1
|
Reuben RC, Torres C. Bacteriocins: potentials and prospects in health and agrifood systems. Arch Microbiol 2024; 206:233. [PMID: 38662051 PMCID: PMC11045635 DOI: 10.1007/s00203-024-03948-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
Bacteriocins are highly diverse, abundant, and heterogeneous antimicrobial peptides that are ribosomally synthesized by bacteria and archaea. Since their discovery about a century ago, there has been a growing interest in bacteriocin research and applications. This is mainly due to their high antimicrobial properties, narrow or broad spectrum of activity, specificity, low cytotoxicity, and stability. Though initially used to improve food quality and safety, bacteriocins are now globally exploited for innovative applications in human, animal, and food systems as sustainable alternatives to antibiotics. Bacteriocins have the potential to beneficially modulate microbiota, providing viable microbiome-based solutions for the treatment, management, and non-invasive bio-diagnosis of infectious and non-infectious diseases. The use of bacteriocins holds great promise in the modulation of food microbiomes, antimicrobial food packaging, bio-sanitizers and antibiofilm, pre/post-harvest biocontrol, functional food, growth promotion, and sustainable aquaculture. This can undoubtedly improve food security, safety, and quality globally. This review highlights the current trends in bacteriocin research, especially the increasing research outputs and funding, which we believe may proportionate the soaring global interest in bacteriocins. The use of cutting-edge technologies, such as bioengineering, can further enhance the exploitation of bacteriocins for innovative applications in human, animal, and food systems.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain.
| | - Carmen Torres
- Area of Biochemistry and Molecular Biology, OneHealth-UR Research Group, University of La Rioja, 26006, Logroño, Spain
| |
Collapse
|
2
|
Ramos ETDA, Olivares FL, da Rocha LO, da Silva RF, do Carmo MGF, Lopes MTG, Meneses CHSG, Vidal MS, Baldani JI. The Effects of Gluconacin on Bacterial Tomato Pathogens and Protection against Xanthomonas perforans, the Causal Agent of Bacterial Spot Disease. PLANTS (BASEL, SWITZERLAND) 2023; 12:3208. [PMID: 37765372 PMCID: PMC10535834 DOI: 10.3390/plants12183208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
As agricultural practices become more sustainable, adopting more sustainable practices will become even more relevant. Searching for alternatives to chemical compounds has been the focus of numerous studies, and bacteriocins are tools with intrinsic biotechnological potential for controlling plant diseases. We continued to explore the biotechnological activity of the bacteriocin Gluconacin from Gluconacetobacter diazotrophicus, PAL5 strain, by investigating this protein's antagonism against important tomato phytopathogens and demonstrating its effectiveness in reducing bacterial spots caused by Xanthomonas perforans. In addition to this pathogen, the bacteriocin Gluconacin demonstrated bactericidal activity in vitro against Ralstonia solanacearum and Pseudomonas syringae pv. tomato, agents that cause bacterial wilt and bacterial spots, respectively. Bacterial spot control tests showed that Gluconacin reduced disease severity by more than 66%, highlighting the biotechnological value of this peptide in ecologically correct formulations.
Collapse
Affiliation(s)
- Elizabeth Teixeira de Almeida Ramos
- Programa de Pós-Graduação em Fitotecnia (PPGF), Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 07, Seropédica 23890-000, RJ, Brazil; (E.T.d.A.R.); (M.G.F.d.C.)
| | - Fábio Lopes Olivares
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura, Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (F.L.O.); (L.O.d.R.)
| | - Letícia Oliveira da Rocha
- Núcleo de Desenvolvimento de Insumos Biológicos para a Agricultura, Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes 28013-602, RJ, Brazil; (F.L.O.); (L.O.d.R.)
| | - Rogério Freire da Silva
- Programa de Pós-Graduação em Ciências Agrárias, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Universidade Estadual da Paraíba, Universitário, Campina Grande 58429-500, PB, Brazil; (R.F.d.S.); (C.H.S.G.M.)
| | - Margarida Goréte Ferreira do Carmo
- Programa de Pós-Graduação em Fitotecnia (PPGF), Departamento de Fitotecnia, Instituto de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 07, Seropédica 23890-000, RJ, Brazil; (E.T.d.A.R.); (M.G.F.d.C.)
