1
|
Li D, Wang W, Peng Y, Qiu X, Yang J, Zhang C, Wang E, Wang X, Yuan H. Soluble humic acid suppresses plant immunity and ethylene to promote soybean nodulation. PLANT, CELL & ENVIRONMENT 2024; 47:871-884. [PMID: 38164043 DOI: 10.1111/pce.14801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 11/23/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Symbiotic nitrogen fixation (SNF) is a crucial process for nitrogen geochemical cycling and plant-microbe interactions. Water-soluble humic acid (WSHM), an active component of soil humus, has been shown to promote SNF in the legume-rhizobial symbiosis, but its molecular mechanism remains largely unknown. To reveal the SNF-promoting mechanism, we conducted transcriptomic analysis on soybean treated with WSHM. Our findings revealed that up- and downregulated differentially expressed genes (DEGs) were mainly involved in plant cell-wall/membrane formation and plant defence/immunity in the early stage, while the late stage was marked by the flavonoid synthesis and ethylene biosynthetic process. Further study on representative DEGs showed that WSHM could inhibit GmBAK1d-mediated immunity and BR signalling, thereby promoting rhizobial colonisation, infection, and nodulation, while not favoring pathogenic bacteria colonisation on the host plant. Additionally, we also found that the ethylene pathway is necessary for promoting the soybean nodulation by WSHM. This study not only provides a significant advance in our understanding of the molecular mechanism of WSHM in promoting SNF, but also provides evidence of the beneficial interactions among the biostimulator, host plant, and soil microbes, which have not been previously reported.
Collapse
Affiliation(s)
- Dongmei Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Wenqian Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Yaqi Peng
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Xiaoqian Qiu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Jinshui Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Chunting Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng, China
| | - Hongli Yuan
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Bharti A, Maheshwari HS, Garg S, Anwar K, Pareek A, Satpute G, Prakash A, Sharma MP. Exploring potential soybean bradyrhizobia from high trehalose-accumulating soybean genotypes for improved symbiotic effectiveness in soybean. Int Microbiol 2023; 26:973-987. [PMID: 37036547 DOI: 10.1007/s10123-023-00351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 04/11/2023]
Abstract
Drought is the most important factor limiting the activity of rhizobia during N-fixation and plant growth. In the present study, we isolated Bradyrhizobium spp. from root nodules of higher trehalose-accumulating soybean genotypes and examined for moisture stress tolerance on a gradient of polyethylene glycol (PEG 6000) amended in yeast extract mannitol (YEM) broth. In addition, the bradyrhizobial strains were also evaluated for symbiotic effectiveness on soybean. Based on 16S rDNA gene sequences, four bradyrhizobial species were recovered from high trehalose-accumulating genotypes, i.e., two Bradyrhizobium liaoningense strains (accession number KX230053, KX230054) from EC 538828 and PK-472, respectively, one Bradyrhizobium daqingense (accession number KX230052) from PK-472, and one Bradyrhizobium kavangense (accession number MN197775) from Valder genotype having low trehalose. These strains, along with two native strains, viz., Bradyrhizobium japonicum (JF792425), Bradyrhizobium liaoningense (JF792426), and one commercial rhizobium, were studied for nodulation, leghaemoglobin, and N-fixation abilities on soybean under sterilized sand microcosm conditions in a completely randomized design. Among all the strains, D-4A (B. daqingense) followed by D-4B (B. liaoningense) was found to have significantly higher nodulation traits and acetylene reduction assay (ARA) activity when compared to other strains and commercial rhizobia. The bradyrhizobia isolates showed plant growth promotion traits such as indole acetic acid (IAA), exopolysaccharide (EPS), and siderophore production, phosphate-solubilizing potential, and proline accumulation. The novel species B. daqingense was reported for the first time from Indian soil and observed to be a potential candidate strain and should be evaluated for conferring drought tolerance in soybean under simulated stress conditions.
Collapse
Affiliation(s)
- Abhishek Bharti
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
- Department of Microbiology, Barkatullah University, Bhopal, 462026, India
| | - Hemant S Maheshwari
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
| | - Shivani Garg
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
| | - Khalid Anwar
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
- National Agri-Food Biotechnology Institute (NABI), Mohali, 140308, Punjab, India
| | - Gyanesh Satpute
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India
| | - Anil Prakash
- Department of Microbiology, Barkatullah University, Bhopal, 462026, India
| | - Mahaveer P Sharma
- ICAR-Indian Institute of Soybean Research, Khandwa Road, Indore, 452001, India.
