1
|
Iglesias A, Martínez L, Torrent D, Porcar M. The microwave bacteriome: biodiversity of domestic and laboratory microwave ovens. Front Microbiol 2024; 15:1395751. [PMID: 39176272 PMCID: PMC11338789 DOI: 10.3389/fmicb.2024.1395751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/19/2024] [Indexed: 08/24/2024] Open
Abstract
Microwaves have become an essential part of the modern kitchen, but their potential as a reservoir for bacterial colonization and the microbial composition within them remain largely unexplored. In this study, we investigated the bacterial communities in microwave ovens and compared the microbial composition of domestic microwaves, microwaves used in shared large spaces, and laboratory microwaves, using next-generation sequencing and culturing techniques. The microwave oven bacterial population was dominated by Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes, similar to the bacterial composition of human skin. Comparison with other environments revealed that the bacterial composition of domestic microwaves was similar to that of kitchen surfaces, whereas laboratory microwaves had a higher abundance of taxa known for their ability to withstand microwave radiation, high temperatures and desiccation. These results suggest that different selective pressures, such as human contact, nutrient availability and radiation levels, may explain the differences observed between domestic and laboratory microwaves. Overall, this study provides valuable insights into microwave ovens bacterial communities and their potential biotechnological applications.
Collapse
Affiliation(s)
- Alba Iglesias
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Lorena Martínez
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | | | - Manuel Porcar
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
- Darwin Bioprospecting Excellence S.L., Valencia, Spain
| |
Collapse
|
2
|
Kut P, Garcia-Pichel F. Nimble vs. torpid responders to hydration pulse duration among soil microbes. Commun Biol 2024; 7:455. [PMID: 38609432 PMCID: PMC11015016 DOI: 10.1038/s42003-024-06141-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Environmental parameters vary in time, and variability is inherent in soils, where microbial activity follows precipitation pulses. The expanded pulse-reserve paradigm (EPRP) contends that arid soil microorganisms have adaptively diversified in response to pulse regimes differing in frequency and duration. To test this, we incubate Chihuahuan Desert soil microbiomes under separate treatments in which 60 h of hydration was reached with pulses of different pulse duration (PD), punctuated by intervening periods of desiccation. Using 16S rRNA gene amplicon data, we measure treatment effects on microbiome net growth, growth efficiency, diversity, and species composition, tracking the fate of 370 phylotypes (23% of those detected). Consistent with predictions, microbial diversity is a direct, saturating function of PD. Increasingly larger shifts in community composition are detected with decreasing PD, as specialist phylotypes become more prominent. One in five phylotypes whose fate was tracked responds consistently to PD, some preferring short pulses (nimble responders; NIRs) and some longer pulses (torpid responders; TORs). For pulses shorter than a day, microbiome growth efficiency is an inverse function of PD, as predicted. We conclude that PD in pulsed soil environments constitutes a major driver of microbial community assembly and function, largely consistent with the EPRP predictions.
Collapse
Affiliation(s)
- Patrick Kut
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ferran Garcia-Pichel
- Center for Fundamental and Applied Microbiomics and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
3
|
Yang ZN, Liu ZS, Wang KH, Liang ZL, Abdugheni R, Huang Y, Wang RH, Ma HL, Wang XK, Yang ML, Zhang BG, Li DF, Jiang CY, Corvini PFX, Liu SJ. Soil microbiomes divergently respond to heavy metals and polycyclic aromatic hydrocarbons in contaminated industrial sites. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 10:100169. [PMID: 36159729 PMCID: PMC9488039 DOI: 10.1016/j.ese.2022.100169] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/19/2023]
Abstract
Contaminated sites from electronic waste (e-waste) dismantling and coking plants feature high concentrations of heavy metals (HMs) and/or polycyclic aromatic hydrocarbons (PAHs) in soil. Mixed contamination (HMs + PAHs) hinders land reclamation and affects the microbial diversity and function of soil microbiomes. In this study, we analyzed HM and PAH contamination from an e-waste dismantling plant and a coking plant and evaluated the influences of HM and PAH contamination on soil microbiomes. It was noticed that HMs and PAHs were found in all sites, although the major contaminants of the e-waste dismantling plant site were HMs (such as Cu at 5,947.58 ± 433.44 mg kg-1, Zn at 4,961.38 ± 436.51 mg kg-1, and Mn at 2,379.07 ± 227.46 mg kg-1), and the major contaminants of the coking plant site were PAHs (such as fluorene at 11,740.06 ± 620.1 mg kg-1, acenaphthylene at 211.69 ± 7.04 mg kg-1, and pyrene at 183.14 ± 18.89 mg kg-1). The microbiomes (diversity and abundance) of all sites were determined via high-throughput sequencing of 16S rRNA genes, and redundancy analysis was conducted to investigate the relations between soil microbiomes and contaminants. The results showed that the microbiomes of the contaminated sites divergently responded to HMs and PAHs. The abundances of the bacterial genera Sulfuritalea, Pseudomonas, and Sphingobium were positively related to PAHs, while the abundances of the bacterial genera Bryobacter, Nitrospira, and Steroidobacter were positively related to HMs. This study promotes an understanding of how soil microbiomes respond to single and mixed contamination with HMs and PAHs.