| | - Maria Teresa Gomes Lopes
- Faculdade de Ciências Agrárias, Universidade Federal do Amazonas, Avenida Rodrigo Otávio Ramos, 3.000, Bairro Coroado, Manaus 69077-000, AM, Brazil;
| | - Carlos Henrique Salvino Gadelha Meneses
- Programa de Pós-Graduação em Ciências Agrárias, Centro de Ciências Biológicas e da Saúde, Departamento de Biologia, Universidade Estadual da Paraíba, Universitário, Campina Grande 58429-500, PB, Brazil; (R.F.d.S.); (C.H.S.G.M.)
| | - Marcia Soares Vidal
- Embrapa Agrobiologia, Rodovia BR 465, km 07, Seropédica 23891-000, RJ, Brazil;
| | - José Ivo Baldani
- Embrapa Agrobiologia, Rodovia BR 465, km 07, Seropédica 23891-000, RJ, Brazil;
| |
Collapse
|
3
|
Guo DJ, Singh P, Yang B, Singh RK, Verma KK, Sharma A, Khan Q, Qin Y, Chen TS, Song XP, Zhang BQ, Li DP, Li YR. Complete genome analysis of sugarcane root associated endophytic diazotroph Pseudomonas aeruginosa DJ06 revealing versatile molecular mechanism involved in sugarcane development. Front Microbiol 2023; 14:1096754. [PMID: 37152763 PMCID: PMC10157262 DOI: 10.3389/fmicb.2023.1096754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/27/2023] [Indexed: 05/09/2023] Open
Abstract
Sugarcane is an important sugar and bioenergy source and a significant component of the economy in various countries in arid and semiarid. It requires more synthetic fertilizers and fungicides during growth and development. However, the excess use of synthetic fertilizers and fungicides causes environmental pollution and affects cane quality and productivity. Plant growth-promoting bacteria (PGPB) indirectly or directly promote plant growth in various ways. In this study, 22 PGPB strains were isolated from the roots of the sugarcane variety GT42. After screening of plant growth-promoting (PGP) traits, it was found that the DJ06 strain had the most potent PGP activity, which was identified as Pseudomonas aeruginosa by 16S rRNA gene sequencing. Scanning electron microscopy (SEM) and green fluorescent protein (GFP) labeling technology confirmed that the DJ06 strain successfully colonized sugarcane tissues. The complete genome sequencing of the DJ06 strain was performed using Nanopore and Illumina sequencing platforms. The results showed that the DJ06 strain genome size was 64,90,034 bp with a G+C content of 66.34%, including 5,912 protein-coding genes (CDSs) and 12 rRNA genes. A series of genes related to plant growth promotion was observed, such as nitrogen fixation, ammonia assimilation, siderophore, 1-aminocyclopropane-1-carboxylic acid (ACC), deaminase, indole-3-acetic acid (IAA) production, auxin biosynthesis, phosphate metabolism, hydrolase, biocontrol, and tolerance to abiotic stresses. In addition, the effect of the DJ06 strain was also evaluated by inoculation in two sugarcane varieties GT11 and B8. The length of the plant was increased significantly by 32.43 and 12.66% and fresh weight by 89.87 and 135.71% in sugarcane GT11 and B8 at 60 days after inoculation. The photosynthetic leaf gas exchange also increased significantly compared with the control plants. The content of indole-3-acetic acid (IAA) was enhanced and gibberellins (GA) and abscisic acid (ABA) were reduced in response to inoculation of the DJ06 strain as compared with control in two sugarcane varieties. The enzymatic activities of oxidative, nitrogen metabolism, and hydrolases were also changed dramatically in both sugarcane varieties with inoculation of the DJ06 strain. These findings provide better insights into the interactive action mechanisms of the P. aeruginosa DJ06 strain and sugarcane plant development.