| |
Collapse
|
3
|
Zhang J, Wang N, Li S, Wang J, Feng Y, Wang E, Li Y, Yang T, Chen W. The Effect of Different Rhizobial Symbionts on the Composition and Diversity of Rhizosphere Microorganisms of Chickpea in Different Soils. PLANTS (BASEL, SWITZERLAND) 2023; 12:3421. [PMID: 37836161 PMCID: PMC10575130 DOI: 10.3390/plants12193421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/22/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.) is currently the third most important legume crop in the world. It could form root nodules with its symbiotic rhizobia in soils and perform bio-nitrogen fixation. Mesorhizobium ciceri is a prevalent species in the world, except China, where Mesorhizobium muleiense is the main species associated with chickpea. There were significant differences in the competitive ability between M. ciceri and M. muleiense in sterilized and unsterilized soils collected from Xinjiang, China, where chickpea has been grown long term. In unsterilized soils, M. muleiense was more competitive than M. ciceri, while in sterilized soils, the opposite was the case. In addition, the competitive ability of M. ciceri in soils of new areas of chickpea cultivation was significantly higher than that of M. muleiense. It was speculated that there might be some biological factors in Xinjiang soils of China that could differentially affect the competitive nodulation of these two chickpea rhizobia. To address this question, we compared the composition and diversity of microorganisms in the rhizosphere of chickpea inoculated separately with the above two rhizobial species in soils from old and new chickpea-producing regions. RESULTS Chickpea rhizosphere microbial diversity and composition varied in different areas and were affected significantly due to rhizobial inoculation. In general, eight dominant phyla with 34 dominant genera and 10 dominant phyla with 47 dominant genera were detected in the rhizosphere of chickpea grown in soils of Xinjiang and of the new zones, respectively, with the inoculated rhizobia. Proteobacteria and Actinobacteria were dominant at the phylum level in the rhizosphere of all soils. Pseudomonas appeared significantly enriched after inoculation with M. muleiense in soils from Xinjiang, a phenomenon not found in the new areas of chickpea cultivation, demonstrating that Pseudomonas might be the key biological factor affecting the competitive colonization of M. muleiense and M. ciceri there. CONCLUSIONS Different chickpea rhizobial inoculations of M. muleiense and M. ciceri affected the rhizosphere microbial composition in different sampling soils from different chickpea planting areas. Through high throughput sequencing and statistical analysis, it could be found that Pseudomonas might be the key microorganism influencing the competitive nodulation of different chickpea rhizobia in different soils, as it is the dominant non-rhizobia community in Xinjiang rhizosphere soils, but not in other areas.
Collapse
Affiliation(s)
- Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
- Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, China
| | - Nan Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Shuo Li
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Jingqi Wang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Yufeng Feng
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou 450002, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de Mexico C.P. 11340, Mexico
| | - Youguo Li
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Yang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenfeng Chen
- College of Biological Sciences, Rhizobium Research Center, China Agricultural University, Beijing 100193, China
| |
Collapse
|
4
|
Nartey EK, Darko DA, Sulemana N, Assibey EO. Efficacy of Histick Soy in soybean nodulation in two Alfisols of Ghana. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1004090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IntroductionSoybean is an important legume whose nitrogen-fixing ability may be exploited to improve the fertility status of soils. In Ghana, where most of the soils are poor in fertility, cultivation of soybean presents an inexpensive way for resource-poor farmers to earn appreciable income and improve the fertility of arable land at the same time. However, the yield and N-fixing response of soybean to inoculation in most soils with poor fertility in Ghana are not well-researched.MethodA screen house study on the efficacy of Histick Soy (an inoculum manufactured by a German chemical company) on improving the nodulation of soybean in P-deficient soils comprising two Plinthustalfs, Ny1 and Ny2, with a history and no history, respectively, of soybean cultivation and a Kandiustalf with no history of soybean cultivation was evaluated in Ghana. Sterile riverbed sand was included as a check. Soybean seeds were inoculated with Histick Soy at three different rates, namely, zero, half, and recommended rate, and grown in a screen house to ascertain the efficacy of the inoculant in nodulating soybean. Nitrogen was applied at 0 and 10 kg/ha, K was applied at 60 kg/ha, and P was applied at 0, 30, and 60 kg/ha. These treatments were completely randomized with four replicates at a moisture content equivalent to 80% field capacity and grown till flowering. At flowering, the number of nodules per plant was counted. A parallel experiment was carried out to physiological maturity where 100-seed weight per pot was determined.Results and discussionResults obtained revealed that plants from the uninoculated seeds in the riverbed sand and the Kandiustalf did not nodulate. In the case of Ny2, the number of nodules at harvesting was statistically similar for half and full recommended application rate of the inoculant. The uninoculated Ny2 with 4.4 average nodules per pot did not increase at half recommended application rate. At the recommended rate, nodule numbers increased 2.3-fold to 10.3. The Ny1 showed no response to inoculation. Treatments, which received the application of 60 and 30 kg P2O5/ha triggered higher responses to inoculation in low and high Bradyrhizobia populations, respectively, in the Plinthustalfs.
