1
|
Escamilla-Medrano JA, Londoño-Hernández L, Balagurusamy N, Hernández-Almanza AY. Application of microbial pigments in the pharmaceutical industry: current status and opportunities. Arch Microbiol 2025; 207:104. [PMID: 40164794 DOI: 10.1007/s00203-025-04261-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 04/02/2025]
Abstract
Microbial pigments are a diverse group of compounds synthesized by microorganisms, which have attracted considerable scientific interest due to their multifaceted biological properties and significant potential in pharmaceutical applications. These pigments demonstrate various activities, including antimicrobial, antioxidant, anti-inflammatory, and anticancer effects, often mediated by intricate interactions with cellular components such as membranes, proteins, and deoxyribonucleic acid (DNA). For example, antimicrobial pigments can compromise membrane integrity or inhibit protein synthesis, while anti-inflammatory pigments modulate key signaling pathways involved in inflammation. This review explores the different microorganisms capable of producing different pigments. Furthermore, it examines the technological applications, including their potential use in pharmaceuticals and their current commercial use. In addition, clinical cases demonstrating the efficacy of microbial pigments in various therapeutic contexts will be presented. Moving forward, microbial pigments are poised to play a pivotal role in drug development and other biomedical applications, offering some sustainable solutions to various challenges in medicine and industry.
Collapse
Affiliation(s)
- Jeylin A Escamilla-Medrano
- Food Products Research and Development Lab, School of Biological Science, Universidad Autonoma de Coahuila, 27276, Torreón, Coahuila, Mexico
| | - Liliana Londoño-Hernández
- BIOTICS Research Group, School of Basic Sciences, Technology and Engineering, Universidad Nacional Abierta y a Distancia UNAD, Bogotá, Colombia
| | - Nagamani Balagurusamy
- Laboratorio de Biorremediación, Facultad de Ciencias Biológicas, Universidad Autónoma de Coahuila, 27275, Torreón, Coahuila, Mexico
| | - Ayerim Y Hernández-Almanza
- Food Products Research and Development Lab, School of Biological Science, Universidad Autonoma de Coahuila, 27276, Torreón, Coahuila, Mexico.
| |
Collapse
|
2
|
Alves BVB, Borges LJ, Hanna SA, Soares MBP, Bezerra DP, Moreira LLPF, Borges WDS, Portela RWD, Fernandez CC, Umsza-Guez MA. Pigment Production by Pseudofusicoccum sp.: Extract Production, Cytotoxicity Activity, and Diketopiperazines Identified. Microorganisms 2025; 13:277. [PMID: 40005644 PMCID: PMC11857561 DOI: 10.3390/microorganisms13020277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Filamentous fungi are among the most commonly used microorganisms for producing various metabolites including dyes. Ensuring the safety of products derived from microorganisms is always essential. In this study, the isolated fungus was identified as Pseudofusicoccum sp., a producer of the burgundy pigment through submerged fermentation. The fungus exhibited enhanced growth and pigment production under yellow light. The extract obtained showed no cytotoxicity in the tested cell lines (HepG2, SCC4, BJ, and MRC-5). Among the compounds isolated and identified through NMR analysis, cyclo(L-Pro-L-Val) and cyclo(L-Leu-L-Pro) (diketopiperazines) had been previously reported in foods and are known to be produced by various organisms, with several beneficial biological activities. This identified fungus represents a promising source of biopigments with a crude extract that is non-cytotoxic. Additionally, the isolated compounds exhibit significant biological properties, such as antibacterial, antifungal, and antioxidant activities, highlighting their potential as natural pigments for use in food products.
Collapse
Affiliation(s)
- Bianca Vilas Boas Alves
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, BA, Brazil; (B.V.B.A.); (L.J.B.)
| | - Letícia Jambeiro Borges
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, BA, Brazil; (B.V.B.A.); (L.J.B.)
| | - Samira Abdallah Hanna
- Laboratory of Applied Microbiology of the Health Sciences Institute, Federal University of Bahia, Salvador 40110-100, BA, Brazil;
| | - Milena Botelho Pereira Soares
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (M.B.P.S.); (D.P.B.)