Collapse
Affiliation(s)
- Zhen-Ni Yang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ze-Shen Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ke-Huan Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zong-Lin Liang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ye Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Run-Hua Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong-Lin Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Kang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Ling Yang
- School of Life Sciences, Hebei University, Baoding, 071002, Hebei Province, China
| | - Bing-Ge Zhang
- School of Public Health, Xuzhou Medical University, Xuzhou, 221004, Jiangsu Province, China
| | - De-Feng Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Philippe F.-X. Corvini
- School of Life Sciences, University of Applied Sciences and Arts Northwestern Switzerland, Muttenz, 4132, Switzerland
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, 226237, Shandong Province, China
| |
Collapse
|
4
|
OUP accepted manuscript. Bioscience 2022. [DOI: 10.1093/biosci/biac036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
5
|
Zhou H, Chen C, Zhou S, Bu K, Li P, Lin X, Jiang L, Zhang C. Performance and microbial community analysis of a bio-contact oxidation reactor during the treatment of low-COD and high-salinity oilfield produced water. BIORESOURCE TECHNOLOGY 2021; 335:125267. [PMID: 33992912 DOI: 10.1016/j.biortech.2021.125267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/03/2021] [Accepted: 05/06/2021] [Indexed: 06/12/2023]
Abstract
The multistage bio-contact oxidation reactor (BCOR) is a widely used biological strategy to treat wastewater, however, little is known about the performance and microbial community information of BCOR during the treatment of low-COD and high-salinity oilfield produced water. In this study, the performance of a multistage BCOR in treating produced water was investigated. The result suggested the BCOR could efficiently remove COD, BOD5, NH4+-N, and oil pollutants. Besides, high-throughput sequencing analysis revealed that oil content was the main variable in shaping the community structure. The highest total relative abundance of potential pollutants degraders in first BCOR stage suggested significant role of this stage in pollutants removal. In addition, the correlation analysis disclosed the key functional genera during the degradation process, including Rhodobacter, Citreibacter, and Roseovarius. Moreover, network analysis revealed that the microbial taxa within same module had strong ecological linkages and specific functions.
Collapse
Affiliation(s)
- Hanghai Zhou
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunlei Chen
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Shaoxiong Zhou
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Kuiyong Bu
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Pingyuan Li
- Xinjiang Keli New Technology Development Co., Ltd., Karamay 834000, Xinjiang, China
| | - Xiaoyun Lin
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Lijia Jiang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
6
|
Müller-Santos M, Koskimäki JJ, Alves LPS, de Souza EM, Jendrossek D, Pirttilä AM. The protective role of PHB and its degradation products against stress situations in bacteria. FEMS Microbiol Rev 2021; 45:fuaa058. [PMID: 33118006 DOI: 10.1093/femsre/fuaa058] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022] Open
Abstract
Many bacteria produce storage biopolymers that are mobilized under conditions of metabolic adaptation, for example, low nutrient availability and cellular stress. Polyhydroxyalkanoates are often found as carbon storage in Bacteria or Archaea, and of these polyhydroxybutyrate (PHB) is the most frequently occurring PHA type. Bacteria usually produce PHB upon availability of a carbon source and limitation of another essential nutrient. Therefore, it is widely believed that the function of PHB is to serve as a mobilizable carbon repository when bacteria face carbon limitation, supporting their survival. However, recent findings indicate that bacteria switch from PHB synthesis to mobilization under stress conditions such as thermal and oxidative shock. The mobilization products, 3-hydroxybutyrate and its oligomers, show a protective effect against protein aggregation and cellular damage caused by reactive oxygen species and heat shock. Thus, bacteria should have an environmental monitoring mechanism directly connected to the regulation of the PHB metabolism. Here, we review the current knowledge on PHB physiology together with a summary of recent findings on novel functions of PHB in stress resistance. Potential applications of these new functions are also presented.