Collapse
|
5
|
Chouhan B, Tak N, Bissa G, Adhikari D, Barik SK, Sprent JI, James EK, Jha S, Gehlot HS. Evolution of novel strains of Ensifer nodulating the invasive legume Leucaena leucocephala (Lam.) de Wit in different climatic regions of India through lateral gene transfer. FEMS Microbiol Ecol 2022; 98:6643559. [PMID: 35833268 DOI: 10.1093/femsec/fiac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/12/2022] Open
Abstract
More than 200 root-nodule bacterial strains were isolated from Leucaena leucocephala growing at 42 sampling sites across 12 states and three union territories of India. Genetic diversity was observed among 114 strains from various climatic zones; based on recA these were identified as strains of Ensifer, Mesorhizobium, Rhizobium and Bradyrhizobium. In MLSA strains clustered into several novel clades and lineages. Ensifer were predominant nodulating genotype isolated from majority of alkaline soils, while Mesorhizobium and Rhizobium strains were isolated from a limited sampling in North-Eastern states with acidic soils. Positive nodulation assays of selected Ensifer representing different genetic combinations of housekeeping and sym genes suggested their broad host range within the closely related mimosoid genera Vachellia, Senegalia, Mimosa and Prosopis. Leucaena selected diverse strains of Ensifer and Mesorhizobium as symbionts depending on available soil pH, climatic and other edaphic conditions in India. Lateral gene transfer seems to play a major role in genetic diversification of Ensifer exhibited in terms of Old World vs. Neotropical genetic make-up and mixed populations at several sites. Although Neotropical Ensifer strains were most symbiotically effective on Leucaena the native Ensifer are promiscuous and particularly well-adapted to a wide range of sampling sites with varied climates and edaphic factors.
Collapse
Affiliation(s)
- Bhawana Chouhan
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Nisha Tak
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Garima Bissa
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Dibyendu Adhikari
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow- 226001, Uttar Pradesh, India
| | - Saroj K Barik
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow- 226001, Uttar Pradesh, India
| | - Janet I Sprent
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Euan K James
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Shweta Jha
- Plant Functional Genomics Lab, Biotechnology Unit, Department of Botany, UGC-Centre of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| | - Hukam S Gehlot
- BNF and Microbial Genomics Lab., Department of Botany, Center of Advanced Study, Jai Narain Vyas University, Jodhpur- 342001, Rajasthan, India
| |
Collapse
|
6
|
Liu L, Jiang H, Zhang X, Peng D. Biogeographic pattern and relevant environmental factors for rhizobial communities in the rhizosphere and root nodules of kudzu (Pueraria lobata). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:49136-49146. [PMID: 35212898 DOI: 10.1007/s11356-022-19335-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Kudzu (Pueraria lobata) is an important medicinal plant, which can associate with rhizobia for nitrogen fixation. The mutualistic symbiosis between rhizobium and kudzu is not well understood, but it is necessary to fully utilize kudzu. Nodules and rhizosphere soils collected from 16 sampling sites were characterized based on phylogenetic analyses of the rpoB gene; 16S rRNA gene; the housekeeping genes SMc00019, truA, and thrA; and the symbiotic genes nodA and nifH. The relationships between biogeographic pattern, nitrogenase activity, and environmental factors were studied. Results indicated that a clear biogeographic pattern of rhizobial communities in the kudzu rhizosphere existed in southern China; latitude and soil pH were found to be the most important factors affecting the biogeographic pattern. Bradyrhizobium diazoefficiens and Bradyrhizobium erythrophlei were the dominant species in kudzu rhizosphere. The symbiotic rhizobia in kudzu nodules mainly belonged to B. lablabi, B. elkanii, B. pachyrhizi, and B. japonicum. Nitrogenase activities in the nodules of kudzu in the Jiangxi sampling region were significantly higher than those in the Guangxi and Hunan sampling regions, and they were significantly negatively correlated to pH and exchangeable Ca. These results constitute the first report of the existence of symbiotic genes in kudzu bradyrhizobia, which are similar to those in B. elkanii and B. pachyrhizi. Our findings could improve the understanding of kudzu-rhizobium symbiosis and could advance the application of rhizobial inoculation in medicinal legumes in terms of increasing the content of active ingredients.