Collapse
Affiliation(s)
- Dao-Jun Guo
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Pratiksha Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bin Yang
- College of Life Sciences and Engineering, Hexi University, Zhangye, Gansu, China
| | - Rajesh Kumar Singh
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Krishan K. Verma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Anjney Sharma
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Qaisar Khan
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ying Qin
- College of Agriculture, Guangxi University, Nanning, Guangxi, China
| | - Ting-Su Chen
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Bao-Qing Zhang
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
| | - Dong-Ping Li
- Microbiology Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- Dong-Ping Li
| | - Yang-Rui Li
- Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture, Guangxi Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi, China
- *Correspondence: Yang-Rui Li
| |
Collapse
|
4
|
Abstract
Subcellular compartmentalization is a defining feature of all cells. In prokaryotes, compartmentalization is generally achieved via protein-based strategies. The two main classes of microbial protein compartments are bacterial microcompartments and encapsulin nanocompartments. Encapsulins self-assemble into proteinaceous shells with diameters between 24 and 42 nm and are defined by the viral HK97-fold of their shell protein. Encapsulins have the ability to encapsulate dedicated cargo proteins, including ferritin-like proteins, peroxidases, and desulfurases. Encapsulation is mediated by targeting sequences present in all cargo proteins. Encapsulins are found in many bacterial and archaeal phyla and have been suggested to play roles in iron storage, stress resistance, sulfur metabolism, and natural product biosynthesis. Phylogenetic analyses indicate that they share a common ancestor with viral capsid proteins. Many pathogens encode encapsulins, and recent evidence suggests that they may contribute toward pathogenicity. The existing information on encapsulin structure, biochemistry, biological function, and biomedical relevance is reviewed here.
Collapse
Affiliation(s)
- Tobias W. Giessen
- Departments of Biomedical Engineering and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Heterologous overexpression and preliminary antimicrobial activity test of salmocin M, a novel colicin M-like bacteriocin against Salmonella sp. Arch Microbiol 2022; 204:154. [PMID: 35088215 PMCID: PMC8794732 DOI: 10.1007/s00203-021-02659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 09/17/2021] [Accepted: 10/11/2021] [Indexed: 11/17/2022]
Abstract
Currently, it is extremely important to identify and describe new alternative compounds with potential antimicrobial properties. Since various natural biological systems are capable of producing active compounds with such properties, many of them have been the subject of intensive study. The aim of this work was to heterologously overexpress, purify and preliminarily investigate the antimicrobial activity of a novel bacteriocin found in Salmonella species. Overexpressed protein shows an amino acid structure homologous to the well-known colicin M and was never expressed previously in the E. coli platform. Purified salmocin M showed an inhibition spectrum against Salmonella and E. coli strains. To determine its potential as an antimicrobial agent for use in medicine or the food industry, preliminary antimicrobial tests against pathogenic bacteria were carried out. Our research demonstrates that bacteriocin can be produced efficiently in bacterial expression systems, which are one of the cheapest and the most popular platforms for recombinant protein production. Moreover, preliminary results of microbiological tests showed its activity against most of the bacterial strains in a dose-dependent manner.
Collapse
|
6
|
Tyrosine Kinase Self-Phosphorylation Controls Exopolysaccharide Biosynthesis in Gluconacetobacter diazotrophicus Strain Pal5. Life (Basel) 2021; 11:life11111231. [PMID: 34833106 PMCID: PMC8620434 DOI: 10.3390/life11111231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/28/2021] [Accepted: 11/10/2021] [Indexed: 11/16/2022] Open
Abstract
The biosynthesis of exopolysaccharides (EPSs) is essential for endophytic bacterial colonisation in plants bacause this exopolymer both protects bacterial cells against the defence and oxidative systems of plants and acts on the plant colonisation mechanism in Gluconacetobacter diazotrophicus. The pathway involved in the biosynthesis of bacterial EPS has not been fully elucidated, and several areas related to its molecular regulation mechanisms are still lacking. G. diazotrophicus relies heavily on EPS for survival indirectly by protecting plants from pathogen attack as well as for endophytic maintenance and adhesion in plant tissues. Here, we report that EPS from G. diazotrophicus strain Pal5 is a signal polymer that controls its own biosynthesis. EPS production depends on a bacterial tyrosine (BY) kinase (Wzc) that consists of a component that is able to phosphorylate a glycosyltranferase or to self-phosphorylate. EPS interacts with the extracellular domain of Wzc, which regulates kinase activity. In G. diazotrophicus strains that are deficient in EPS production, the Wzc is rendered inoperative by self-phosphorylation. The presence of EPS promotes the phosphorylation of a glycosyltransferase in the pathway, thus producing EPS. Wzc-mediated self-regulation is an attribute for the control of exopolysaccharide biosynthesis in G. diazotrophicus.