Collapse
Affiliation(s)
- Marcelo Müller-Santos
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Janne J Koskimäki
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Luis Paulo Silveira Alves
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Emanuel Maltempi de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná - UFPR, Setor de Ciências Biológicas, Centro Politécnico, Jardim da Américas, CEP: 81531-990, Caixa Postal: 190-46, Curitiba, Paraná, Brazil
| | - Dieter Jendrossek
- Institute of Microbiology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Anna Maria Pirttilä
- Ecology and Genetics Research Unit, University of Oulu, Pentti Kaiteran katu 1, P.O. Box 3000, FI-90014 Oulu, Finland
| |
Collapse
|
7
|
Franzetti A, Pittino F, Gandolfi I, Azzoni RS, Diolaiuti G, Smiraglia C, Pelfini M, Compostella C, Turchetti B, Buzzini P, Ambrosini R. Early ecological succession patterns of bacterial, fungal and plant communities along a chronosequence in a recently deglaciated area of the Italian Alps. FEMS Microbiol Ecol 2021; 96:5894918. [PMID: 32815995 DOI: 10.1093/femsec/fiaa165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/12/2020] [Indexed: 12/31/2022] Open
Abstract
In this study, the early ecological succession patterns of Forni Glacier (Ortles-Cevedale group, Italian Alps) forefield along an 18-year long chronosequence (with a temporal resolution of 1 year) has been reported. Bacterial and fungal community structures were inferred by high-throughput sequencing of 16S rRNA gene and ITS, respectively. In addition, the occurrence of both herbaceous and arboreous plants was also recorded at each plot. A significant decrease of alpha-diversity in more recently deglaciated areas was observed for both bacteria and plants. Time since deglaciation and pH affected the structure of both fungal and bacterial communities. Pioneer plants could be a major source of colonization for both bacterial and fungal communities. Consistently, some of the most abundant bacterial taxa and some of those significantly varying with pH along the chronosequence (Polaromonas, Granulicella, Thiobacillus, Acidiferrobacter) are known to be actively involved in rock-weathering processes due to their chemolithotrophic metabolism, thus suggesting that the early phase of the chronosequence could be mainly shaped by the biologically controlled bioavailability of metals and inorganic compounds. Fungal communities were dominated by ascomycetous filamentous fungi and basidiomycetous yeasts. Their role as cold-adapted organic matter decomposers, due to their heterotrophic metabolism, was suggested.
Collapse
Affiliation(s)
- A Franzetti
- Department of Earth and Environmental Sciences (DISAT) - University of Milano-Bicocca, Milano, Italy
| | - F Pittino
- Department of Earth and Environmental Sciences (DISAT) - University of Milano-Bicocca, Milano, Italy
| | - I Gandolfi
- Department of Earth and Environmental Sciences (DISAT) - University of Milano-Bicocca, Milano, Italy
| | - R S Azzoni
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - G Diolaiuti
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| | - C Smiraglia
- Department of Earth Science "Ardito Desio", University of Milano, Milano, Italy
| | - M Pelfini
- Department of Earth Science "Ardito Desio", University of Milano, Milano, Italy
| | - C Compostella
- Department of Earth Science "Ardito Desio", University of Milano, Milano, Italy
| | - B Turchetti
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - P Buzzini
- Department of Agricultural, Food and Environmental Sciences, University of Perugia, Perugia, Italy
| | - R Ambrosini
- Department of Environmental Science and Policy, University of Milano, Milano, Italy
| |
Collapse
|
8
|
Mitra M, Nguyen KMAK, Box TW, Gilpin JS, Hamby SR, Berry TL, Duckett EH. Isolation and characterization of a novel Sphingobium yanoikuyae strain variant that uses biohazardous saturated hydrocarbons and aromatic compounds as sole carbon sources. F1000Res 2020; 9:767. [PMID: 32934808 PMCID: PMC7477647 DOI: 10.12688/f1000research.25284.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2020] [Indexed: 01/09/2023] Open
Abstract
Background: Green micro-alga,
Chlamydomonas reinhardtii (a Chlorophyte), can be cultured in the laboratory heterotrophically or photo-heterotrophically in
Tris-
Phosphate-
Acetate (TAP) medium, which contains acetate as the carbon source.