Collapse
Affiliation(s)
- Lu Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Huidan Jiang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China
| | - Xin Zhang
- Hunan Institute of Plant Protection, Hunan Academy of Agricultural Sciences, Changsha 410125, Hunan, China
| | - Di Peng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, Hunan, China.
| |
Collapse
|
7
|
Bacillus amyloliquefaciens as an excellent agent for biofertilizer and biocontrol in agriculture: an overview for its mechanisms. Microbiol Res 2022; 259:127016. [DOI: 10.1016/j.micres.2022.127016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/18/2022]
|
8
|
Liu Y, Ma B, Chen W, Schlaeppi K, Erb M, Stirling E, Hu L, Wang E, Zhang Y, Zhao K, Lu Z, Ye S, Xu J. Rhizobium Symbiotic Capacity Shapes Root-Associated Microbiomes in Soybean. Front Microbiol 2021; 12:709012. [PMID: 34925249 PMCID: PMC8678110 DOI: 10.3389/fmicb.2021.709012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/09/2021] [Indexed: 12/26/2022] Open
Abstract
Root-microbiome interactions are of central importance for plant performance and yield. A distinctive feature of legumes is that they engage in symbiosis with N2-fixing rhizobia. If and how the rhizobial symbiotic capacity modulates root-associated microbiomes are still not yet well understood. We determined root-associated microbiomes of soybean inoculated with wild type (WT) or a noeI mutant of Bradyrhizobium diazoefficiens USDA 110 by amplicon sequencing. UPLC-MS/MS was used to analyze root exudates. The noeI gene is responsible for fucose-methylation of Nod factor secreted by USDA 110 WT strain. Soybean roots inoculated with the noeI mutant showed a significant decrease in nodulation and root-flavonoid exudation compared to roots inoculated with WT strain. The noeI mutant-inoculated roots exhibited strong changes in microbiome assembly in the rhizosphere and rhizoplane, including reduced diversity, changed co-occurrence interactions and a substantial depletion of root microbes. Root exudates and soil physiochemical properties were significantly correlated with microbial community shift in the rhizosphere between different rhizobial treatments. These results illustrate that rhizobial symbiotic capacity dramatically alters root-associated microbiomes, in which root exudation and edaphic patterns play a vital role. This study has important implications for understanding the evolution of plant-microbiome interactions.
Collapse
Affiliation(s)
- Yuanhui Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.,China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Ministry of Agriculture Key Laboratory of Soil Microbiology, Beijing, China
| | - Klaus Schlaeppi
- Department of Environmental Sciences, University of Basel, Basel, Switzerland.,Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Erinne Stirling
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.,Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.,Acid Sulfate Soils Centre, School of Biological Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, México City, México
| | - Yunzeng Zhang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Kankan Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Zhijiang Lu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Shudi Ye
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Qiu X, Gao T, Yang J, Wang E, Liu L, Yuan H. Water-Soluble Humic Materials Modulating Metabolism and Triggering Stress Defense in Sinorhizobium fredii. Microbiol Spectr 2021; 9:e0029321. [PMID: 34479412 PMCID: PMC8552645 DOI: 10.1128/spectrum.00293-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/29/2021] [Indexed: 11/23/2022] Open
Abstract
Bacteria have evolved a series of mechanisms to maintain their survival and reproduction in changeable and stressful environments. In-depth understanding of these mechanisms can allow for better developing and utilizing of bacteria with various biological functions. In this study, we found that water-soluble humic materials (WSHM), a well-known environment-friendly plant growth biostimulant, significantly promoted the free-living growth and survival of Sinorhizobium fredii CCBAU45436 in a bell-shaped, dose-dependent manner, along with more-efficient carbon source consumption and relief of medium acidification. By using RNA-Seq analysis, a total of 1,136 genes significantly up-/downregulated by external addition of WSHM were identified under test conditions. These differentially expressed genes (DEGs) were enriched in functional categories related to carbon/nitrogen metabolism, cellular stress response, and genetic information processing. Further protein-protein interaction (PPI) network analysis and reverse genetic engineering indicated that WSHM might reprogram the transcriptome through inhibiting the expression of key hub gene rsh, which encodes a bifunctional enzyme catalyzing synthesis and hydrolysis of the "magic spot" (p)ppGpp. In addition, the root colonization and viability in soil of S. fredii CCBAU45436 were increased by WSHM. These findings provide us with new insights into how WSHM benefit bacterial adaptations and demonstrate great application value to be a unique inoculant additive. IMPORTANCE Sinorhizobium fredii CCBAU45436 is a highly effective, fast-growing rhizobium that can establish symbiosis with multiple soybean cultivars. However, it is difficult to maintain the high-density effective viable cells in the rhizobial inoculant for the stressful conditions during production, storage, transport, and application. Here, we showed that WSHM greatly increased the viable cells of S. fredii CCBAU45436 in culture, modulating metabolism and triggering stress defense. The root colonization and viability in soil of S. fredii CCBAU45436 were also increased by WSHM. Our results shed new insights into the effects of WSHM on bacteria and the importance of metabolism and stress defense during the bacteria's whole life. In addition, the functional mechanism of WSHM may provide candidate genes for improving environmental adaptability and application potential of bacteria through genetic engineering.
