets.2017.00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/31/2017] [Indexed: 01/26/2023] Open
Abstract
Antibiotics can improve ruminant growth and efficiency by altering rumen fermentation via selective inhibition of microorganisms. However, antibiotic use is increasingly restricted due to concerns about the spread of antibiotic-resistance. Plant-based antimicrobials are alternatives to antibiotics in animal production. The hops plant (Humulus lupulus L.) produces a range of bioactive secondary metabolites, including antimicrobial prenylated phloroglucinols, which are commonly called alpha- and beta-acids. These latter compounds can be considered phyto-ionophores, phytochemicals with a similar antimicrobial mechanism of action to ionophore antibiotics (e.g., monensin, lasalocid). Like ionophores, the hop beta-acids inhibit rumen bacteria possessing a classical Gram-positive cell envelope. This selective inhibition causes several effects on rumen fermentation that are beneficial to finishing cattle, such as decreased proteolysis, ammonia production, acetate: propionate ratio, and methane production. This article reviews the effects of hops and hop secondary metabolites on rumen fermentation, including the physiological mechanisms on specific rumen microorganisms, and consequences for the ruminant host and ruminant production. Further, we propose that hop beta-acids are useful model natural products for ruminants because of (1) the ionophore-like mechanism of action and spectrum of activity and (2) the literature available on the plant due to its use in brewing.
Collapse
Affiliation(s)
- Michael D Flythe
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States.,Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, United States
| | - Isabelle A Kagan
- USDA, Agricultural Research Service, Forage-Animal Production Research Unit, Lexington, KY, United States.,Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY, United States
| | - Yuxi Wang
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, AB, Canada
| | - Nelmy Narvaez
- SGS Canada Inc., Agricultural Services, Guelph, ON, Canada
| |
Collapse
|