- SENAI Institute for Innovation in Advanced Health Systems, SENAI CIMATEC, Salvador 41650-010, BA, Brazil
| | - Daniel Pereira Bezerra
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (IGM-FIOCRUZ/BA), Salvador 40296-710, BA, Brazil; (M.B.P.S.); (D.P.B.)
| | - Laysa Lanes Pereira Ferreira Moreira
- Chemistry Postgraduate Program, Center for Exact Sciences, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil; (L.L.P.F.M.); (W.d.S.B.)
| | - Warley de Souza Borges
- Chemistry Postgraduate Program, Center for Exact Sciences, Federal University of Espírito Santo, Vitória 29075-910, ES, Brazil; (L.L.P.F.M.); (W.d.S.B.)
| | | | - Clara Couto Fernandez
- Biotechnology Department, Federal University of Bahia, Salvador 40110-902, BA, Brazil; (R.W.D.P.); (C.C.F.)
| | - Marcelo Andrés Umsza-Guez
- Food Science Postgraduate Program, Faculty of Pharmacy, Federal University of Bahia, Salvador 40170-100, BA, Brazil; (B.V.B.A.); (L.J.B.)
| |
Collapse
|
3
|
Afroz Toma M, Rahman MH, Rahman MS, Arif M, Nazir KHMNH, Dufossé L. Fungal Pigments: Carotenoids, Riboflavin, and Polyketides with Diverse Applications. J Fungi (Basel) 2023; 9:jof9040454. [PMID: 37108908 PMCID: PMC10141606 DOI: 10.3390/jof9040454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Natural pigments and colorants have seen a substantial increase in use over the last few decades due to their eco-friendly and safe properties. Currently, customer preferences for more natural products are driving the substitution of natural pigments for synthetic colorants. Filamentous fungi, particularly ascomycetous fungi (Monascus, Fusarium, Penicillium, and Aspergillus), have been shown to produce secondary metabolites containing a wide variety of pigments, including β-carotene, melanins, azaphilones, quinones, flavins, ankaflavin, monascin, anthraquinone, and naphthoquinone. These pigments produce a variety of colors and tints, including yellow, orange, red, green, purple, brown, and blue. Additionally, these pigments have a broad spectrum of pharmacological activities, including immunomodulatory, anticancer, antioxidant, antibacterial, and antiproliferative activities. This review provides an in-depth overview of fungi gathered from diverse sources and lists several probable fungi capable of producing a variety of color hues. The second section discusses how to classify coloring compounds according to their chemical structure, characteristics, biosynthetic processes, application, and present state. Once again, we investigate the possibility of employing fungal polyketide pigments as food coloring, as well as the toxicity and carcinogenicity of particular pigments. This review explores how advanced technologies such as metabolic engineering and nanotechnology can be employed to overcome obstacles associated with the manufacture of mycotoxin-free, food-grade fungal pigments.
Collapse
Affiliation(s)
- Maria Afroz Toma
- Department of Food Technology & Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Hasibur Rahman
- Department of Food Technology & Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md Saydar Rahman
- Department of Food Technology & Rural Industries, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mohammad Arif
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | | | - Laurent Dufossé
- Laboratoire de Chimie et de Biotechnologie des Produits Naturals, CHEMBIOPRO EA 2212, Université de La Réunion, ESIROI Agroalimentaire, 97744 Saint-Denis, France
- Laboratoire ANTiOX, Université de Bretagne Occidentale, Campus de Créac'h Gwen, 29000 Quimper, France
| |
Collapse
|
4
|
Production of a Polyketide Pigment by Fusarium chlamydosporum. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.2.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The present study was focused to study the production of secondary metabolite by the fungus, F. chlamydosporum on a non-defined medium with less concentration of nitrogen; the organic nitrogen source being peptone and beef extract. In this context, we have been successful in extracting a polyketide pigment from the fungus by using the homogenization technique. The pigments thus extracted were subjected to various purification techniques via thin layer chromatography, column chromatography, UV-visible spectrophotometry, fourier-transform infrared spectroscopy and finally molecular determination by liquid chromatography coupled to tandem quadrupole mass spectrometry (LC-MS-MS). The polyketide red pigment was finally characterized and identified to be fusarubin following which its cytotoxicity was evaluated in vitro by using normal lung fibroblast cell lines (MRC-5). In the verge of researchers identifying novel compounds for various applications, the production of fusarubin by the fungus can be a major breakthrough as fusarubin has been investigated to exhibit many pharmacological activities. Though fusarubin is reported to be produced by other Fusarium species, this is the foremost study on the production of fusarubin by F. chlamydosporum; the composition of the culture medium is also unique. The production of this polyketide probably correlates in the pathogenesis of F. chlamydosporum as studies comment on this fungus as an opportunistic pathogen.