Collapse
Affiliation(s)
- Xiaoqian Qiu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tongguo Gao
- College of Life Sciences, Hebei Agricultural University, Baoding, China
| | - Jinshui Yang
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Entao Wang
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Liang Liu
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hongli Yuan
- State Key Laboratory of Agrobiotechnology and Key Laboratory of Soil Microbiology, Ministry of Agriculture, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Liu L, Chen X, Hu S, Zhan Q, Peng W. Genetic diversity and distribution of rhizobia associated with soybean in red soil in Hunan Province. Arch Microbiol 2021; 203:1971-1980. [PMID: 33394081 DOI: 10.1007/s00203-020-02120-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 10/22/2022]
Abstract
To explore the genetic diversity and distribution of rhizobia in the rhizosphere of soybean grown in red soil, we have collected 21 soil samples from soybean fields across seven counties in Hunan province, China. MiSeq sequencing of rpoB gene was used to determine the intra-species diversity of rhizobia existing in soybean rhizospheres. Soil chemical properties were determined by routine methods. The Principal Coordinates Analysis (PCoA) plot indicated a clear biogeographical pattern characterizing the soybean rhizosphere across different sites. The Mantel test demonstrated that biogeographical pattern was significantly correlated with the geographical distance (Mantel statistic R 0.385, p < 0.001). There were obvious differences in the rhizobial communities among northeastern eco-region, southeastern eco-region and western eco-region. In general, Bradyrhizobium diazoefficiens was the most abundant rhizobial species in the soybean rhizosphere. At an intermediate (10-400 km) spatial scale, the biogeographical pattern of rhizobial communities in soybean rhizosphere is associated with both soil properties and geographical distance. Redundancy analysis (RDA) showed that total potassium (TK), available potassium (AK), soil organic carbon (SOC), and available nitrogen (AN) were the main factors that influenced the α-diversity of rhizobial communities. Canonical correspondence analysis (CCA) showed that pH and exchangeable Ca and Mg had the greatest influence on the β-diversity of the rhizobial communities in the soybean rhizosphere. These findings characterize the distribution pattern and its influencing factors of soybean rhizobia in rhizosphere in Hunan province, which may be helpful in selecting suitable strains or species as inoculants for soybeans in red soil regions.
Collapse
Affiliation(s)
- Lu Liu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Xi Chen
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Shujuan Hu
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
- Longping Branch of Graduate School, Hunan University, Changsha, People's Republic of China
| | - Qingcai Zhan
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China
| | - Weizheng Peng
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, No.892 Yuanda Road, Furong District, Changsha City, 410125, Hunan Province, People's Republic of China.
| |
Collapse
|
11
|
Han Q, Ma Q, Chen Y, Tian B, Xu L, Bai Y, Chen W, Li X. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. THE ISME JOURNAL 2020; 14:1915-1928. [PMID: 32336748 PMCID: PMC7367843 DOI: 10.1038/s41396-020-0648-9] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/19/2020] [Accepted: 03/25/2020] [Indexed: 01/06/2023]
Abstract
Rhizobia-legume symbiosis is an important type of plant-microbe mutualism; however, the establishment of this association is complicated and can be affected by many factors. The soybean rhizosphere has a specific microbial community, yet whether these organisms affect rhizobial nodulation has not been well investigated. Here, we analyzed the compositions and relationships of soybean rhizocompartment microbiota in three types of soil. First, we found that the rhizosphere community composition of soybean varied significantly in different soils, and the association network between rhizobia and other rhizosphere bacteria was examined. Second, we found that some rhizosphere microbes were correlated with the composition of bradyrhizobia and sinorhizobia in nodules. We cultivated 278 candidate Bacillus isolates from alkaline soil. Finally, interaction and nodulation assays showed that the Bacillus cereus group specifically promotes and suppresses the growth of sinorhizobia and bradyrhizobia, respectively, and alleviates the effects of saline-alkali conditions on the nodulation of sinorhizobia as well as affecting its colonization in nodules. Our findings demonstrate a crucial role of the bacterial microbiota in shaping rhizobia-host interactions in soybean, and provide a framework for improving the symbiotic efficiency of this system of mutualism through the use of synthetic bacterial communities.
Collapse
Affiliation(s)
- Qin Han
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Qun Ma
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yong Chen
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Bing Tian
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Lanxi Xu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Wenfeng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing, 100193, China.
| | - Xia Li
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Road, Hongshan District, Wuhan, 430070, Hubei, China.