Collapse
|
7
|
Pitiwittayakul N, Wongsorn D, Tanasupawat S. Characterisation of Plant Growth-Promoting Endophytic Bacteria from Sugarcane and Their Antagonistic Activity against Fusarium moniliforme. Trop Life Sci Res 2021; 32:97-118. [PMID: 35656370 PMCID: PMC9132556 DOI: 10.21315/tlsr2021.32.3.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The use of endophytic bacteria in agriculture provides an effective way of improving crop yield and significantly reducing chemical usage, such as fungicides. This research was conducted to explore endophytic bacteria with plant growth promotion (PGP) and antifungal activities against Fusarium moniliforme AIT01. In this study, we obtained 52 isolates of endophytic bacteria associated with the roots and stems of sugarcane from Nakhon Ratchasima province, Thailand. In vitro antagonistic activity test showed that 14 out of 52 isolates had antagonistic activity against the fungal pathogen F. moniliforme AIT01. These antagonistic endophytic bacteria were identified as belonging to six different species as follows: Nguyenibacter vanlangensis, Acidomonas methanolica, Asaia bogorensis, Tanticharoenia aidae, Burkholderia gladioli and Bacillus altitudinis based on phenotypic characteristics, along with phylogenetic analysis of their 16S rRNA gene sequences. Seven isolates effectively inhibited F. moniliforme AIT01 mycelial growth by up to 40%. The volatile compounds of six isolates reduced the growth of F. moniliforme AIT01 by over 23%. Moreover, riceberry rice seedlings previously treated with B. gladioli CP28 were found to strongly reduce infection with phytopathogen by 80% in comparison to the non-treated control. Furthermore, the isolates also showed relevant PGP features, including ammonia production, zinc and phosphate solubilisation, auxin and siderophore biosynthesis. These results demonstrated that the tested endophytic bacteria could be successfully utilised as a source of PGP and biocontrol agent to manage diseases caused by F. moniliforme.
Collapse
Affiliation(s)
- Nittaya Pitiwittayakul
- Department of Agricultural Technology and Environment, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima Campus, Nakhon Ratchasima 30000, Thailand
| | - Duanpen Wongsorn
- Department of Agricultural Technology and Environment, Faculty of Sciences and Liberal Arts, Rajamangala University of Technology Isan, Nakhon Ratchasima Campus, Nakhon Ratchasima 30000, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
8
|
Adeleke BS, Ayangbenro AS, Babalola OO. Genomic assessment of Stenotrophomonas indicatrix for improved sunflower plant. Curr Genet 2021; 67:891-907. [PMID: 34195871 DOI: 10.1007/s00294-021-01199-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 11/29/2022]
Abstract
Diverse agriculturally important microbes have been studied with known potential in plant growth promotion. Providing several opportunities, Stenotrophomonas species are characterized as promising plant enhancers, inducers, and protectors against environmental stressors. The S. indicatrix BOVIS40 isolated from the sunflower root endosphere possessed unique features, as genome insights into the Stenotrophomonas species isolated from oilseed crops in Southern Africa have not been reported. Plant growth-promotion screening and genome analysis of S. indicatrix BOVIS40 were presented in this study. The genomic information reveals various genes underlining plant growth promotion and resistance to environmental stressors. The genome of S. indicatrix BOVIS40 harbors genes involved in the degradation and biotransformation of organic molecules. Also, other genes involved in biofilm production, chemotaxis, and flagellation that facilitate bacterial colonization in the root endosphere and phytohormone genes that modulate root development and stress response in plants were detected in strain BOVIS40. IAA activity of the bacterial strain may be a factor responsible for root formation. A measurable approach to the S. indicatrix BOVIS40 lifestyle can strategically provide several opportunities in their use as bioinoculants in developing environmentally friendly agriculture sustainably. The findings presented here provide insights into the genomic functions of S. indicatrix BOVIS40, which has set a foundation for future comparative studies for a better understanding of the synergism among microbes inhabiting plant endosphere. Hence, highlighting the potential of S. indicatrix BOVIS40 upon inoculation under greenhouse experiment, thus suggesting its application in enhancing plant and soil health sustainably.
Collapse
Affiliation(s)
- Bartholomew Saanu Adeleke
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
9
|
CESA-LUNA CATHERINE, ALATORRE-CRUZ JULIAMARÍA, CARREÑO-LÓPEZ RICARDO, QUINTERO-HERNÁNDEZ VERÓNICA, BAEZ ANTONINO. Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Pol J Microbiol 2021; 70:143-159. [PMID: 34349808 PMCID: PMC8326989 DOI: 10.33073/pjm-2021-020] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.