Collapse
|
5
|
Safety Evaluation of Fungal Pigments for Food Applications. J Fungi (Basel) 2021; 7:jof7090692. [PMID: 34575730 PMCID: PMC8466146 DOI: 10.3390/jof7090692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Pigments play a major role in many industries. Natural colors are usually much safer when compared to synthetic colors and may even possess some medicinal benefits. Synthetic colors are economical and can easily be produced compared to natural colors. In addition, raw plant materials for natural colors are limited and season dependent. Microorganisms provide an alternative source for natural colors and, among them, fungi provide a wide range of natural colorants that could easily be produced cheaply and with high yield. Along with pigment, some microbial strains are also capable of producing a number of mycotoxins. The commercial use of microbial pigments relies on the safety of colorants. This review provides a toxicity evaluation of pigments from fungal origins for food application.
Collapse
|
6
|
Fungal Secondary Metabolites: Current Research, Commercial Aspects, and Applications. Fungal Biol 2021. [DOI: 10.1007/978-3-030-85603-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Lagashetti AC, Dufossé L, Singh SK, Singh PN. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 2019; 7:E604. [PMID: 31766735 PMCID: PMC6955906 DOI: 10.3390/microorganisms7120604] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/13/2019] [Accepted: 11/18/2019] [Indexed: 12/22/2022] Open
Abstract
The public's demand for natural, eco-friendly, and safe pigments is significantly increasing in the current era. Natural pigments, especially fungal pigments, are receiving more attention and seem to be in high demand worldwide. The immense advantages of fungal pigments over other natural or synthetic pigments have opened new avenues in the market for a wide range of applications in different industries. In addition to coloring properties, other beneficial attributes of fungal pigments, such as antimicrobial, anticancer, antioxidant, and cytotoxic activity, have expanded their use in different sectors. This review deals with the study of fungal pigments and their applications and sheds light on future prospects and challenges in the field of fungal pigments. Furthermore, the possible application of fungal pigments in the textile industry is also addressed.
Collapse
Affiliation(s)
- Ajay C. Lagashetti
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis CEDEX, France
| | - Sanjay K. Singh
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| | - Paras N. Singh
- Biodiversity and Palaeobiology Group, National Fungal Culture Collection of India (NFCCI), MACS’ Agharkar Research Institute, G.G. Agarkar Road, Pune 411004, India; (A.C.L.); (P.N.S.)
| |
Collapse
|
8
|
Lombard L, van Doorn R, Crous PW. Neotypification of Fusarium chlamydosporum - a reappraisal of a clinically important species complex. Fungal Syst Evol 2019; 4:183-200. [PMID: 32467911 PMCID: PMC7241675 DOI: 10.3114/fuse.2019.04.10] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Fusarium chlamydosporum represents a well-defined morpho-species of both phytopathological and clinical importance. Presently, five phylo-species lacking Latin binomials have been resolved in the F. chlamydosporum species complex (FCSC). Naming these phylo-species is complicated due to the lack of type material for F. chlamydosporum. Over the years a number of F. chlamydosporum isolates (which were formerly identified based on morphology only) have been accessioned in the culture collection of the Westerdijk Fungal Biodiversity Institute. The present study was undertaken to correctly identify these 'F. chlamydosporum' isolates based on multilocus phylogenetic inference supported by morphological characteristics. Closer scrutiny of the metadata associated with one of these isolates allowed us to propose a neotype for F. chlamydosporum. Phylogenetic inference revealed the presence of nine phylo-species within the FCSC in this study. Of these, eight could be provided with names supported by subtle morphological characters. In addition, a new species, as F. nodosum, is introduced in the F. sambucinum species complex and F. chlamydosporum var. fuscum is raised to species level, as F. coffeatum, in the F. incarnatum-equiseti species complex (FIESC).
Collapse
Affiliation(s)
- L Lombard
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85176, 3508 AD Utrecht, The Netherlands
| | - R van Doorn
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85176, 3508 AD Utrecht, The Netherlands
| | - P W Crous
- Westerdijk Fungal Biodiversity Institute, P.O. Box 85176, 3508 AD Utrecht, The Netherlands.,Department of Genetics, Biochemistry and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa.,Wageningen University and Research Centre (WUR), Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|