| |
Collapse
|
12
|
Engineering bacterial symbionts of nematodes improves their biocontrol potential to counter the western corn rootworm. Nat Biotechnol 2020; 38:600-608. [PMID: 32066956 DOI: 10.1038/s41587-020-0419-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/10/2020] [Indexed: 01/18/2023]
Abstract
The western corn rootworm (WCR) decimates maize crops worldwide. One potential way to control this pest is treatment with entomopathogenic nematodes (EPNs) that harbor bacterial symbionts that are pathogenic to insects. However, WCR larvae sequester benzoxazinoid secondary metabolites that are produced by maize and use them to increase their resistance to the nematodes and their symbionts. Here we report that experimental evolution and selection for bacterial symbionts that are resistant to benzoxazinoids improve the ability of a nematode-symbiont pair to kill WCR larvae. We isolated five Photorhabdus symbionts from different nematodes and increased their benzoxazinoid resistance through experimental evolution. Benzoxazinoid resistance evolved through multiple mechanisms, including a mutation in the aquaporin-like channel gene aqpZ. We reintroduced benzoxazinoid-resistant Photorhabdus strains into their original EPN hosts and identified one nematode-symbiont pair that was able to kill benzoxazinoid-sequestering WCR larvae more efficiently. Our results suggest that modification of bacterial symbionts might provide a generalizable strategy to improve biocontrol of agricultural pests.
Collapse
|
13
|
Mathenge C, Thuita M, Masso C, Gweyi-Onyango J, Vanlauwe B. Variability of soybean response to rhizobia inoculant, vermicompost, and a legume-specific fertilizer blend in Siaya County of Kenya. SOIL & TILLAGE RESEARCH 2019; 194:104290. [PMID: 31680708 PMCID: PMC6743212 DOI: 10.1016/j.still.2019.06.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/05/2019] [Accepted: 06/09/2019] [Indexed: 05/29/2023]
Abstract
Rhizobia inoculation can increase soybean yield, but its performance is influenced by among others soybean genotype, rhizobia strains, environment, and crop management. The objective of the study was to assess soybean response to rhizobia inoculation when grown in soils amended with urea or vermicompost to improve nitrogen levels. Two greenhouse experiments and one field trial at two sites were carried out. The first greenhouse experiment included soils from sixty locations, sampled from smallholder farms in Western Kenya. The second greenhouse experiment consisted of one soil selected among soils used in the first experiment where inoculation response was poor. The soil was amended with vermicompost or urea. In the two greenhouse experiments, Legumefix (inoculant) + Sympal (legume fertilizer blend) were used as a standard package. Results from the second greenhouse experiment were then validated in the field. Analysis of variance was done using SAS statistical software and mean separation was done using standard error of the difference for shoot biomass, grain yield nodulation, nodule effectiveness and nutrient uptake. In the first greenhouse trial, soybean response to inoculation was significantly affected by soil fertility based on nodule fresh weight and shoot biomass. Soils with low nitrogen had low to no response to inoculation. After amendment, nodule fresh weight, nodule effectiveness, nodule occupancy, and shoot dry biomass were greater in the treatment amended with vermicompost than those amended with urea (Legumefix + Sympal + vermicompost and Legumefix + Sympal + urea) respectively. Under field conditions, trends were similar to the second experiment for nodulation, nodule occupancy and nitrogen uptake resulting in significantly greater grain yields (475, 709, 856, 880, 966 kg ha-1) after application of vermicompost at 0, 37, 74, 111, and 148 kg N ha-1 respectively. It was concluded that soybean nodulation and biological nitrogen fixation in low fertility soils would not be suppressed by organic amendments like vermicompost up to 148 kg N ha-1.
Collapse
Affiliation(s)
- Catherine Mathenge
- Department of Agricultural Science and Technology, Kenyatta University, P.O BOX 43844-00100, Nairobi, Kenya
- International Institute of Tropical Agriculture, c/o ICIPE, Duduville, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| | - Moses Thuita
- International Institute of Tropical Agriculture, c/o ICIPE, Duduville, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| | - Cargele Masso
- International institute of Tropical Agriculture, Yaounde, Cameroon
| | - Joseph Gweyi-Onyango
- Department of Agricultural Science and Technology, Kenyatta University, P.O BOX 43844-00100, Nairobi, Kenya
| | - Bernard Vanlauwe
- International Institute of Tropical Agriculture, c/o ICIPE, Duduville, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
14
|
Liu X, Liu C, Gao W, Xue C, Guo Z, Jiang L, Li F, Liu Y. Impact of biochar amendment on the abundance and structure of diazotrophic community in an alkaline soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 688:944-951. [PMID: 31726576 DOI: 10.1016/j.scitotenv.2019.06.293] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 06/10/2023]
Abstract
Biological nitrogen (N) fixation contributes to the pool of plant-available N in soil and helps to minimize the use of inorganic N fertilizer in agricultural ecosystems. Although diazotrophs play an important role in the biological fixation of atmospheric N2 in a range of soil types, the knowledge of their response to biochar amendment is still limited. Here, using the nifH gene as a molecular marker, we investigated the short-term effect of biochar application on the abundance, community composition and activity of diazotroph in an alkaline soil. A field trial was established before soybean sowing in 2017 and five treatments were included: inorganic NPK fertilizer (CK); inorganic NPK fertilizer + wheat straw (CS); inorganic NPK fertilizer + low rate of biochar (B4); inorganic NPK fertilizer + high rate of biochar (B20); biochar compound fertilizer (BCF). The field trial was lasted for one crop season and samples were collected by soybean harvest. The results showed that biochar addition generally increased the concentration of soil organic carbon (SOC) and available phosphorous (AP), while B20 treatment significantly