Collapse
Affiliation(s)
- CATHERINE CESA-LUNA
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - RICARDO CARREÑO-LÓPEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - ANTONINO BAEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| |
Collapse
|
10
|
Dos-Santos CM, Nascimento WBA, do Nascimento BP, Schwab S, Baldani JI, Vidal MS. Temporal assessment of root and shoot colonization of elephant grass (Pennisetum purpureum Schum.) host seedlings by Gluconacetobacter diazotrophicus strain LP343. Microbiol Res 2020; 244:126651. [PMID: 33383369 DOI: 10.1016/j.micres.2020.126651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/09/2020] [Accepted: 11/13/2020] [Indexed: 11/18/2022]
Abstract
Gluconacetobacter diazotrophicus is a species of great agronomic potential due to its growth-promotion traits. Its colonization process in different plants has been reported. However, there have been no studies regarding its structural colonization in elephant grass. This is a fast-growing C4-Poaceae plant, and its application in Brazil is mainly aimed at feeding dairy cattle, due to its high nutritional value. Also, in the last decade, this grass has been applied in the production of biofuels. The present study aimed to monitor the colonization process of strain LP343 of G. diazotrophicus inoculated in elephant grass seedlings of PCEA genotype, by using a mCherry-tagged bacterium. Samples of roots and shoots collected at different periods were visualized by confocal laser-scanning microscopy. The colony-counting assay was used to compare the number of cells recovered in different niches and a qPCR was performed for the quantification of endophytic cells in root and shoot tissues. Results suggested that the strain LP343 quickly recognized the PCEA roots as host, attached to the elephant grass roots at 6 h, and 7 days after inoculation were able to colonize the xylem vessels of roots and shoots of elephant grass. This study advances our knowledge about the colonization process of G. diazotrophicus species in elephant grass, contributing to future studies involving the plant-bacteria interaction cultivated under gnotobiotic conditions.
Collapse
Affiliation(s)
- Carlos M Dos-Santos
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil
| | - Wiglison B A Nascimento
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil; Instituto de Agronomia, Departamento de Agronomia, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, CEP 23897-000, Seropédica, RJ, Brazil
| | - Bruna P do Nascimento
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil; Instituto de Tecnologia, Departamento de Química, Universidade Federal Rural do Rio de Janeiro, Rodovia BR 465, km 7, CEP 23897-000, Seropédica, RJ, Brazil
| | - Stefan Schwab
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil
| | - José I Baldani
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil
| | - Marcia S Vidal
- Embrapa Agrobiologia, Rodovia BR 465, km 7, CEP 23891-000, Seropédica, RJ, Brazil.
| |
Collapse
|
11
|
Cesa-Luna C, Baez A, Quintero-Hernández V, De la Cruz-Enríquez J, Castañeda-Antonio MD, Muñoz-Rojas J. The importance of antimicrobial compounds produced by beneficial bacteria on the biocontrol of phytopathogens. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v25n1.76867] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Bacteria produce antimicrobial compounds to compete for nutrients and space in a particular habitat. Antagonistic interactions can be evaluated by several methodologies including the double-layer agar and simultaneous inhibition assays. Among the well-known inhibitory substances produced by bacteria are the broad-spectrum antibiotics, organic acids, siderophores, antifungal, and bacteriocins. The most studied bacterial genera able to produce these inhibitory substances are Enterococcus, Lactococcus, Streptomyces, Bacillus, Pseudomonas, Klebsiella, Escherichia, and Burkholderia. Some beneficial bacteria can promote plant growth and degrade toxic compounds in the environment representing an attractive solution to diverse issues in agriculture and soil pollution, particularly in fields with damaged soils where pesticides and fertilizers have been indiscriminately used. Beneficial bacteria may increase plant health by inhibiting pathogenic microorganisms; some examples include Gluconacetobacter diazotrophicus, Azospirullum brasilense, Pseudomonas fluorescens, Pseudomonas protegens, and Burkholderia tropica. However, most studies showing the antagonistic potential of these bacteria have been performed in vitro, and just a few of them have been evaluated in association with plants. Several inhibitory substances involved in pathogen antagonism have not been elucidated yet; in fact, we know only 1 % of the bacterial diversity in a natural environment leading us to assume that many other inhibitory substances remain unexplored. In this review, we will describe the characteristics of some antimicrobial compounds produced by beneficial bacteria, the principal methodologies performed to evaluate their production, modes of action, and their importance for biotechnological purposes.
Collapse
|