Chlamydomonas can convert acetate in the TAP medium to glucose via the glyoxylate cycle, a pathway present in many microbes and higher plants. A novel bacterial strain, CC4533, was isolated from a contaminated TAP agar medium culture plate of a
Chlamydomonas wild type strain. In this article, we present our research on the isolation, and biochemical and molecular characterizations of CC4533. Methods: We conducted several microbiological tests and spectrophotometric analyses to biochemically characterize CC4533. The 16S rRNA gene of CC4533 was partially sequenced for taxonomic identification. We monitored the growth of CC4533 on Tris-Phosphate (TP) agar medium (lacks a carbon source) containing different sugars, aromatic compounds and saturated hydrocarbons, to see if CC4533 can use these chemicals as the sole source of carbon. Results: CC4533 is a Gram-negative, non-enteric yellow pigmented, aerobic, mesophilic bacillus. It is alpha-hemolytic and oxidase-positive. CC4533 can ferment glucose, sucrose and lactose, is starch hydrolysis-negative, resistant to penicillin, polymyxin B and chloramphenicol. CC4533 is sensitive to neomycin. Preliminary spectrophotometric analyses indicate that CC4533 produces b-carotenes. NCBI-BLAST analyses of the partial 16S rRNA gene sequence of CC4533 show 99.55% DNA sequence identity to that of
Sphingobium yanoikuyae strain PR86 and
S. yanoikuyae strain NRB095. CC4533 can use cyclo-chloroalkanes, saturated hydrocarbons present in car motor oil, polyhydroxyalkanoate, and mono- and poly-cyclic aromatic compounds, as sole carbon sources for growth. Conclusions: Taxonomically, CC4533 is very closely related to the alpha-proteobacterium
S. yanoikuyae, whose genome has been sequenced. Future research is needed to probe the potential of CC4533 for environmental bioremediation. Whole genome sequencing of CC4533 will confirm if it is a novel strain of
S. yanoikuyae or a new
Sphingobium species.
Collapse
Affiliation(s)
- Mautusi Mitra
- Biology Department, University of West Georgia, Carrollton, GA, 30118, USA
| | - Kevin Manoap-Anh-Khoa Nguyen
- Biology Department, University of West Georgia, Carrollton, GA, 30118, USA.,Department of Mechanical Engineering, Kennesaw State University, Marietta, GA, 30060, USA
| | - Taylor Wayland Box
- Biology Department, University of West Georgia, Carrollton, GA, 30118, USA
| | - Jesse Scott Gilpin
- Biology Department, University of West Georgia, Carrollton, GA, 30118, USA
| | - Seth Ryan Hamby
- Biology Department, University of West Georgia, Carrollton, GA, 30118, USA
| | - Taylor Lynne Berry
- Carrollton High School, Carrollton, GA, 30117, USA.,Department of Chemistry and Biochemistry, University of North Georgia, Dahlonega, GA, 30597, USA
| | | |
Collapse
|
9
|
Bordoloi A, Gapes DJ, Gostomski PA. The impact of environmental parameters on the conversion of toluene to CO 2 and extracellular polymeric substances in a differential soil biofilter. CHEMOSPHERE 2019; 232:304-314. [PMID: 31154192 DOI: 10.1016/j.chemosphere.2019.05.192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
The fraction of pollutant converted to CO2 versus biomass in biofiltration influences the process efficacy and the lifetime of the bed due to pressure drop increases. This work determined the relative quantitative importance and potential interactions between three critical environmental parameters: toluene concentration (Tol), matric potential (ψ) and temperature (T) on % CO2, elimination capacity (EC) and the production rate of non-CO2 products. These parameters are the most variable in typical biofilter operation. The data was fit to a non-linear model of the form y=a(Tol)bTcψd. A rigorous carbon balance (100.5 ± 7.0%) tracked the fate of degraded toluene as CO2 and non-CO2 carbon endpoints. The % CO2 mineralization varied from (34-91%) with environmental parameters: temperature (20-40 °C), matric potential, (-10 to -100 cmH2O) and residual toluene, (20-180 ppm). The highest conversion to CO2 was at the wettest conditions (-10 cmH2O) and lowest residual toluene concentration (18 ppm). Matric potential had twice the impact of toluene concentration on % CO2, while temperature had less impact. The elimination capacity varied from 11 to 50 gC⋅m-3h-1 and was highest at 40 °C, the wettest conditions with limited impact by toluene concentrations. Temperature increased the EC and non-CO2 production rates strongly while matric potential and toluene concentration had less influence (4x - 10x less). This study illustrated the quantitative significance and simultaneous interaction between critical environmental parameters on carbon endpoints and biofilter performance. This kind of multivariable parameter study provides valuable insights which can address performance and clogging issues in biofilters.
Collapse
Affiliation(s)
- Achinta Bordoloi
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 80411, New Zealand; Department of Process Engineering, Stellenbosch University, Private Bag X1, Matieland, 7602, Stellenbosch, South Africa.
| | | | - Peter A Gostomski
- Department of Chemical & Process Engineering, University of Canterbury, Private Bag 4800, Christchurch 80411, New Zealand
| |
Collapse
|