increased the total nitrogen (TN) and available potassium (AK). Biochar addition treatments increased the nifH gene abundance and altered the community structure of soil diazotrophs. The abundance of nifH gene was positively correlated with SOC, indicating that increasing SOC potentially affected diazotrophic population in the alkaline soil. Community structure of diazotrophs in the CS treatment was similar with the CK treatment; thus, there was no effect of crop straw on diazotroph community structure. In contrast, the application of biochar and biochar compound fertilizer altered the diazotroph community structure with shifts in the dominant genus, with higher Sinorhizobium in the biochar-amended treatments. SOC, C/N and AP were the key factors correlated with change in diazotroph community structure. Overall, our results suggest that the addition of biochar or biochar compound fertilizer could increase the abundance and alter the community structure of diazotrophs, which may benefit N fixation in alkaline agricultural soil. Conversely, the direct straw return had no effect on the abundance and community structure of diazotrophs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Cheng Liu
- Institute of Resources, Ecosystem and Environment of Agriculture, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Wenhui Gao
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Chen Xue
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Zonghao Guo
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China
| | - Li Jiang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Science, Urumqi 830011, China
| | - Feng Li
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China.
| | - Yuan Liu
- Department of Bioengineering, College of Life Science, Huaibei Normal University, Huaibei 235000, Anhui, China.
| |
Collapse
|
15
|
Sugawara M, Umehara Y, Kaga A, Hayashi M, Ishimoto M, Sato S, Mitsui H, Minamisawa K. Symbiotic incompatibility between soybean and Bradyrhizobium arises from one amino acid determinant in soybean Rj2 protein. PLoS One 2019; 14:e0222469. [PMID: 31518373 PMCID: PMC6743760 DOI: 10.1371/journal.pone.0222469] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 08/29/2019] [Indexed: 12/16/2022] Open
Abstract
Cultivated soybean (Glycine max) carrying the Rj2 allele restricts nodulation with specific Bradyrhizobium strains via host immunity, mediated by rhizobial type III secretory protein NopP and the host resistance protein Rj2. Here we found that the single isoleucine residue I490 in Rj2 is required for induction of symbiotic incompatibility. Furthermore, we investigated the geographical distribution of the Rj2-genotype soybean in a large set of germplasm by single nucleotide polymorphism (SNP) genotyping using a SNP marker for I490. By allelic comparison of 79 accessions in the Japanese soybean mini-core collection, we suggest substitution of a single amino acid residue (R490 to I490) in Rj2 induces symbiotic incompatibility with Bradyrhizobium diazoefficiens USDA 122. The importance of I490 was verified by complementation of rj2-soybean by the dominant allele encoding the Rj2 protein containing I490 residue. The Rj2 allele was also found in Glycine soja, the wild progenitor of G. max, and their single amino acid polymorphisms were associated with the Rj2-nodulation phenotype. By SNP genotyping against 1583 soybean accessions, we detected the Rj2-genotype in 5.4% of G. max and 7.7% of G. soja accessions. Distribution of the Rj2-genotype soybean plants was relatively concentrated in the temperate Asian region. These results provide important information about the mechanism of host genotype-specific symbiotic incompatibility mediated by host immunity and suggest that the Rj2 gene has been maintained by environmental conditions during the process of soybean domestication.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Yosuke Umehara
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Akito Kaga
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masaki Hayashi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Masao Ishimoto
- National Institute of Crop Science, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Hisayuki Mitsui
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
| |
Collapse
|
16
|
Potential biocontrol and superlative plant growth promoting activity of indigenous Bacillus mojavensis PB-35(R11) of soybean (Glycine max) rhizosphere. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-1149-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Crespo-Rivas JC, Navarro-Gómez P, Alias-Villegas C, Shi J, Zhen T, Niu Y, Cuéllar V, Moreno J, Cubo T, Vinardell JM, Ruiz-Sainz JE, Acosta-Jurado S, Soto MJ. Sinorhizobium fredii HH103 RirA Is Required for Oxidative Stress Resistance and Efficient Symbiosis with Soybean. Int J Mol Sci 2019; 20:E787. [PMID: 30759803 PMCID: PMC6386902 DOI: 10.3390/ijms20030787] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 11/28/2022] Open
Abstract
Members of Rhizobiaceae contain a homologue of the iron-responsive regulatory protein RirA. In different bacteria, RirA acts as a repressor of iron uptake systems under iron-replete conditions and contributes to ameliorate cell damage during oxidative stress. In Rhizobium leguminosarum and Sinorhizobium meliloti, mutations in rirA do not impair symbiotic nitrogen fixation. In this study, a rirA mutant of broad host range S. fredii HH103 has been constructed (SVQ780) and its free-living and symbiotic phenotypes evaluated. No production of siderophores could be detected in either the wild-type or SVQ780. The rirA mutant exhibited a growth advantage under iron-deficient conditions and hypersensitivity to hydrogen peroxide in iron-rich medium. Transcription of rirA in HH103 is subject to autoregulation and inactivation of the gene upregulates fbpA, a gene putatively involved in iron transport. The S. fredii rirA mutant was able to nodulate soybean plants, but symbiotic nitrogen fixation was impaired. Nodules induced by the mutant were poorly infected compared to those induced by the wild-type. Genetic complementation reversed the mutant's hypersensitivity to H₂O₂, expression of fbpA, and symbiotic deficiency in soybean plants. This is the first report that demonstrates a role for RirA in the Rhizobium-legume symbiosis.
Collapse
Affiliation(s)
- Juan Carlos Crespo-Rivas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Cynthia Alias-Villegas
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Jie Shi
- Daqing Branch of Heilongjiang Academy of Sciences, Daqing 163000, China.
| | - Tao Zhen
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150001, China.
| | - Yanbo Niu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150001, China.
| | - Virginia Cuéllar
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain.
| | - Javier Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Teresa Cubo
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José María Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - José Enrique Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - Sebastián Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avda. Reina Mercedes 6, 41012 Sevilla, Spain.
| | - María José Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC, c/ Profesor Albareda 1, 18008 Granada, Spain.
| |
Collapse
|
18
|
Singh RP, Manchanda G, Maurya IK, Maheshwari NK, Tiwari PK, Rai AR. Streptomyces from rotten wheat straw endowed the high plant growth potential traits and agro-active compounds. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.01.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Temprano-Vera F, Rodríguez-Navarro DN, Acosta-Jurado S, Perret X, Fossou RK, Navarro-Gómez P, Zhen T, Yu D, An Q, Buendía-Clavería AM, Moreno J, López-Baena FJ, Ruiz-Sainz JE, Vinardell JM. Sinorhizobium fredii Strains HH103 and NGR234 Form Nitrogen Fixing Nodules With Diverse Wild Soybeans ( Glycine soja) From Central China but Are Ineffective on Northern China Accessions. Front Microbiol 2018; 9:2843. [PMID: 30519234 PMCID: PMC6258812 DOI: 10.3389/fmicb.2018.02843] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 11/18/2022] Open
Abstract
Sinorhizobium fredii indigenous populations are prevalent in provinces of Central China whereas Bradyrhizobium species (Bradyrhizobium japonicum, B. diazoefficiens, B. elkanii, and others) are more abundant in northern and southern provinces. The symbiotic properties of different soybean rhizobia have been investigated with 40 different wild soybean (Glycine soja) accessions from China, Japan, Russia, and South Korea. Bradyrhizobial strains nodulated all the wild soybeans tested, albeit efficiency of nitrogen fixation varied considerably among accessions. The symbiotic capacity of S. fredii HH103 with wild soybeans from Central China was clearly better than with the accessions found elsewhere. S. fredii NGR234, the rhizobial strain showing the broadest host range ever described, also formed nitrogen-fixing nodules with different G. soja accessions from Central China. To our knowledge, this is the first report describing an effective symbiosis between S. fredii NGR234 and G. soja. Mobilization of the S. fredii HH103 symbiotic plasmid to a NGR234 pSym-cured derivative (strain NGR234C) yielded transconjugants that formed ineffective nodules with G. max cv. Williams 82 and G. soja accession CH4. By contrast, transfer of the symbiotic plasmid pNGR234a to a pSym-cured derivative of S. fredii USDA193 generated transconjugants that effectively nodulated G. soja accession CH4 but failed to nodulate with G. max cv. Williams 82. These results indicate that intra-specific transference of the S. fredii symbiotic plasmids generates new strains with unpredictable symbiotic properties, probably due to the occurrence of new combinations of symbiotic signals.
Collapse
Affiliation(s)
| | | | - Sebastian Acosta-Jurado
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Xavier Perret
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Romain K Fossou
- Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Pilar Navarro-Gómez
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Tao Zhen
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Deshui Yu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Qi An
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin, China
| | - Ana Maria Buendía-Clavería
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Javier Moreno
- Departamento de Biología Celular, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Francisco Javier López-Baena
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Jose Enrique Ruiz-Sainz
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| | - Jose Maria Vinardell
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Avenida Reina Mercedes, Seville, Spain
| |
Collapse
|